The development and projected of harvested area, production, and import of soybean in Indonesia during the period 2016–2024 [3].
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5365",leadTitle:null,fullTitle:"Adhesives - Applications and Properties",title:"Adhesives",subtitle:"Applications and Properties",reviewType:"peer-reviewed",abstract:'This book presents some information regarding adhesives which have applications in industry, medicine and dentistry. The book is divided into two parts: "Adhesives Applications in Medicine and Dentistry" and "Properties of Adhesive." The aim of such a presentation is to present the usage in very different aspects of application of the adhesives and present specific properties of adhesives. Adhesives\' advantageous properties and relatively uncomplicated processing methods contribute to their increasing application and their growing popularity in the industry, medicine and other branches. Some adhesives represent properties superior to those of most adhesive materials, due to their excellent adhesion and chemical resistance. A wide variety of adhesives\' considerable flexibility in modification of properties of adhesives allows adjusting the composition to particular applications.',isbn:"978-953-51-2784-0",printIsbn:"978-953-51-2783-3",pdfIsbn:"978-953-51-4148-8",doi:"10.5772/62603",price:139,priceEur:155,priceUsd:179,slug:"adhesives-applications-and-properties",numberOfPages:398,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"c2b4cabdd0f77b9b7ab6d38eb8392873",bookSignature:"Anna Rudawska",publishedDate:"November 23rd 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5365.jpg",numberOfDownloads:33399,numberOfWosCitations:70,numberOfCrossrefCitations:44,numberOfCrossrefCitationsByBook:5,numberOfDimensionsCitations:89,numberOfDimensionsCitationsByBook:6,hasAltmetrics:1,numberOfTotalCitations:203,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 7th 2016",dateEndSecondStepPublish:"March 28th 2016",dateEndThirdStepPublish:"July 2nd 2016",dateEndFourthStepPublish:"September 30th 2016",dateEndFifthStepPublish:"November 30th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"110857",title:"Associate Prof.",name:"Anna",middleName:null,surname:"Rudawska",slug:"anna-rudawska",fullName:"Anna Rudawska",profilePictureURL:"https://mts.intechopen.com/storage/users/110857/images/system/110857.jpg",biography:"Prof. Anna Rudawska, Ph.D., DSc, Eng, works in the Faculty of Mechanical Engineering, Lublin University of Technology, Poland. She is an author or co-author of 300 scientific publications in Polish, English, Ukrainian, and Slovak, several monographs and book chapters, and patents and patent applications. Her research focuses on the influence of technological and structural factors on the strength of polymer and metal adhesive joints, design of bonding technology, surface treatment of adherents, properties of adhesives for increasing the strength of adhesive joints, and the modification of epoxy adhesive compounds.",institutionString:"Lublin University of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Lublin University of Technology",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"915",title:"Polymers",slug:"materials-science-biochemistry-polymers"}],chapters:[{id:"52419",title:"Etch-and-Rinse and Self-Etch Adhesives Behavior on Dentin",doi:"10.5772/64856",slug:"etch-and-rinse-and-self-etch-adhesives-behavior-on-dentin",totalDownloads:1573,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Hybridization is a key phenomenon in bonding resin-based composite restorations to dentin, and results from a molecular-level interaction between the resin and the demineralized collagen fibrils network. Nanoleakage occurs when small molecules or ions infiltrate into the hybrid layer. Our work aims to evaluate if the type of solvent and adhesive system influences the morphology of the hybrid layer and the occurrence of nanoleakage within it. Human molar teeth were distributed into six groups corresponding to