The chemical structures of cardiac glycosides
\r\n\tThe main cause of failure in TKA remains malaignment so preoperative planning and understanding of the principles are crucial in TKA.
\r\n\tThe aim of this book is to discuss preoperative planning, surgical principles, strategies and particular situations in total knee arthroplasty. This book is intended to contribute to the achievement of better results and functional scores in TKA.
Cardiac glycosides comprise a large family of naturally derived compounds, the core structures of which contain a steroid nucleus with a five-membered lactone ring (cardenolides) or a six-membered lactone ring (bufadienolides) and sugar moieties [1]. A few widely recognized examples of cardiac glycosides are digoxin, digitoxin, ouabain, and oleandrin. The cardenolides digitoxin and digoxin, two well-known cardiac glycosides, are inhibitors of the plasma membrane Na+/K+-ATPase that are clinically used for the treatment of heart failure. Their positive inotropic effects help suppress the active counter-transportation of Na+ and K+ across the cell membrane, leading to an increase in the intracellular Na+ concentration, a decrease in the intracellular K+ concentration, and a consequent increase in cardiac contraction [2]. Epidemiologic evidence suggests that breast cancer patients who were treated with digitalis have a significantly lower mortality rate, and their cancer cells had more benign characteristics than those from patients not treated with digitalis [3,4]. Interestingly, the concentrations of cardiac glycosides used for cancer treatment are extremely close to those found in the plasma of cardiac patients treated with the same drugs, suggesting that the anticancer effects of these drugs are exerted at non-toxic concentrations [5]. Furthermore, studies have suggested that cardiac glycosides target cancer cells selectively [6]. These encouraging findings have gained considerable attention in the field of anticancer research, and subsequent studies on the anticancer properties of these compounds have been conducted. These studies investigated not only digoxin and digitoxin but also other related cardiac glycosides, such as ouabain, oleandrin, proscillaridin A, and bufalin [7-10]. Several mechanisms of action, including the inhibition of cancer cell proliferation, the induction of apoptosis, and chemotherapy sensitization, have been reported in a large number of published articles that support the potential use of these compounds for cancer treatment [11-14]. However, further clinical studies are still ongoing to better characterize the pharmacological and safety issues associated with these compounds. This chapter provides an overview of the anticancer activities of cardiac glycosides and describes the selectivity of these compounds, which could prove to be promising treatments in cancer therapy.
Cardiac glycosides from both plants and animals have been known for over one hundred years [14]. Major plant-derived cardiac glycosides include digitoxin, digoxin, ouabain, oleandrin and proscillaridin, which are extracted from the plant families Scrophulariaceae, Apocynaceae, and Asparagaceae (Digitalis purpurea, Digitalis lanata, Strophanthus gratus, Nerium oleander and Urginea maritima). These compounds consist of a steroidal nucleus linked with a sugar at position 3 (C3) and a lactone ring at position 17 (C17) (Fig 1) [15]. The various types of sugar moieties and lactones provide a large number of cardiac glycosides that, based on their lactone moieties, can be divided into two sub-groups: cardenolides, which contain a five-membered unsaturated butyrolactone ring, and bufadienolides, which contain a six-membered unsaturated pyrone ring. The core steroidal portion of each molecule has an A/B and C/D cis-conformation, which has significant pharmacological relevance. The attached sugars, such as glucose, galactose, mannose, rhamnose, and digitalose, determine the pharmacodynamic and pharmacokinetic activities of each cardiac glycoside.
Structural characteristics of cardiac glycosides
Cardiac glycosides have been found in animals as well as plants; for example, bufadienolide was isolated from the venom of a toad species [16], and endogenous digitalis-like compounds have been found in mammalian tissues [17,18]. Several studies have reported that ouabain and proscillaridin A are found in human plasma, that digoxin and marinobufagenin are present in human urine, and that 19-norbufalin exists in cataractous human lenses [18-22]. Table 1 presents a list of the cardiac glycosides found in plants and animals along with their chemical structures.
A digitalis preparation from Digitalis purpurea was first used for the treatment of congestive heart failure by William Withering in 1785 [23]. Currently, digoxin is recognized as a primary treatment for patients with heart failure. Its mode of action has been identified as the potent inhibition of Na+/K+-ATPase. Na+/K+-ATPase, a ubiquitous transmembrane enzyme, is a p-type cation transporter that actively drives two K+ ions into the cell and drives three Na+ ions out of the cell using ATP as an energy source. This pump plays a vital role, acting as a secondary transporter of nutrients such as glucose and amino acids and helping to maintain the electrochemical gradient by keeping the intracellular Na+ concentration low [24]. The elevation of the intracellular Na+ level in response to cardiac glycosides stimulates the Na+/Ca2+ exchanger mechanism. As a result, the intracellular Ca2+ concentration is increased, consequently promoting cellular events such as myocardial contractibility, accounting for the positive inotropic effects of the cardiac glycosides.
Accumulating evidence has established that the Na+/K+-ATPase acts as a scaffold for signaling molecules or for the formation of a signalosome complex that activates various signaling cascades. Several signaling molecules, such as caveolin, SRC kinase, epidermal growth factor receptor (EGFR), and the inositol 1,4,5-triphosphate (IP3) receptor, have been investigated [25-27]. The inhibitory effects of cardiac glycosides on Na+/K+-ATPase activity might lead to alterations in these downstream transduction pathways, which could account for the biological properties of these compounds, including their anticancer activities.
Name | \n\t\t\tStructure | \n\t\t
• Digoxin (Cardenolide) • From Digitalis purpurea\n\t\t\t\t • Family: Scrophulariaceae | \n\t\t\t\n\t\t\t\t | \n\t\t
• Digitoxin (Cardenolide) • From Digitalis purpurea\n\t\t\t\t • Family: Scrophulariaceae | \n\t\t\t\n\t\t\t\t | \n\t\t
Ouabain (Cardenolide) From Nerium oleander\n\t\t\t\t Family: Apocynaceae | \n\t\t\t\n\t\t\t\t | \n\t\t
• Oleandrin (Cardenolide) • From Nerium oleander\n\t\t\t\t • Family: Apocynaceae | \n\t\t\t\n\t\t\t\t | \n\t\t
• Proscillaridin (Bufadienolide) • From Urginea maritima\n\t\t\t\t • Family: Liliaceae | \n\t\t\t\n\t\t\t\t | \n\t\t
• Cinobufagin (Bufadienolide) • From Bufo bufo gargarizans\n\t\t\t\t • Family: Bufonidae | \n\t\t\t\n\t\t\t\t | \n\t\t
• Bufalin (Bufadienolide) • From Bufo gargarizans • Family: Bufonidae | \n\t\t\t\n\t\t\t\t | \n\t\t
• Marinobufagenin (Bufadienolide) • From Bufo marinus • Family: Bufonidae | \n\t\t\t\n\t\t\t\t | \n\t\t
The chemical structures of cardiac glycosides
Epidemiologic evidence for the anticancer effects of digitalis was first reported in 1980 by Stenkvist and colleagues. Their study indicated that breast cancer tissue samples from congestive heart failure patients treated with cardiac glycoside therapy exhibited more benign characteristics than cancer tissue samples from control patients who were not treated with the cardiac glycoside regimen [28]. In addition, 5 years after undergoing mastectomy, the recurrence rate for the cardiac glycoside treated-group was 9.6 times lower than that for the control group [28-29]. Four years later, Glodin and colleagues investigated the mortality in 127 cancer patients who received digitalis therapy. These researchers reported that up to 21 patients in the control group died from cancer, whereas only one member of the digitalis-treated group died [30]. Interestingly, the long-term observations of Stenkvist and colleagues also supported the previous finding that digitalis therapy significantly reduces the mortality rate of breast cancer. Among 32 breast cancer patients treated with digitoxin, only two (6%) died, whereas the control group of 143 patients had 48 cancer-related deaths (34%) [4]. Several types of cancer other than breast cancer have also been examined. Recently, Haux and colleagues published an analytical descriptive study on the antineoplastic effects of cardiac glycosides on leukemia and cancers of the kidney/urinary tract [31]. This study indicated that the doses of cardiac glycosides that are active against cancers are similar to the therapeutic plasma concentrations found in cardiac patients treated with these drugs. These clinical observations have established the benificial outcome of cardiac glycosides for cancer therapy. Although these agents seem to be safe at the doses used for the treatment of cardiac disorders, further supporting evidence is still needed before these compounds can be used clinically.
