The infiltration technology with reinforcement in the form of porous skeletons fabricated with powder metallurgy methods has been presented in relation to the general characteristics of metal alloy matrix composite materials. The results of our own investigations are presented pertaining to four alternative technologies of fabrication of porous, sintered skeletons, and their structure and their key technological properties are presented. Porous skeletons made of Al2O3 aluminium are sintered reactively using blowing agents or are manufactured by ceramic injection moulding (CIM) from powder. Porous skeletons made of 3Al2O3⋅2SiO2 mullite are achieved by sintering a mixture of halloysite nanotubes together with agents forming an open structure of pores. Titanium porous skeletons are achieved by selective laser sintering (SLS). The structure and properties of composite materials with an aluminium alloy matrix—mainly EN AC-AlSi12 and also EN AC-AlSi7Mg0.3 alloys—reinforced with the so manufactured skeletons are also described. A unique structure of the achieved composite materials, together with good mechanical properties and abrasive wear resistance at low density, ensured by an aluminium alloy matrix, are indicating broad application possibilities of such composites.
Part of the book: Powder Metallurgy