adhesives with different solvents (ScotchbondTM 1XT, XP BondTM, Prime&Bond® NT, One Coat Bond®, AdheSE® and Xeno® V). Dentin disks (specimens) were cut from those teeth. The corresponding adhesive systems and a microhybrid composite (Synergy® D6) were applied onto them. The specimens were thermocycled, fixed, cut, polished, decalcified, dried, and, for nanoleakage evaluation, immersed into a tracer solution. The morphology and nanoleakage analyses were performed with a high-resolution scanning electron microscope (field-emission scanning electron microscope—FESEM), and the results were statistically processed. AdheSE® achieved the overall best performance. The type of adhesive, the number of steps, and the solvent seem to play a significant role in hybrid layer morphology and nanoleakage within it. The hybrid layer water absorption can determine the adhesion longevity.",signatures:"João Cardoso Ferreira, Patrícia Teixeira Pires, Paulo Ribeiro de Melo\nand Mário Jorge Silva",downloadPdfUrl:"/chapter/pdf-download/52419",previewPdfUrl:"/chapter/pdf-preview/52419",authors:[{id:"186339",title:"Prof.",name:"João",surname:"Ferreira",slug:"joao-ferreira",fullName:"João Ferreira"},{id:"186375",title:"Dr.",name:"Paulo",surname:"Melo",slug:"paulo-melo",fullName:"Paulo Melo"},{id:"186376",title:"Dr.",name:"Mario",surname:"Silva",slug:"mario-silva",fullName:"Mario Silva"},{id:"186377",title:"Dr.",name:"Patricia",surname:"Pires",slug:"patricia-pires",fullName:"Patricia Pires"}],corrections:null},{id:"52154",title:"Biocompatibility of Dental Adhesives",doi:"10.5772/64943",slug:"biocompatibility-of-dental-adhesives",totalDownloads:2036,totalCrossrefCites:4,totalDimensionsCites:4,hasAltmetrics:0,abstract:"The accomplishment of developing a truly adhesive bond between a restorative material and the natural tooth structures is the goal of adhesive dentistry. Dentine adhesive systems come into close contact with dental and oral tissue, especially the pulp and gingival cells. Due to this close and long-term contact, adhesives should exhibit a high degree of biocompatibility. Biocompatibility is one of the most important properties of dental materials, and adhesives are no exception. It has been long demonstrated that different components of adhesives can be released. Numerous in vitro investigations have shown that released monomers and other components can cause damage to cultured cells. In addition, many in vivo studies have shown that uncured components which reach the pulpal space cause inflammatory response and tissue disorganization. Only a combination of various in vitro and in vivo tests can provide an overview of the interaction of biomaterials with the host. Therefore, it is necessary on a regular basis to carry out and re-verify the biological compatibility of the increasing number of new dental materials. Adhesives should be biofunctional, protective, and preventive, with health-promoting effects that contribute to a better prognosis for restorative treatments and its biocompatibility.",signatures:"Antonija Tadin, Lidia Gavić and Nada Galić",downloadPdfUrl:"/chapter/pdf-download/52154",previewPdfUrl:"/chapter/pdf-preview/52154",authors:[{id:"187383",title:"Ph.D.",name:"Antonija",surname:"Tadin",slug:"antonija-tadin",fullName:"Antonija Tadin"},{id:"187385",title:"Prof.",name:"Nada",surname:"Galić",slug:"nada-galic",fullName:"Nada Galić"},{id:"187386",title:"Dr.",name:"Lidia",surname:"Gavić",slug:"lidia-gavic",fullName:"Lidia Gavić"}],corrections:null},{id:"52573",title:"Adhesion in Restorative Dentistry",doi:"10.5772/65605",slug:"adhesion-in-restorative-dentistry",totalDownloads:3350,totalCrossrefCites:2,totalDimensionsCites:7,hasAltmetrics:0,abstract:"Bonding agents play a crucial role in the effective sealing and retention of resin-based composite restorations, which have been increasingly placed and replaced by dentists in many countries around the world. In fact, direct adhesive restoration with composite resins has become the procedure of choice for the treatment