At present, cancer is one of the major causes of death worldwide. Extensive research has been conducted over the last decade in an attempt to identify promising compounds that have anticancer effects. Cardiac glycosides are natural compounds that have been previously documented to be antiarrhythmic agents, and their potential anticancer properties were identified thereafter. Cardiac glycosides have been shown to have anticancer activities during various stages of carcinogenesis. These activities include antiproliferative, pro-apoptotic, and chemotherapy sensitization effects.
Aberrant cell growth is recognized as one hallmark of cancer [32]. Excessive cell replication is the basic characteristic of cancer progression that facilitates tumor formation and expansion. Defects in normal growth signals result in the inadequate regulation of cell division, which drives quiescent cells to proliferate [33]. Cardiac glycosides have been demonstrated to have antiproliferative activities via their regulation of the cell cycle. The extract from the skin glands of Bufo bufo gargarizans, which contains bufalin, is able to induce arrest in human malignant melanoma cells in the G2/M phase of the cell cycle [34]. In lung cancer cells, bufalin upregulates p21 WAF1 and suppresses cyclin D expression in response to the activation of p53 [35]. Because the tumor suppressor p21 WAF1 acts as a potent inhibitor of cell cycle progression [36] and because cyclin D1 is a subunit of cyclin dependent kinase (Cdk)-4 and Cdk-6, which are responsible for cell cycle progression from G1 to S phase [37], these changes prevent cells from entering the next phase of the cycle.
Likewise, digitoxin causes cell cycle arrest in G2/M in a dose-dependent manner, resulting in a large increase in the number of cells in the sub-G0 phase [38]. A synthetic monosaccharide analog of digitoxin, D6-MA, has 5-fold greater potency than digitoxin. The mode of action of D6-MA has been reported to involve the downregulation of key elements required for cell replication, including cyclin B1, cdc2 and survivin. It has been suggested that these events might be downstream signaling events resulting from the modulation of second messengers, such as tyrosine kinase Src, PI3K, phospholipase C and Ras/MAPK pathway components, by cardiac glycoside-bound Na+/K+-ATPase [25-27].
An antiproliferative effect of ouabain against human breast and prostate cancer cells has also been reported [39]. Ouabain mediates the depletion of the Na+/K+-ATPase through endocytosis and a degradation-dependent pathway, which in turn elevates the level of the cell cycle inhibitor p21. It has been suggested that the cellular level of Na+/K+-ATPase plays an important role in determining the rate of cell growth. Additional mechanistic studies have demonstrated that an increase in the intracellular Ca2+ concentration following treatment with digoxin, digitoxin, or ouabain is associated with the antiproliferative effects of these compounds in androgen-dependent and androgen-independent prostate cancer cell lines [40]. Because Ca2+ serves as a mediator in several signaling pathways, the elevation of the Ca2+ concentration may stimulate cellular processes that switch the cells into a growth-retarded state. Several of the antiproliferative effects of cardiac glycosides are summarized in Table 2.
Cardiac glycoside | \n\t\t\tMechanism | \n\t\t
Digitoxin | \n\t\t\tInduction of cell cycle arrest in G2/M phase through the downregulation of cyclin B1, cdc2 and survivin [38] Increase in the intracellular Ca2+ concentration [40] | \n\t\t
Digoxin | \n\t\t\tIncrease in the intracellular Ca2+ concentration [40] Inhibition of DNA topoisomerases I and II and an increase in the intracellular Ca2+ concentration [41] Induction of cell cycle arrest through the upregulation of HIF-1α [42] | \n\t\t
Ouabain | \n\t\t\tDepletion of Na+/K+-ATPase and upregulation of p21 [39] Increase in the intracellular Ca2+ concentration [40] Inhibition of DNA topoisomerases I and II and increase in the intracellular Ca2+ concentration [41] | \n\t\t
Oleandrin | \n\t\t\tAttenuation of NF-kB, JNK and AP-1 (nuclear transcription factors) activation [43,44] | \n\t\t
Bufalin | \n\t\t\tInduction of cell cycle arrest in G2/M phase through the upregulation of p21 WAF1 and p53 and the downregulation of cyclin D [34,35] Inhibition of DNA topoisomerases I and II [45] | \n\t\t
Proscillaridin A | \n\t\t\tInhibition of DNA topoisomerases I and II and an increase in the intracellular Ca2+ concentration [41] | \n\t\t
Antiproliferative effects of cardiac glycosides
Resistance to apoptosis in response to stress conditions is a basic feature of cancer cells and results from the overactivation of survival pathways or the attenuation of cell death mechanisms. The primary readout for screens of anticancer agents is thus usually an apoptosis-inducing effect. Cardiac glycosides have been established as cytotoxic agents that are active against various types of cancers. As mentioned above, the inhibition of Na+/K+-ATPase by cardiac glycosides triggers the formation of the signalosome complex, contributing to the initiation of signaling cascades that favor cell death [25-27].
It is well documented that apoptosis generally occurs through two main pathways: the mitochondrial-dependent and death receptor-dependent pathways [46]. Gan and colleagues have reported that oleandrin induces cervical cell apoptosis through the mitochondrial cell death mechanism [47]. This compound significantly stimulates the caspase-dependent pathway by triggering the cleavage of caspase-3/7, -6, and -9 and by upregulating the proapoptotic factor Bim. Similarly, data reported by Elbaz and colleagues support the hypothesis that digitoxin mediates the induction of the mitochondrial apoptotic pathway via caspase-9 activation [38]. This study demonstrated not only a cell growth inhibitory effect but also an apoptotic induction effect for digitoxin.
Fas and TNF-related apoptosis-inducing ligand (TRAIL) are important mediators of the death receptor pathway, and the deregulation of their expression is a major cause of chemoresistance and immune escape in cancers [48]. Recently, Sreenivasna and colleagues investigated whether oleandrin triggers the expression of the Fas receptor to potentiate apoptosis in cancer cells without affecting normal primary cells [49]. Additionally, oleandrin has been found to be able to attenuate the NF-kB pathway, which is a key pathway with antiapoptosis and pro-proliferative effects. Cardiac glycosides including oleandrin, bufalin, digitoxin, and digoxin also initiate apoptosis through Apo2L/TRAIL by elevating the levels of death receptors 4 and 5 in non-small cell lung cancer cells [50]. Interestingly, both Fas and Apo2L/TRAIL induce apoptosis in cancer cells but have little to no effect on normal cells. Furthermore, our recent work has demonstrated that ouabain was able to increse TRAIL-mediated lung cancer cell death through anti-apoptosis Mcl-1 down-regulation [51]. Because of these results, cardiac glycosides are of great interest in the field of cancer research.
