Particle rings/shells/cylinders dispersed by the radial impulsive loadings ranging from strong blast waves to moderate shock waves form a dual coherent jetting structure consisting of particle jets which have different dimensions. In both circumstances, the primary jets are found to initiate from the inner surface of particle layers and propagate through the thickness of particle layers, which are superimposed by a large number of much smaller secondary jets initiating from the outer surface of particle layers upon the reflection of the shock wave. This chapter first presents a summary of the experimental observations of the hierarchical particle jetting mainly via the cinematographic techniques, focusing on the characteristics of the primary particle jet structure. Due to the distinct behaviors of particles subjected to the strong blast and moderate shock waves, specifically solid-like and fluid-like responses, respectively, the explosive and shock-induced particle jetting should be attributed to distinct mechanisms. A dual particle jetting model from the perspective of continuum is proposed to account for the explosive-induced particle jetting. By contrast the shock-induced particle jetting arises from the localized particle shear flows around the inner surface of particle layers which result from the heterogeneous network of force chains.
Part of the book: Granular Materials