of anterior and posterior teeth. However, long-term durability of those restorations may be compromised due to progressive loss of the integrity of adhesive interfaces. This means that no adhesive strategy is free from technique sensitivity. The specificity and proportion of different constitutive molecules, the interaction between them and substrates can differ greatly from one class of adhesive system to another, which can affect bond quality. Protocol simplification has been an inevitable trend that has boosted the use of self-etching and universal systems in adhesive dentistry. However, there is a lack of randomized clinical trials to prove the effectiveness of these systems. This chapter gives an overview of the most important issues in dental adhesion and adhesive systems, as well, discussing their composition and clinical use.",signatures:"Alexandra Vinagre and João Ramos",downloadPdfUrl:"/chapter/pdf-download/52573",previewPdfUrl:"/chapter/pdf-preview/52573",authors:[{id:"186163",title:"Ph.D.",name:"Alexandra",surname:"Vinagre",slug:"alexandra-vinagre",fullName:"Alexandra Vinagre"},{id:"194352",title:"Prof.",name:"João",surname:"Ramos",slug:"joao-ramos",fullName:"João Ramos"}],corrections:null},{id:"52267",title:"Adhesive Materials for Biomedical Applications",doi:"10.5772/64958",slug:"adhesive-materials-for-biomedical-applications",totalDownloads:2398,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Recently, polymeric bioadhesives have become known as promising alternatives to sutures, staples, and wires. Traditional wound closure techniques are time-consuming to apply and cause additional tissue damage. In instances of large-scale hemorrhage or minimally invasive laparoscopic surgery, sutures are impractical to apply. Alternatively, newly developed bioadhesives are polymers that can be dripped or sprayed over superficial or internal injuries, solidifying in situ to form a seal that apposes tissue or arrests bleeding over large areas. This review will outline the main categories of polymers that have been investigated for these applications. The chemistry, mechanisms of adhesion, and advantages and limitations of each category will be described. In addition, needs for next-generation adhesives in tissue engineering will be discussed. For the repair of certain load-bearing areas of the body, such as cartilage and the intervertebral disc, scaffold adhesion is necessary for anchoring the scaffold in place and providing adequate transmission of forces. Researchers continue developing new formulations that exhibit improved biocompatibility, strength, elasticity, and degradability. These advances promise to improve clinical outcomes by enhancing bleeding control and wound healing. In the long term, bioadhesives will play an important role in making orthopedic and musculoskeletal tissue engineering clinically feasible.",signatures:"Andrea J Vernengo",downloadPdfUrl:"/chapter/pdf-download/52267",previewPdfUrl:"/chapter/pdf-preview/52267",authors:[{id:"186942",title:"Dr.",name:"Andrea",surname:"Vernengo",slug:"andrea-vernengo",fullName:"Andrea Vernengo"}],corrections:null},{id:"52081",title:"Adhesive Restorations and the Oral Environmental Behaviour",doi:"10.5772/64973",slug:"adhesive-restorations-and-the-oral-environmental-behaviour",totalDownloads:1810,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Adhesive restorations are based on the use of materials, which have the capacity to bond tooth effectively. This is possible due to a polymerizing hybrid layer interface created by the use of the Etch&Rinse (ERAs) and self-etching adhesives (SEAs). Bonding using ERAs include the acid-etching removal of the mineral phase from the substrates of enamel and dentine. A hybrid layer results by filling the voids left by minerals by means of adhesive monomers. However, etching dentine may result in too much demineralization and wetness with discrepancies in reinforcement at the bottom of hybrid layer. SEAs avoid the separate etching phase of ERAs using