A growing number of studies have indicated that the disruption of the oxidative state inside cancer cells, due to either the suppression of the antioxidant system or the introduction of reactive oxygen species, can lead to cell death [52]. In androgen-independent prostate cancer cells, ouabain triggers apoptosis by interfering with mitochondrial function [53]. Because the mitochondria are a major source of reactive oxygen species, the application of ouabain causes a steady increase in the level of these species, which leads to apoptosis. This study also indicated that a low dose of ouabain was able to upregulate prostate apoptosis response 4, which is required to reach the desired level of apoptotic cell death.
Other mechanisms of cardiac glycoside-induced apoptosis have also been reported (Fig 2). Mitogen-activated protein kinases (MAPKs) have been reported to be targeted in bufulin-induced human leukemia cell apoptosis [54]. JNK and AP-1 are transcription factors that activate the transcription of various genes, including apoptosis-related genes [55,56]. In response to bufalin treatment, the MAPK signaling pathway is triggered, leading to a notable elevation in the activities of c-Jun N-terminal protein kinase (JNK) and AP-1.
Molecular mechanisms of cardiac glycoside-induced apoptosis
The susceptibility of a given cancer to chemotherapy often appears to decrease after several rounds of chemotherapy. Resistance to drug-induced cell death is therefore a critical problem in cancer therapy. Combination therapy may be initiated as an alternative approach to overcome this problem. Furthermore, the use of combination therapy increases the cytotoxicity of anticancer agents and reduces their serious side effects on normal cells by reducing the dosage required for each individual agent. Cardiac glycosides have beneficial effects when used as part of combination therapies. Felth and colleagues have investigated the cytotoxicities of cardiac glycosides alone and in combination with various clinically relevant anticancer drugs [60]. Of the glycosides tested, convallatoxin, oleandrin, and proscillaridin A have been shown to be the most potent inducers of colon cancer cell death. Furthermore, co-treatment with cardiac glycosides, including digoxin, digitoxin, oleandrin, and digitonin, and other anticancer drugs, namely 5-fluorouracil, oxaliplatin, cisplatin, and irinotecan, was shown to result in a substantial increase in cancer cell death. However, this study was only a primary screen of the effects of these compounds, and the mechanisms responsible for these effects have not been elucidated.
It is significant that the members of the ATP binding cassette family of transporters, including ABCC7 (CFTR), ABCB1 (P-glycoprotein), and ABCC1 (MRP1), play critical roles in pumping a broad range of drugs out of cells and that these transporters are obviously overexpressed in several tumors [61]. Ouabain has been identified in a recent study to be able to regulate both the expression and activity of ABCC1 in an embryonic kidney cell line. The impairment of ABCC1 following ouabain treatment suggests that this compound might be able to prevent the reduction of the therapeutic concentration inside target cells.
Radiotherapy is a traditional approach used to destroy localized and unresectable tumor cells and to prevent these cells from metastasizing. The combination of chemotherapy and radiation limits the aggressiveness of cancers and increases the patient survival rate. The basic concept underlying chemoradiation is that chemotherapeutics are administered to make cancer cells more susceptible to radiation. Unfortunately, most cancers develop chemoresistance, and anticancer agents have serious side effects in normal cells. The administration of potent anticancer agents with less toxicity against normal cells to sensitize the tumor cells to readiotherapy is a promising strategy. Cardiac glycosides are substances that exhibit selectivity and significant activity against cancer cell lines; thus, the addition of these compounds to existing chemoradiation regimens has been investigated. Huachansu, which is extracted from the skin glands of Bufo bufo gargarizans, exhibits a radiosensitizing effect on human lung cancer cells [62]. This Chinese medicine contains a group of steroidal cardiac glycosides and substantially increases radiation-mediated cell death via a p53-dependent pathway. The underlying mechanism involves the cleavage of caspase-3 and poly-(ADP-ribose) polymerase (PARP) concurrent with the downregulation of the antiapoptotic protein Bcl-2 and the inhibition of DNA repair.
The ability of ouabain to sensitize cancer cells to radiotherapy has also been established. Transformed fibroblasts and tumor cells exposed to gamma radiation undergo apoptosis in the presence of ouabain [63-65]. In addition, the recovery of cells is clearly delayed when the cells are exposed to ouabain after irradiation. These events are the results of the inhibitory effect of ouabain on the G2/M phase of the cell cycle.
The ideal anticancer agent would not only be effective but also selective against tumor cells. As emphasized above, cardiac glycosides have beneficial anticancer effects but do not affect normal cells. Oleandrin attenuates the activation of nuclear transcription factor-kB and activator protein-1 and mediates ceramide-induced apoptosis [43]. These effects are apparently specific to human tumor cells. Consistent with the above findings, bufalin selectively kills leukemia cells, whereas normal leukocytes remain largely unharmed [66, 67]. Furthermore, cardiac glycosides have also been shown to exhibit selectivity in sensitizing cancer cells to apoptosis during radiation treatment. Large numbers of tumor cells and transformed cells die in response to radiation following ouabain pretreatment, but normal cells do not [63, 65]. These studies support the hypothesis that cardiac glycosides have selective anticancer effects, suggesting that these compounds have potential clinical uses.
This selective killing effect has received attention in the search for the fundamental differences between cancer cells and normal cells that modulate the survival pathway. One attempt to identify such differences demonstrated that the subunit composition of Na+/K+-ATPase is dissimilar in rodent and human cancer cells, affecting the sensitivity to apoptosis induced by cardiac glycosides [68]. The Na+/K+-ATPase consists of two main subunits, the catalytic α subunit and the glycosylated β subunit. It is well known that the α subunit serves as a binding site for cardiac glycosides, Na+, K+ and ATP, whereas the β subunit plays a role in the regulation of heterodimer assembly and insertion into the plasma membrane [69, 70]. Recent data indicate that the α1 and α3 subunits are commonly expressed in human tumor cells, whereas only α1 can be found in rodent tumor cell lines [71,72]. It has also been suggested that the lack of the α3 subunit in rodent cancer cells causes resistance to apoptosis mediated by cardiac glycosides. This finding strengthens the hypothesis that normal cells might have lower α3 subunit expression levels than cancer cells, accounting for the selective anticancer effects of cardiac glycosides. Furthermore, it has been demonstrated that the biological activity of cardiac glycosides results from the binding of these compounds with all α subunits, but the α3 subunit is a favorable target [73]. Ouabain, for example, has a 1000-fold stronger interaction with the α3 isoform than the α1 isoform [74].
Expanding on the above findings, that the expression of the α3 subunit has been shown to increase concurrent with the decrease in α1 subunit expression in human colorectal cancer and colon adenoma cell lines, whereas no significant alteration of α3 subunit expression is detected in normal kidney and renal cells [75]. These results indicate that the overexpression of the α3 subunit is associated with responsiveness to cardiac glycosides. Because all α subunits are commonly expressed at a basal level in cancers, the α3/α1 ratio might be a marker of cell sensitivity to cardiac glycosides, and this ratio could be determined in tumor biopsy samples taken prior to treatment with cardiac glycosides [76]. A lower α3/α1 ratio may indicate unresponsiveness to cardiac glycosides; conversely, cardiac glycoside treatment may improve the clinical outcomes of patients who have tumor tissues with higher ratios.
