The complex specific heat is reported over a wide temperature range for a negative dielectric anisotropy alkoxyphenylbenzoate liquid crystal (9OO4) and carbon nanotube (CNT) composites as a function of carbon nanotube concentration. It has been observed that the combination of nanotubes (CNT) and liquid crystal (LC) provides a very useful way to align CNTs and also dramatically increases the order in the liquid crystal performance, which is useful in liquid display technology (LCD). The calorimetric scans were performed between 25 and 95°C temperatures, first allowed cooling and then heating for CNT concentration ranging from ϕw = 0 to 0.2 wt%. All 9OO4/CNT composite mesophases have transition temperatures about 1 K higher and a crystallization temperature 4 K higher as compared to the pure 9OO4 liquid crystal. A strongly first-order specific heat feature is observed, which is 0.5 K higher than in the pure 9OO4. The transition enthalpy for the composite mesophases is observed 10% lower than the pure liquid crystal. We interpret that these results arising from the LC-CNT surface interaction lead to pinning orientational order uniformly along the CNT, without pinning the position of the 9OO4 molecule. These effects of incorporating CNTs with LC are likely due to elastic coupling between CNT and LC. These effects of incorporating CNTs into LCs are likely due to an "anisotropic orientational" coupling between CNT and LC, the change in the elastic properties of composites and thermal anisotropic properties of the CNTs.
Part of the book: Carbon Nanotubes