acidic functional monomers. In the two-step SEAs, hybridization is created by the application of a primer of different pH acidity, followed by an adhesive resin. In the ‘One-Step SEAs’, acidic and adhesive monomers are mixed in the same bottle thereby causing hybridization at the same time. 10-MDP mild SEAs represent the better bonding technology in dentistry due to the ability to form a strong chemical bond in tooth tissue. However, adhesive restorations have high vulnerability in the oral environment, which have been attributed to the esterase activity of Streptococcus mutans and hydrolysis by matrix metalloproteinase.",signatures:"Egle Milia, Roberto Pinna, Enrica Filigheddu and Stefano Eramo",downloadPdfUrl:"/chapter/pdf-download/52081",previewPdfUrl:"/chapter/pdf-preview/52081",authors:[{id:"187630",title:"Ph.D.",name:"Roberto",surname:"Pinna",slug:"roberto-pinna",fullName:"Roberto Pinna"},{id:"194269",title:"Dr.",name:"Enrica",surname:"Filigheddu",slug:"enrica-filigheddu",fullName:"Enrica Filigheddu"},{id:"194270",title:"Prof.",name:"Stefano",surname:"Eramo",slug:"stefano-eramo",fullName:"Stefano Eramo"},{id:"194271",title:"Prof.",name:"Egle",surname:"Milia",slug:"egle-milia",fullName:"Egle Milia"}],corrections:null},{id:"52363",title:"Experimental Investigation on the Self-Healing Efficiency of Araldite 2011 Adhesive Reinforced with Thermoplastic Microparticles",doi:"10.5772/65167",slug:"experimental-investigation-on-the-self-healing-efficiency-of-araldite-2011-adhesive-reinforced-with-",totalDownloads:2171,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Newly developed self-healing technologies allow self-repair of adhesively bonded joints without the need for replacing the damaged joint with a new one. This study addresses to define experimentally the self-healing ability and efficiency of the Araldite 2011 epoxy adhesive reinforced with the thermoplastic co-polyester (TPC). Heating the joint results in melting the co-polyester in adhesive, and then it is expected to repair the damaged region by the melted co-polyester. Firstly, before applying the self-healing process, a preliminary study was applied to define whether selected adhesive is compatible with the thermoplastic particles in terms of self-healing. From the initial results, it is seen that Araldite 2011 adhesive is suitable for use in the self-healing mechanism. In the healing cycle, initial crack in the reinforced adhesive was propagated until 30 mm during the double cantilever beam (DCB) testing. The fractured specimens were repeatedly healed in terms of the close-then-heal (CTH) scheme until no healing has taken place. After the healing process was completed, the healing efficiency was defined using the fracture energy values. In this study, the healing process was repeated two times with the acceptable healing efficiencies. It is concluded that the damaged reinforced adhesive can repair itself with a considerable healing efficiency.",signatures:"Halil Özer and Engin Erbayrak",downloadPdfUrl:"/chapter/pdf-download/52363",previewPdfUrl:"/chapter/pdf-preview/52363",authors:[{id:"186177",title:"Prof.",name:"Halil",surname:"Ozer",slug:"halil-ozer",fullName:"Halil Ozer"},{id:"187497",title:"M.Sc.",name:"Engin",surname:"Erbayrak",slug:"engin-erbayrak",fullName:"Engin Erbayrak"}],corrections:null},{id:"52691",title:"Research Progress on Formaldehyde‐Free Wood Adhesive Derived from Soy Flour",doi:"10.5772/65502",slug:"research-progress-on-formaldehyde-free-wood-adhesive-derived-from-soy-flour",totalDownloads:2279,totalCrossrefCites:4,totalDimensionsCites:7,hasAltmetrics:0,abstract:"Soy‐based adhesives have been regarded as the most suitable candidates for wood industry. For a widespread use of soy‐based adhesives, new technologies need to be developed to improve the water resistance. An overview on the methods to improve water resistance of soy‐based adhesives is presented. Denaturants were once considered necessary to modify soy protein. However, water‐resistant soy adhesives could be