It has been established that the α1 isoform of the Na+/K+-ATPase plays a critical role in the progression of non-small cell lung cancer. The suppression of α1 subunit expression by RNA interference attenuates the invasiveness of cancer, reducing both migration and proliferation [77]. In addition, an increase the α1 subunit level enhances sensitivity to cardiac glycosides. In more than half of glioblastoma samples, the level of Na+/K+-ATPase α1 mRNA was markedly elevated, up to 10 times greater than that in normal samples [78]. Similarly, significant upregulation of the α1 isoform was observed in metastatic melanoma cell lines and melanoma tissue samples [79, 80]. These results indicate that the responsiveness of either cancer cells or normal cells to cardiac glycosides based on the α3/α1 ratio is tissue specific. It is important to determine the differences in the expression levels of the α subunits between cancer cells and normal cells. Furthermore, the characterization of the specificity of each cardiac glycoside for each enzyme subunit is necessary to identify cancers with the appropriate α3/α1 expression pattern for treatment and to reduce the effect on normal cells, thus optimizing the effectiveness of cardiac glycosides as potent anticancer drugs.
Cancer remains a life-threating disease that is typically characterized by frequently related to dysregulated cell growth and resistance to apoptosis. Within the past decade, cancer research has provided interesting insights with the potential to define the exact causes of cancer and to aid in the development of anticancer agents with enhanced effectiveness against and selectivity for cancer. Several plant-derived compounds were once used as ingredients of treatments for diseases without any established scientific evidence to support the claimed effects. Later, these compounds were found to exhibit relevant biological activities. Numerous studies have screened medicinal plants for compounds with anticancer activity, including cardiac glycosides. Generally, cardiac glycosides are recognized as antiarrhythmic drugs that function by inhibiting Na+/K+-ATPase. These compounds have been reported to be therapeutically beneficial for the treatment of various tumor types because of their antiproliferative effects, ability to induce apoptosis, and ability to sensitize cells to chemo/radiotherapy-induced cell death.
As already emphasized, cardiac glycosides have a narrow therapeutic index, which could cause serious cardiovascular toxicity. Interestingly, it has been observed that the concentration required to treat cancer was lower than of that used to treat cardiac disorders. Furthermore, cardiac glycosides appear to exert a cancer-specific killing activity by targeting the Na+/K+-ATPase α subunit in tumor cells. However, the expression pattern of the enzyme subunits and the target specificity of cardiac glycosides must be optimized. Synthetic cardiac glycosides have been designed to achieve the desired effects; these compounds include UNBS-1450 [81,82] and D6-MA [38 ,83]. Although cardiac glycosides have potential effects on cancer, at present, evidence supporting their usefulness is still needed, and the safety profile of cardiac glycosides as anticancer agents must be determined.
The silver nanoparticle research continues to grow, drawing the attention of researchers. It is known that silver has very high electrical conductivity [1, 2]. Silver has been widely used as a conductor wire in circuits that require low dissipation, and high conductivity [3, 4]. Silver paste has also been widely used as a paste conductor [5, 6, 7]. The use of silver paste has been extensively utilized mainly in the bulk conductivity characterization of bulk semiconductor materials or four-point probe method films. In the field of superconductors, silver has a dominant role as a sheath [8, 9, 10, 11, 12]. Silver has also been used in various industries and health fields. Silver is known to have antibacterial properties [13, 14, 15, 16], as a catalyst [17, 18, 19, 20], and it shows stable to the environment [21] and has been utilized as a significant component of water treatment.
\nVarious methods of synthesis have been developed to produce silver in the order of nanometers. Synthesis of silver nanoparticle is commonly known to control the shape and size. Among these methods are ball milling method [22], precipitation [23], polyol method [24], and several other methods to produce silver nanoparticle [3, 25, 26, 27, 28].
\nNanostructure engineering has been performed to produce the expected properties. Nanofluid Ag-ZnO has been successfully synthesized to determine the behavior of thermal conductivity at various fractions [29]. Silver nanoparticles dotted on the external walls of multi-walled carbon nanotubes (MWCNTs) were prepared by an aldehyde reduction process in supercritical carbon dioxide (SCCO2) fluid. The friction reduced about 30% [30]. Modification of nanostructure Ag into nanowire also improves physical performance such as electrical conductivity and power transfer [31]. Further engineering in the form of silver nanocage has reported. The nanocages exhibited unique and attractive characteristics for metal catalytic systems, thus offering the scope for new development as heterogeneous catalysts [32]. The aqueous persistence performance of Ag nanocolloids particles has been studied in depth in various environments [33]. Silver nanoparticles capped with Oleylamine (AgNPs/OLA) and its application in conductive ink for the electroanalytical application has been reported in [34].
\nSome of those examples show that silver nanoscale research and application are of concern to researchers. Due to the broad scope of the study of silver nanoparticles, we have limited this article to the synthesis of nanoparticles by simple methods, particle nanoparticle effects on structures, and electrical properties in polymers such as polyaniline, and some organic polymers such as Pterocarpus indicus Willd (PIW) and Jatropha multifida Linn (JML).
\nBasic of experimental method used in the current work was a chemical reduction from the silver nitrate salt of AgNO3. The silver nitrate (AgNO3) dissolves into a positive ion (Ag+) and negative ion (NO3−). From the process, we could obtain solid silver grain due to the ions experience a reduction process by accepting electrons from a donor. After forming the silver nucleus, a crystal growth continues at the relatively short time. By this way, a crystal of nanosize obtained. This nanoparticle fabrication and other similar synthesize are known as bottom-up technic.
\nThe raw materials used are silver nitrate AgNO3, sodium borohydride NaBH4 as a reductor, and mercaptosuccinic acid (MSA) as a stabilizer. Conventional solvents which normally used are aquades and methanol. A series of MSA, namely 0.03, 0.06, 0.12, and 0.15 M, was dissolved in methanol of 400 mL, then stirred rigorously using magnetic stirrer in an ice bath. Into the solution, add the second solution, i.e., silver nitrate about 340 mg to 6.792 mL aquades. While the mixture of both solutions is being stirred, sodium borohydride of 756.6 mg in 100 mL aquades drops small wisely. After adding the second solvent, the clear MSA solution changed into an amber one. Further, by adding the third solution, the mixture solution transforms into black-brownish. The final solution has then employed a stirring for 30 min at 500 rpm and maintained at a temperature of 5–10°C. The obtained particles then rinse using methanol on Whatman filter. The latter step was conducted several times to ensure the only silver particle remains. The collected material was then exposed to 80°C yielding silver nanopowder.
\nTwo series of silver-doped PANI-AgNPs/Ni and ultrasonic irradiation time films have been prepared using spin-coating method. Each series was provided five samples. The basic configuration of PANI-EB and PANI-ES were synthesized following the procedure of previous report [7]. The solutions of PANI-Ag had been prepared with synthesizing PANI-EB from aniline using the chemical oxidizing method. About 1.82 mL aniline (0.1 M) was dissolved into 50 mL HCl (0.2 M) liquid for about 1 h. Along with this, a solution of 5.71 g (NH4)2S2O8 (0.1 M) in 50 mL aquadest was also prepared at the same time. After 1 h, those two solutions were mixed and stirred a while, then exposed at room temperature for about 24 h for polymerization. The precipitated material was filtered using Whatman filter paper, then washed using deionized water and aquades until clear liquids are observed. The obtained precipitated materials are then mixed and homogenized using magnetic stirrer in NH4OH (0.5 M) for 4 h, and then let them rest for about 24 h and washed using aquades to obtain a blue PANI-EB. The powder of PANI-EB can be obtained after annealing the material for 5 h at 80°C. PANI-EB then mixed with camphor sulfonic acid (CSA) and then mixed with AgNO3 solution in chloroform and employing ultrasonic irradiation for various irradiation times. The obtained solution was filtered to obtain a PANI-Ag solution for deposition on nickel substrate using spin-coating method. A different series of various AgNO3 PANI doped of 0.1, 0.2, 0.3, 0.4, and 0.5 M was also prepared in the same manner. The films have been deposited onto 1 × 1 cm2 Ni substrate using spin-coating method at 1000 rpm for 1 min. The obtained films were then annealed at 100°C for 1 min.
