Glass and carbon fiber-reinforced composite materials have been applied for the high demand in industrial use to date, because their advantages are light weight, high strength, and corrosion resistance. However, the disposal problem after the use of these materials has also surfaced as a serious environmental problem. As a measure to solve this problem, many researchers have tried to investigate the potential of plant-based natural fibers instead of artificial fibers. When we use natural fibers as a long fiber-reinforcement, the negative point is irregular fiber waviness inherent in a sliver form. This is because such fiber waviness often decreases the mechanical properties. The purpose of this study is thus to clarify the relation between irregular fiber waviness and the composite’s tensile strength. The clarification was performed from two points of view: One is quantification of irregular fiber waviness, based on spatial analysis such as Local Moran’s I and Geary’s c. Result shows that quantified parameters were correlated well with tensile strengths of sliver-based natural fiber composites. Another is a 3-D finite element analysis in which the fiber waviness was treated as an orthotropic body. Finally, the relation of the tensile strengths with maximum stress and Tsai-Hill criterions was discussed.
Part of the book: Natural and Artificial Fiber-Reinforced Composites as Renewable Sources