prepared by simply removing water‐soluble carbohydrates and low molecular peptides from soy flour. In addition, proper grafting and cross‐linking agents help to prepare water‐resistant soy‐based adhesives, which are used widely to bond interior wood composites. In particular, a new type of polyamidoamine (PADA) resin and an itaconic acid‐based polyamidoamine‐epichlorohydrin (IA‐PAE) resin were synthesized to perform as cross‐linking agents for soy‐based adhesives. This review concludes that soy‐based adhesives have great potential for use in numerous applications. However, future work is still needed to make soy‐based adhesives more competitive with synthetic adhesives.",signatures:"Chengsheng Gui, Jin Zhu, Zhongtao Zhang and Xiaoqing Liu",downloadPdfUrl:"/chapter/pdf-download/52691",previewPdfUrl:"/chapter/pdf-preview/52691",authors:[{id:"186174",title:"Dr.",name:"Chengsheng",surname:"Gui",slug:"chengsheng-gui",fullName:"Chengsheng Gui"},{id:"194584",title:"Prof.",name:"Xiaoqing",surname:"Liu",slug:"xiaoqing-liu",fullName:"Xiaoqing Liu"}],corrections:null},{id:"52127",title:"Evaluation of Addition of Reactive Resin for an Adhesive Formulation of Pressure-Sensitive Adhesive",doi:"10.5772/64941",slug:"evaluation-of-addition-of-reactive-resin-for-an-adhesive-formulation-of-pressure-sensitive-adhesive",totalDownloads:2503,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Nowadays, adhesive industry is growing, and its development will be important in a short future because it offers good returns, and in some cases it is a better option for packaging and sealing with advantages in prices, productivity and weight reduction. In terms of joining and/or sealing, adhesives are well positioned among joining systems; however, knowledge about adhesives is need for their efficient use and only through proper design of the union can be achieved satisfactory results. In this chapter, a development of a formulation of pressure-sensitive adhesive based on styrene-butadiene copolymers using a reactive resin is reported. Non-aromatic solvents were used in adhesive formulation with the aim of avoiding the emission of harmful solvents into the Atmosphere, and the adequate combination and amount of solvents were found. The effect of addition of a phenolic resin in the adhesive formulation as a crosslinking agent was evaluated. By means Fourier Transform Infrared spectroscopy (FTIR), the crosslinking reaction was also studied. The performance of adhesive formulation was evaluated by means of dynamic mechanical analysis (DMA).",signatures:"Tzeitel Hernández-Martínez, Beatriz Adriana Salazar Cruz, José Luis\nRivera-Armenta, María Yolanda Chávez-Cinco, María Leonor\nMéndez-Hernández and Ulises Paramo-García",downloadPdfUrl:"/chapter/pdf-download/52127",previewPdfUrl:"/chapter/pdf-preview/52127",authors:[{id:"107855",title:"Dr.",name:"Jose Luis",surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"},{id:"171043",title:"Dr.",name:"Beatriz Adriana",surname:"Salazar-Cruz",slug:"beatriz-adriana-salazar-cruz",fullName:"Beatriz Adriana Salazar-Cruz"},{id:"186466",title:"MSc.",name:"Tzeitel",surname:"Hernandez-Martinez",slug:"tzeitel-hernandez-martinez",fullName:"Tzeitel Hernandez-Martinez"},{id:"186467",title:"MSc.",name:"Maria Yolanda",surname:"Chavez-Cinco",slug:"maria-yolanda-chavez-cinco",fullName:"Maria Yolanda Chavez-Cinco"},{id:"186468",title:"Dr.",name:"Maria Leonor",surname:"Mendez-Hernandez",slug:"maria-leonor-mendez-hernandez",fullName:"Maria Leonor Mendez-Hernandez"},{id:"186469",title:"Dr.",name:"Ulises",surname:"Paramo-Garcia",slug:"ulises-paramo-garcia",fullName:"Ulises Paramo-Garcia"}],corrections:null},{id:"52122",title:"What are the Health Risks of Occupational Exposure to Adhesive in the Shoe Industry?",doi:"10.5772/64936",slug:"what-are-the-health-risks-of-occupational-exposure-to-adhesive-in-the-shoe-industry-",totalDownloads:1993,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"The term “shoe” covers a wide range of products made from various materials. Organic