\nSamples were prepared in several stages. The initial step was the extraction of Pterocarpus indicus Willd (PIW) by preparing 800 g of Pterocarpus indicus Willd leaf powder mixed with 3 L methanol p.a. in a large bottle, and then the mixture was shaken and awaited for 1 week. After that, it was filtered using a Buckner funnel under pressure with Whatman’s filter paper 01. The obtained slurry materials were evaporated using a rotary evaporator to get a rough methanol extract. About 25 g of methanol extract was introduced into the separating funnel, in which the mixture was manually shaken with 50 mL of n-hexane solvent for 30 min. Once separated, the two steps of this process are repeated using 50 mL n-hexane. The hexane phase in the treatment is separated, and the sum of the second procedure is combined and evaporated to obtain a crude hexane extract. The general process is applied to obtain extracts of chloroform (100 mL), ethyl acetate (100 mL), and butanol (100 mL), respectively. In this way, flavonoid type quercetin can be achieved.
\nA similar way was performed to obtain a flavonoid extract of Jatropha multifida L. (JML) with a little more straightforward. The first step is extracting flavonoid using the wet method. Five grams of the liquid latex of JML, which was taken from wounded stem, was first heated on a glass plate to remove water. The water-free condensed latex was then solved into 10 mL of 80% methanol and homogenized for 30 min using magnetic stirrer while heating. In addition, it was also implemented to ultrasonic irradiation for 60 min, and let them to precipitate for 24 h. The mixture was then separated using a Whatman filter paper and dried up to evaporate the solvent to obtain flavonoid extract powder. The flavonoids of PIW can be prepared in a similar way using the extracted latex of the wounded stem.
\nTo fabricate a thin film of AgNP-doped flavonoid, the mixture should be transformed into the liquid phase. In this case, two solutions were first prepared separately. The first solution was obtained from 0.1 M AgNO3, which was dissolved in acetone. A relatively fine-ground camphor sulfonic acid (CSA) was mixed with the flavonoid extract PIW. The two solutions were then incorporated into a glass beaker and then stirred. The process proceeds until a homogenous mixture was obtained. To promote smaller size of silver ion as well as flavonoid incorporation in the homogenous mixture, we employed ultrasonic irradiation for 60 min. To achieve different AgNP-doped flavonoids/Ni films, the process has been repeated with a different AgNO3 concentration of solutions. By following the preparation of JML-AgNP/Ni films, the flavonoid’s PIW-AgNP/Ni films were also prepared in five different molar ratios of silver nitrate. The fabrication of those two nanosilver-doped films has been prepared using spin-coating method on nickel substrates of 1 × 1 cm2 with 1500 rpm speed for 60 s. Each of the resulted film then follows annealing for repeating the process for concentrations of 0.2, 0.3, 0.4, and 0.5 M. The films finally annealed at 50°C for 5 min. Then those two series films were characterized using X-RD using Cu-Kα, FTIR, and four-probe electrical conductivity measurements.
\nExcept for NaBH4 for reducing agent, to synthesize nanometallic state, MSA is used as a reducing agent that also acts as a stabilizer agent of Ag+. The synthetic silver nanoparticles are more stable and not easily oxidized. In addition, MSA also affects the size of the resulting silver nanocrystals. Figure 1 shows the TEM results of spherical silver on the nanometer scale. The particle size of the TEM shows a yield of about 30 nm.
\nTEM image of silver nanoparticles and associated diffraction [35].
The TEM diffraction pattern of the sample was reported in our previous work [35]. It is shown that the sample is polycrystalline, which is indicated by the clear spots together with accompanying weak rings also reported by Majeed [36].
\nThe X-ray diffraction pattern of obtained samples is displayed in Figure 2. Several identified peaks of intensity I-2θ are 38.10, 44.29, 64.43, 77.37, and 81.52°, associated to Bragg’s planes of (111), (200), (220), (311), and (222), respectively. There is apparently no other peaks, except the silver crystal peaks. All of the peaks shown in Figure 2 can readily fit in a model of FCC structures, as also reported previously [37] for various PEG [23], for the different surfactant, and [38] for urea, PVP, and dextrose. Further refined to the lattice parameter gives rise to a = 4.0876 Å. This result insignificantly differs from the model of a = 4.0872 Å [36]. Detailed investigation to the same peak positions 2θ of all the diffraction patterns, even the peaks are not distinguished, it looks that the higher the fraction of MSA the broader the peaks. Broadening of diffraction peaks β, measured as FWHM, may show smaller crystal size (L) according to Scherrer’s equation (Eq. (1)). Since crystal dimension L is just inversely proportional to its broadness of the peaks β.
\nXRD pattern of AgNPs at various MSA concentration.
It is also possible that one found different values of L from the same pattern. The origin of the discrepancies is mostly due to the Kα splitting, selecting the peaks, and fitting method of calculating β.
\nBased on the result of XRD as shown in Figure 2, the crystal size was calculated using Eq. (1). It shows that the size is in the range of 20–30 nm, which decreases with increasing concentration of MSA, as shown in Figure 3.
\nThe influence of MSA concentration on AgNP crystal size.
Of the two characterization analyses between TEM and XRD showed the size of the crystal is somewhat different results. The problems of crystal size calculation obtained from TEM, XRD, and/or probably SEM characterization is discussed in our work [35]. The crystal size obtained from XRD pattern calculation may be smaller than that derived from TEM. The discrepancy mostly not only originated from the di erent method of both types of equipment, but also due to the choosing peaks, implementing units of β and θ, as well as using the range of K in Eq. (1). The smaller diffraction angle we choose, the bigger the size we obtain. When the higher shape constant of K in the Scherrer formula, we may also get the bigger size. Sometime β is taken using degrees instead of radians. The crystal size calculation using a more compact software such as GSAS [39] or Fullprof [40]. In such software, they use the more rigid equation in Rietveld analyses with different compared to Eq. (1). The crystal size under GSAS or Fullprof is more comprehensive since they involve the strains, various profile functions as well as the anisotropy, or the crystal. The result of the crystal size obtained from the method is also slightly different from the manual using Scherrer equation. An example of manual crystal size calculation using a more complex equation is reported by Khan et al. [36]. It looks that there is a discrepancy of AgNP crystal size obtained by Scherrer and obtained from HRTEM. The average crystal size obtained by HRTEM shows a much bigger than that of using Scherrer equation. This result is similar to the work of Diantoro et al. [35].
\nAnother capping agent such as polyethylene glycol (PEG) will be discussed briefly. We have obtained several AgNP samples which were prepared under the influence of PEG. The results are displayed in Figure 4.
\nThe influence of PEG template (a) XRD and (b) crystal size.
Figure 4 shows the result of AgNP crystal size with increasing of PEG concentration. The silver crystal size lies around 12–24 nm. Based on Figure 4, it is seen that excluding of 0.075 M, increasing PEG concentration slightly decrease the crystals size. It could be indicated that PEG plays a role in controlling the crystal size. The researcher also uses PEG as a template for synthesizing nanoparticles [37]. One purpose of the use of PEG as a template or as a capping agent is not only to control the size, but also the distribution [41]. The effect of PVP repeating unit to the obtained crystal size of AgNPs was reported [18]. Many other solvents have been used for the synthesis of various size and shape of AgNPs, such as PEG [42], citrate [33, 43], and MSA [35].
