Part of the book: Ferroelectrics
The devices of polycrystalline film have small sensitivity that can be overthrown by using high aspect ratio of 1D nanostructures, such as ZnO nanostructures. Sensors based on 1D nanostructures show very quick response time and high sensitivity for their high impact factor. The purpose of this article is to provide a comparison of different methods and the quality of the sensors thus produced. Currently, metal oxide 1D nanoarchitectures like ZnO have great attraction due to their applications in sensors. Metal oxide nanostructures have high aspect ratio, with small consumption of power and low weight, however, keeping excellent chemical and thermal dependability. Different techniques have been adopted to fabricate metal oxide one-dimensional nanostructures like hydrothermal, electro-spinning, sol-gel, ultrasonic irradiation, anodization, solid state chemical reaction, molten-salt, thermal evaporation, carbothermal reduction, aerosol, vapor-phase transport, chemical vapor deposition, RF sputtering, gas-phase-assisted nanocarving, molecular beam epitaxy, dry plasma etching, and UV lithography. The sensitivity depends upon the materials; synthesis technique and morphology of the sensor performance toward a particular gas have different range of success. This article estimates the efficiency of ZnO 1D nanoarchitectures, gas sensors. Finally, in this review, we had mentioned the future directions of investigations in this field.
Part of the book: Gas Sensors