solvents (OS) are components of various products such as the adhesives which are used in many industries. The shoe industry consumes large amounts of adhesives. This chemical risk assessment (CRA) is to validate the hypothesis of decreasing gradient of RA craft enterprises to industrial enterprises through the semi-industrial. The simplified methodology CRA of INRS was applied. For each chemical, a hazard class is assigned based on the sign, and then the potential exposure class is determined according to parameters “quantity and frequency of use”. Our RA process is complete with ambient measurements for solvents to which employees are most frequently exposed. Adhesives being constituted as solvent mixture, we have conventionally used an exposure index which is compared with the limit values. The simplified method CRA of INRS was chosen because it is one of the reference methods in RA established from the Kinney model. If these atmospheric samples and toxicology tests were made for the first time in the shoe industry in Sfax, they concerned a sample of companies of the three shoe manufacturing processes preceded by a preliminary RA with post-study and inventory of products handled.",signatures:"Imed Gargouri, Moncef Khadhraoui and Boubaker Elleuch",downloadPdfUrl:"/chapter/pdf-download/52122",previewPdfUrl:"/chapter/pdf-preview/52122",authors:[{id:"186371",title:"Associate Prof.",name:"Imed",surname:"Gargouri",slug:"imed-gargouri",fullName:"Imed Gargouri"},{id:"188100",title:"Dr.",name:"Moncef",surname:"Khadhraoui",slug:"moncef-khadhraoui",fullName:"Moncef Khadhraoui"},{id:"188101",title:"Prof.",name:"Boubaker",surname:"Elleuch",slug:"boubaker-elleuch",fullName:"Boubaker Elleuch"}],corrections:null},{id:"52871",title:"Fracture Toughening Mechanisms in Epoxy Adhesives",doi:"10.5772/65250",slug:"fracture-toughening-mechanisms-in-epoxy-adhesives",totalDownloads:2490,totalCrossrefCites:10,totalDimensionsCites:24,hasAltmetrics:0,abstract:"Fracture toughness is generally considered as the main properties of a polymer or a polymer adhesive system for measuring the material resistance to the extension of cracks. Epoxy adhesives are generally brittle in nature; however, the addition of a second dispersed phase could induce a remarkable increase of damage tolerance performance by an enhancement of the material fracture toughness. The fracture behavior of a filled epoxy resin is strongly affected by the dimensions, the shape, and the chemical nature of the considered filler. The chapter describes the different toughening mechanisms for polymer adhesives with special attention toward innovative nanofiller such as graphene nanoplatelets and hyperbranched polymer nanoparticles.",signatures:"Aldobenedetto Zotti, Simona Zuppolini, Mauro Zarrelli and Anna\nBorriello",downloadPdfUrl:"/chapter/pdf-download/52871",previewPdfUrl:"/chapter/pdf-preview/52871",authors:[{id:"186421",title:"Dr.",name:"Anna",surname:"Borriello",slug:"anna-borriello",fullName:"Anna Borriello"},{id:"194303",title:"Mr.",name:"Aldobenedetto",surname:"Zotti",slug:"aldobenedetto-zotti",fullName:"Aldobenedetto Zotti"},{id:"194304",title:"Dr.",name:"Simona",surname:"Zuppolini",slug:"simona-zuppolini",fullName:"Simona Zuppolini"},{id:"194305",title:"Dr.",name:"Mauro",surname:"Zarrelli",slug:"mauro-zarrelli",fullName:"Mauro Zarrelli"}],corrections:null},{id:"52676",title:"Wood Adhesives and Bonding Theory",doi:"10.5772/65759",slug:"wood-adhesives-and-bonding-theory",totalDownloads:4520,totalCrossrefCites:12,totalDimensionsCites:25,hasAltmetrics:0,abstract:"In this last century, world had grown faster than before; now people need more furniture than in the past century. More furniture means, more particleboards and more adhesives. Wood adhesives are used in every step of furniture manufacturing. Wood adhesives aim to bond wooden materials with each other or with different materials. Today, production with a faster pace is more important. Furniture production lines could be more productive with fast