\nIt is shown that the size and shape of particles are affected by its physical properties [31, 32]. At the nanometer scale, the properties or characteristics of silver will change its electrical properties. Therefore, in the exploration of organic materials for electronics, silver nanoparticles can be incorporated with various conductive polymers such as PANI, JML, and PIW. The three polymers are conductive polymers with electric charge mechanisms of single- and double-conjugated bond hopping in the polymer. Although they said to be a conductive polymer, the pristine one is in the semiconductor range. So researcher expects that by controlling the metallic or oxidic nanoparticles may influence the electrical properties. In this report, we focus on the modification of the electrical conductivity. The following shows the effect of AgNP concentration on the electrical conductivity of PANI film as indicated in Figure 5.
\nThe influence of AgNPs on electrical conductivity of PANI.
The PANI composite with AgNPs indicates an increase in electrical conductivity by increasing the concentration of AgNPs used, as shown in Figure 5. The increased electrical conductivity of PANI is due to the increased electrical mobility derived from AgNPs in the compound. This result is comparable with the works reported by Wankhede et al. [44]. Unfortunately, they reported only for one composition of PANI-AgNPs, at various temperatures. Our results are far higher than that of PANI/PS/AgNPs nanocomposite samples [45].
\nThe stability of electrical conductivity to PANI and AgNP composites were measured under the influence of ultrasonic irradiation. The various irradiation time was employed to the mixture of PANI-EB-AgNP solution prior to the deposition process. The electrical conductivity measurements of dwelling time are depicted in Figure 6.
\nThe stability electrical conductivity of PANI-AgNPs under ultrasonic irradiation.
It shows that the electrical conductivity of PANI-AgNP film has the stability of electrical conductivity values in the range 0.5–0.7 S.cm−1. Out of that range, the duration of irradiation time is followed. It suggests that the intrinsic structure may also be changed by the ultrasonic irradiation dwelling time.
\nFlavonoids of JML [46, 47] or PIW [48] are potential for the conductive organic polymer. Initially, the conductive polymer is in/below the semiconductor range after oxidizing or reducing process [49]. Also, the general polymer has an amorphous phase. When flavonoids extracted from JML are composited with AgNPs, we may expect that its electrical conductivity will increase. Here, we report the results of electrical conductivity measurement of AgNPs doped of JML and PIW flavonoids extracts. The crystallinity of the sample may be affected by the electrical conductivity, Figure 7. It indicates that the crystallinity of the sample increases with the increase of AgNP concentration in the composite.
\nThe influence of AgNPs on crystallinity JML.
As indicated in Figure 7, it is seen that the feature of AgNPs vs. crystallinity is not a linear, simple relationship. It shows a significant change in the range of 0.2–0.4 M of AgNPs, while substantial difference above or below that range. To look further, we plot the relation between AgNP concentration to its electrical conductivity, as shown in Figure 8.
\nThe influence of AgNPs on film JML-AgNPs.
The electrical conductivity of extracted JML flavonoid-AgNPs exponentially increases as the AgNPs increase. By comparing Figure 8 with Figure 7, it is found that the rise in electrical conductivity does not merely support its crystallinity. It means that there is no direct or simple relationship.
\nAgNP-doped PIW flavonoid may show a similar feature. Roughly speaking, the role of AgNPs induced in the flavonoids’ PIW-AgNP film also increases its crystallinity, as shown in Figure 9.
\nThe influence of AgNPs on crystallinity flavonoid’s PIW-AgNP film.
It is similar to its increase of crystallinity, the electrical conductivity of flavonoid’s PIW-AgNP film is also increased as the increase of AgNPs, as illustrated in Figure 10.
\nThe influence of AgNPs on electrical conductivity of flavonoid’s PIW-AgNP film.
By comparing Figures 9 and 10, it can be inferred that its crystallinity may characterize the increase of electrical conductivity of flavonoid’s PIW-AgNP film. In another words, the role of AgNPs on the electrical conductivity of flavonoid’s PIW-AgNP film is reflected by its crystallinity. As the electrical conductivity of flavonoids of PIW and JML shows different features, the type of flavonoid of both plants is possibly different. It is also possible that technically the distribution, or where the AgNPs interreact with, is also different.
\nStudy of the role of AgNPs and polymers has been widely reported for many routes of synthesis and their applications [45, 50, 51]. Recently, AgNPs containing nanostructure nanocomposite have also been investigated for supercapacitors [52], polymer solar cells [53], or thin film silver-TiO2 thermoelectric [54].
\nSome factors are influencing the size and the conductivity of AgNPs, i.e., the MSA concentration, ultrasonic irradiation time, as well as the concentration of PEG. In general, the increase of AgNP concentration gives rise to an increase in its electrical conductivity. Although the conductivity of polymers depends on AgNP concentration, the conductivity of the AgNPs doped of polymers does not directly reflect its crystallinity or crystal size.
\nAgNPs have excellent potential applications in medical, environment, electronics, dielectrics, and optical solar cell application. It is urgently required to perform an extensive research of various AgNPs and its derivatives for multiple applications.
\nThe author thanks the Ministry of Research and Higher Education for the Research grants of University Excellent Research Grants, HUPT 2016, 2017, Primary Individual National Innovative Research Grant INSINAS 2017.
\nSupporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.
",metaTitle:"IntechOpen Women in Science Program",metaDescription:"Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\\n\\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\\n\\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\\n\\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\\n\\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\\n\\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\\n\\nAdvantages of Publishing with IntechOpen
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\n\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\n\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\n\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\n\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\n\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9363},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10100",title:"Evo-Devo",subtitle:null,isOpenForSubmission:!0,hash:"4c17ab0c64ce206c75ad6cec64e05737",slug:null,bookSignature:"Dr. Dimitrios P. Vlachakis, Prof. Elias Eliopoulos and Prof. George P. Chrousos",coverURL:"https://cdn.intechopen.com/books/images_new/10100.jpg",editedByType:null,editors:[{id:"179110",title:"Dr.",name:"Dimitrios",surname:"Vlachakis",slug:"dimitrios-vlachakis",fullName:"Dimitrios Vlachakis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7845",title:"Platelets",subtitle:null,isOpenForSubmission:!0,hash:"d33b20516d6ff3a5b7446a882109ba26",slug:null,bookSignature:"Dr. Steve W. W. Kerrigan and Prof. Niamh Moran",coverURL:"https://cdn.intechopen.com/books/images_new/7845.jpg",editedByType:null,editors:[{id:"73961",title:"Dr.",name:"Steve W.",surname:"Kerrigan",slug:"steve-w.