This study investigates the biological response of zirconia/tantalum biocermet materials with laser-induced periodic surface structures (LIPSS) generated using a femtosecond laser working at 1030 nm wavelength. LIPSS were formed by laser radiation slightly above the applied threshold fluence. LIPSS features were characterized using techniques such as atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). LIPSS were generated in this study by applying femtosecond pulses with 500 fs pulse duration at a high-repetition rate to smooth-polished zirconia/tantalum biocermet surfaces, with an original roughness value of 3.8 ± 0.2 and 3.1 ± 0.2 nm, respectively. We have demonstrated in vitro that LIPSS are an efficient option to increase osteoblastic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) in ZrO2:Ta biocermets. LIPSS created increase cell metabolism statistically (best values in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay) and decrease inflammatory response to the material (IL-6 and TNF-alpha values). Extracellular matrix production (ECM) is produced in more quantity and cells differentiate to osteoblast easily. These differences are seen from the beginning until the endpoint (day 20).
Part of the book: Laser Ablation