Combination of good oxidation resistance, thermal stability, hardness and high strength are great interest properties in engineering and, that are possible to obtain with the Ni-Ti-B ternary system. Mechanical alloying (MA) is an alternative method and cheapest for the synthesis of this kind of metal-ceramic materials with respect to the traditional melt and quench process. The transformation sequence of all the mixtures reported the formation of (ɣ Ni) phase with a nodular morphology and identified the additional presence of the TiB2 phase (needle morphology), which was more evident with the increase of titanium content (M2 and M3 mixtures) after 24 h of milling. Thermal activation of the milled powders showed the nucleation and growth of the Ni3B (O boride) and TiB2 (Hex) as the main phases after heat treatment, where the TiB2 phase (thin flakes morphology) was nucleated onto Ni3B matrix. Ternary alloy by MA took place under a metastable equilibrium, offering the possibility to form glassy alloys for compositions, which are not accessible by melting or quenching techniques.
Part of the book: Novel Nanomaterials