-kerrigan",fullName:"Steve W. Kerrigan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7965",title:"Display Technology",subtitle:null,isOpenForSubmission:!0,hash:"eb83772cea6200bdd685b8a1b93ee35d",slug:null,bookSignature:"Dr. In Byeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/7965.jpg",editedByType:null,editors:[{id:"241133",title:"Dr.",name:"In Byeong",surname:"Kang",slug:"in-byeong-kang",fullName:"In Byeong Kang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!0,hash:"647b4270d937deae4a82f5702d1959ec",slug:null,bookSignature:"Dr. Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:null,editors:[{id:"248645",title:"Dr.",name:"Sérgio António",surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9212",title:"Titration Technique",subtitle:null,isOpenForSubmission:!0,hash:"5278b500d19d2508a7c933276167d82c",slug:null,bookSignature:"Associate Prof. Vu Dang Hoang",coverURL:"https://cdn.intechopen.com/books/images_new/9212.jpg",editedByType:null,editors:[{id:"199907",title:"Associate Prof.",name:"Vu Dang",surname:"Hoang",slug:"vu-dang-hoang",fullName:"Vu Dang Hoang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8968",title:"Molecular and Metabolic Alterations in Tumorigenesis",subtitle:null,isOpenForSubmission:!0,hash:"e3c27ac25ffa58c82beeb2b70147b9bf",slug:null,bookSignature:"Dr. Yasemin Basbinar and Dr. Gizem Calibasi Kocal",coverURL:"https://cdn.intechopen.com/books/images_new/8968.jpg",editedByType:null,editors:[{id:"242097",title:"Dr.",name:"Yasemin",surname:"Basbinar",slug:"yasemin-basbinar",fullName:"Yasemin Basbinar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8031",title:"Pavement Engineering",subtitle:null,isOpenForSubmission:!0,hash:"1d8ae1b3b3a208c2b16c1ff852e14207",slug:null,bookSignature:"Dr. Sameh Zaghloul",coverURL:"https://cdn.intechopen.com/books/images_new/8031.jpg",editedByType:null,editors:[{id:"269407",title:"Dr.",name:"Sameh",surname:"Zaghloul",slug:"sameh-zaghloul",fullName:"Sameh Zaghloul"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7997",title:"Autophagy in Injury, Infection and Cancer Diseases",subtitle:null,isOpenForSubmission:!0,hash:"3daed6048bc8ff8368c4279558f109d7",slug:null,bookSignature:"Dr. Nikolai Gorbunov",coverURL:"https://cdn.intechopen.com/books/images_new/7997.jpg",editedByType:null,editors:[{id:"180960",title:"Dr.",name:"Nikolai",surname:"Gorbunov",slug:"nikolai-gorbunov",fullName:"Nikolai Gorbunov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9010",title:"Ion Channel Dysfunction in Disease",subtitle:null,isOpenForSubmission:!0,hash:"2bc87751cc961a9d348958e2ebb8b3a7",slug:null,bookSignature:"Dr. Saverio Gentile",coverURL:"https://cdn.intechopen.com/books/images_new/9010.jpg",editedByType:null,editors:[{id:"181463",title:"Dr.",name:"Saverio",surname:"Gentile",slug:"saverio-gentile",fullName:"Saverio Gentile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:34},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:25},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:74},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:38},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:137},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:505},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4396},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"79",title:"Sustainable Development",slug:"business-management-and-economics-sustainable-development",parent:{title:"Business, Management and Economics",slug:"business-management-and-economics"},numberOfBooks:4,numberOfAuthorsAndEditors:69,numberOfWosCitations:11,numberOfCrossrefCitations:16,numberOfDimensionsCitations:47,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"business-management-and-economics-sustainable-development",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6823",title:"Sustainability Assessment and Reporting",subtitle:null,isOpenForSubmission:!1,hash:"4db72204a34eff9b5143955463b293cf",slug:"sustainability-assessment-and-reporting",bookSignature:"Soner Gokten and Pinar Okan Gokten",coverURL:"https://cdn.intechopen.com/books/images_new/6823.jpg",editedByType:"Edited by",editors:[{id:"70354",title:"Ph.D.",name:"Soner",middleName:null,surname:"Gokten",slug:"soner-gokten",fullName:"Soner Gokten"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5704",title:"Skills Development for Sustainable Manufacturing",subtitle:null,isOpenForSubmission:!1,hash:"5d9994c97da570ef318b4da424f8cce0",slug:"skills-development-for-sustainable-manufacturing",bookSignature:"Christianah Olakitan Ijagbemi and Harold Moody Campbell",coverURL:"https://cdn.intechopen.com/books/images_new/5704.jpg",editedByType:"Edited by",editors:[{id:"192754",title:"Dr.",name:"Christianah",middleName:null,surname:"Ijagbemi",slug:"christianah-ijagbemi",fullName:"Christianah Ijagbemi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2205",title:"Globalization and Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"46d98262d7d3b53c695cd7bc87f00040",slug:"globalization-and-responsibility",bookSignature:"Zlatan Delic",coverURL:"https://cdn.intechopen.com/books/images_new/2205.jpg",editedByType:"Edited by",editors:[{id:"31746",title:"Dr.",name:"Zlatan",middleName:null,surname:"Delic",slug:"zlatan-delic",fullName:"Zlatan Delic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2015",title:"Sustainable Development",subtitle:"Education, Business and Management - Architecture and Building Construction - Agriculture and Food Security",isOpenForSubmission:!1,hash:"7d2fbda1c194835efdcee1c4c58291b7",slug:"sustainable-development-education-business-and-management-architecture-and-building-construction-agriculture-and-food-security",bookSignature:"Chaouki Ghenai",coverURL:"https://cdn.intechopen.com/books/images_new/2015.jpg",editedByType:"Edited by",editors:[{id:"14569",title:"Prof.",name:"Chaouki",middleName:null,surname:"Ghenai",slug:"chaouki-ghenai",fullName:"Chaouki Ghenai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"29276",doi:"10.5772/26613",title:"Mapping is a Key for Sustainable Development of Coastal Waters: Examples of Seagrass Beds and Aquaculture Facilities in Japan with Use of ALOS Images",slug:"mapping-is-a-key-for-sustainable-development-of-coastal-waters",totalDownloads:1979,totalCrossrefCites:3,totalDimensionsCites:22,book:{slug:"sustainable-development-education-business-and-management-architecture-and-building-construction-agriculture-and-food-security",title:"Sustainable Development",fullTitle:"Sustainable Development - Education, Business and Management - Architecture and Building Construction - Agriculture and Food Security"},signatures:"Teruhisa Komatsu, Tatsuyuki Sagawa, Shuhei Sawayama, Hideaki Tanoue, Akihiko Mohri and Yoshihiko Sakanishi",authors:[{id:"67315",title:"Dr.",name:"Teruhisa",middleName:null,surname:"Komatsu",slug:"teruhisa-komatsu",fullName:"Teruhisa Komatsu"}]},{id:"29284",doi:"10.5772/28707",title:"Temporal-Spatial Changes of the Oasis in the Heihe River Basin over the Past 25 Years",slug:"spatio-temporal-changes-of-the-heihe-river-basin-oasis-in-northwest-china-over-the-last-25-years",totalDownloads:1277,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"sustainable-development-education-business-and-management-architecture-and-building-construction-agriculture-and-food-security",title:"Sustainable Development",fullTitle:"Sustainable Development - Education, Business and Management - Architecture and Building Construction - Agriculture and Food Security"},signatures:"Yaowen Xie, Linlin Li, Xiaojiong Zhao and Chunxia Yuan",authors:[{id:"75065",title:"Prof.",name:"Yaowen",middleName:null,surname:"Xie",slug:"yaowen-xie",fullName:"Yaowen Xie"}]},{id:"29270",doi:"10.5772/27628",title:"Malaysian Primary Pre-Service Teachers’ Understanding and Awareness of Environmental Knowledge",slug:"malaysian-pre-service-teachers-understanding-and-awareness-of-environmental-knowledge",totalDownloads:1917,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"sustainable-development-education-business-and-management-architecture-and-building-construction-agriculture-and-food-security",title:"Sustainable Development",fullTitle:"Sustainable Development - Education, Business and Management - Architecture and Building Construction - Agriculture and Food Security"},signatures:"Mageswary Karpudewan and Zurida Ismail",authors:[{id:"70890",title:"Prof.",name:"Zurida",middleName:null,surname:"Ismail",slug:"zurida-ismail",fullName:"Zurida Ismail"},{id:"78144",title:"Dr.",name:"Mageswary",middleName:null,surname:"Karpudewan",slug:"mageswary-karpudewan",fullName:"Mageswary Karpudewan"}]}],mostDownloadedChaptersLast30Days:[{id:"62818",title:"Methodologies for Assessing Sustainability in Farming Systems",slug:"methodologies-for-assessing-sustainability-in-farming-systems",totalDownloads:468,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sustainability-assessment-and-reporting",title:"Sustainability Assessment and Reporting",fullTitle:"Sustainability Assessment and Reporting"},signatures:"Jaime Fabián Cruz, Yolanda Mena and Vicente Rodríguez-Estévez",authors:[{id:"101973",title:"Dr.",name:"Vicente",middleName:null,surname:"Rodríguez-Estévez",slug:"vicente-rodriguez-estevez",fullName:"Vicente Rodríguez-Estévez"},{id:"256388",title:"Dr.",name:"Yolanda",middleName:null,surname:"Mena",slug:"yolanda-mena",fullName:"Yolanda Mena"},{id:"256393",title:"Ph.D. Student",name:"Fabian",middleName:null,surname:"Cruz",slug:"fabian-cruz",fullName:"Fabian Cruz"}]},{id:"56724",title:"Sustainable Solid Waste Recycling",slug:"sustainable-solid-waste-recycling",totalDownloads:920,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"skills-development-for-sustainable-manufacturing",title:"Skills Development for Sustainable Manufacturing",fullTitle:"Skills Development for Sustainable Manufacturing"},signatures:"Ahmad K. Jassim",authors:[{id:"195227",title:"Dr.",name:"Ahmad",middleName:"K",surname:"Jassim",slug:"ahmad-jassim",fullName:"Ahmad Jassim"}]},{id:"56636",title:"Sustainable Maintenance Practices and Skills for Competitive Production System",slug:"sustainable-maintenance-practices-and-skills-for-competitive-production-system",totalDownloads:769,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"skills-development-for-sustainable-manufacturing",title:"Skills Development for Sustainable Manufacturing",fullTitle:"Skills Development for Sustainable Manufacturing"},signatures:"Adeyeri Michael Kanisuru",authors:[{id:"205337",title:"Dr.",name:"Michael",middleName:null,surname:"Adeyeri",slug:"michael-adeyeri",fullName:"Michael Adeyeri"}]},{id:"57317",title:"Interventions to Skills Development in the Automotive Manufacturing Sector of South Africa",slug:"interventions-to-skills-development-in-the-automotive-manufacturing-sector-of-south-africa",totalDownloads:611,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"skills-development-for-sustainable-manufacturing",title:"Skills Development for Sustainable Manufacturing",fullTitle:"Skills Development for Sustainable Manufacturing"},signatures:"Opeyeolu Timothy Laseinde and Grace Mukondeleli Kanakana",authors:[{id:"197520",title:"Dr.",name:"Opeyeolu Timothy",middleName:null,surname:"Laseinde",slug:"opeyeolu-timothy-laseinde",fullName:"Opeyeolu Timothy Laseinde"},{id:"205076",title:"Dr.",name:"Grace Mukondeleli",middleName:null,surname:"Kanakana",slug:"grace-mukondeleli-kanakana",fullName:"Grace Mukondeleli Kanakana"}]},{id:"37637",title:"Developing Educational Practices in the Globalized World",slug:"developing-educational-practices-in-the-globalized-world",totalDownloads:1873,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"globalization-and-responsibility",title:"Globalization and Responsibility",fullTitle:"Globalization and Responsibility"},signatures:"Maura Striano",authors:[{id:"28386",title:"Prof.",name:"Maura",middleName:null,surname:"Striano",slug:"maura-striano",fullName:"Maura Striano"}]},{id:"29276",title:"Mapping is a Key for Sustainable Development of Coastal Waters: Examples of Seagrass Beds and Aquaculture Facilities in Japan with Use of ALOS Images",slug:"mapping-is-a-key-for-sustainable-development-of-coastal-waters",totalDownloads:1979,totalCrossrefCites:3,totalDimensionsCites:22,book:{slug:"sustainable-development-education-business-and-management-architecture-and-building-construction-agriculture-and-food-security",title:"Sustainable Development",fullTitle:"Sustainable Development - Education, Business and Management - Architecture and Building Construction - Agriculture and Food Security"},signatures:"Teruhisa Komatsu, Tatsuyuki Sagawa, Shuhei Sawayama, Hideaki Tanoue, Akihiko Mohri and Yoshihiko Sakanishi",authors:[{id:"67315",title:"Dr.",name:"Teruhisa",middleName:null,surname:"Komatsu",slug:"teruhisa-komatsu",fullName:"Teruhisa Komatsu"}]},{id:"61998",title:"Using a Social Accounting Matrix for Analysing Institutions’ Income: A Case from Portugal",slug:"using-a-social-accounting-matrix-for-analysing-institutions-income-a-case-from-portugal",totalDownloads:319,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sustainability-assessment-and-reporting",title:"Sustainability Assessment and Reporting",fullTitle:"Sustainability Assessment and Reporting"},signatures:"Susana Santos",authors:[{id:"244283",title:"Prof.",name:"Susana",middleName:null,surname:"Santos",slug:"susana-santos",fullName:"Susana Santos"}]},{id:"62872",title:"Sustainability Reporting and Income Smoothing: Evidence from Saudi-Listed Companies",slug:"sustainability-reporting-and-income-smoothing-evidence-from-saudi-listed-companies",totalDownloads:280,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"sustainability-assessment-and-reporting",title:"Sustainability Assessment and Reporting",fullTitle:"Sustainability Assessment and Reporting"},signatures:"Lassaad Ben Mahjoub",authors:[{id:"242339",title:"Dr.",name:"Lassaad",middleName:null,surname:"Ben Mahjoub",slug:"lassaad-ben-mahjoub",fullName:"Lassaad Ben Mahjoub"}]},{id:"29275",title:"Sustainable Building in Malaysia: The Development of Sustainable Building Rating System",slug:"sustainable-building-in-malaysia-the-development-of-sustainable-building-rating-system",totalDownloads:8415,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"sustainable-development-education-business-and-management-architecture-and-building-construction-agriculture-and-food-security",title:"Sustainable Development",fullTitle:"Sustainable Development - Education, Business and Management - Architecture and Building Construction - Agriculture and Food Security"},signatures:"Ar Zuhairuse MD Darus and Nor Atikah Hashim",authors:[{id:"70881",title:"Prof.",name:"Zuhairuse",middleName:null,surname:"Darus",slug:"zuhairuse-darus",fullName:"Zuhairuse Darus"},{id:"135807",title:"Ms.",name:"Nor Atikah",middleName:null,surname:"Hashim",slug:"nor-atikah-hashim",fullName:"Nor Atikah Hashim"}]},{id:"56899",title:"Designing and Developing New VET Curricula to Address Skills Gaps in the Aeronautics Industry",slug:"designing-and-developing-new-vet-curricula-to-address-skills-gaps-in-the-aeronautics-industry",totalDownloads:393,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"skills-development-for-sustainable-manufacturing",title:"Skills Development for Sustainable Manufacturing",fullTitle:"Skills Development for Sustainable Manufacturing"},signatures:"Rosa Maria Arnaldo Valdés, Victor Fernando Gómez Comendador\nand Alvaro Rodriguez Sanz",authors:[{id:"147777",title:"Dr.",name:"Rosa",middleName:null,surname:"Arnaldo",slug:"rosa-arnaldo",fullName:"Rosa Arnaldo"},{id:"196016",title:"Dr.",name:"Victor Fernando",middleName:null,surname:"Gomez Comendador",slug:"victor-fernando-gomez-comendador",fullName:"Victor Fernando Gomez Comendador"}]}],onlineFirstChaptersFilter:{topicSlug:"business-management-and-economics-sustainable-development",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:19},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/38211/petr-pustejovsky",hash:"",query:{},params:{id:"38211",slug:"petr-pustejovsky"},fullPath:"/profiles/38211/petr-pustejovsky",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()