curing glues. Wood adhesives are used in more than 70% of wood products today in the world. The main reason is their use in gluing furniture joints and wood composite materials. In this chapter, readers can find four different topics: (1) technical properties of wood adhesives, (2) environment friendly adhesives, (3) semisynthetic adhesives, and (4) synthetic adhesives.",signatures:"Onur Ülker",downloadPdfUrl:"/chapter/pdf-download/52676",previewPdfUrl:"/chapter/pdf-preview/52676",authors:[{id:"186443",title:"Dr.",name:"Onur",surname:"Ülker",slug:"onur-ulker",fullName:"Onur Ülker"}],corrections:null},{id:"52991",title:"Dynamic Characterization of Adhesive Materials for Vibration Control",doi:"10.5772/66104",slug:"dynamic-characterization-of-adhesive-materials-for-vibration-control",totalDownloads:1697,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter focuses on the dynamic characterization of adhesive materials for vibration control proposes. First, the experimental characterization and modelization of the relaxation and complex moduli of the flexible adhesive ISR 70-03 by means of a dynamic mechanical thermal analysis technique (DMTA) are presented. Then, the interconversion path between the relaxation modulus \n\n\nE\n\n(\nt\n)\n\n\n\n and the corresponding complex modulus \n\n\n\nE\n*\n\n\n(\nω\n)\n\n\n\n for linear viscoelastic solid materials is explored. In contrast to other approximate methods, in this work the fast Fourier transform (FFT) algorithm is directly applied on relaxation functions. Finally, an experimental study for the structural noise and vibration reduction in a cabin elevator by means of adhesive-bonded joints of panels is presented.",signatures:"Jon García-Barruetabeña and Fernando Cortés Martínez",downloadPdfUrl:"/chapter/pdf-download/52991",previewPdfUrl:"/chapter/pdf-preview/52991",authors:[{id:"183342",title:"Dr.",name:"Fernando",surname:"Cortés",slug:"fernando-cortes",fullName:"Fernando Cortés"},{id:"184840",title:"Dr.",name:"Jon",surname:"García-Barruetabeña",slug:"jon-garcia-barruetabena",fullName:"Jon García-Barruetabeña"}],corrections:null},{id:"52916",title:"Thermoplastic Adhesive for Automotive Applications",doi:"10.5772/65168",slug:"thermoplastic-adhesive-for-automotive-applications",totalDownloads:2975,totalCrossrefCites:7,totalDimensionsCites:10,hasAltmetrics:0,abstract:"The objective of this study is to give a general overview on the thermoplastic adhesives used in the automotive sector. Some of the main applications in which the hot-melt adhesives (HMAs) are used in automotive industries are indicated, together with the adhesive characteristics that explain the reasons for their adoption. The chemical and mechanical behavior of these adhesives and the generally used experimental characterization methods are presented and opportunely criticized. In this study, some of the main properties of thermoplastic adhesives are reviewed together with the standard tests used for their characterization. For what concerns the structural performance, single lap joint test is used to determine the shear strength of the adhesive joint. Thermogravimetric analysis and Fourier transform infrared spectroscopy are used to characterize the chemical properties of the adhesive. This study clarifies what are the potentialities of a thermoplastic adhesive in car industries compared to other adhesives.",signatures:"Giovanni Belingardi, Valentina Brunella, Brunetto Martorana and\nRaffaele Ciardiello",downloadPdfUrl:"/chapter/pdf-download/52916",previewPdfUrl:"/chapter/pdf-preview/52916",authors:[{id:"186628",title:"Prof.",name:"Giovanni",surname:"Belingardi",slug:"giovanni-belingardi",fullName:"Giovanni Belingardi"},{id:"187275",title:"Dr.",name:"Valentina",surname:"Brunella",slug:"valentina-brunella",fullName:"Valentina Brunella"},{id:"187276",title:"Dr.",name:"Brunetto",surname:"Martorana",slug:"brunetto-martorana",fullName:"Brunetto Martorana"},{id:"187277",title:"MSc.",name:"Raffaele",surname:"Ciardiello",slug:"raffaele-ciardiello",fullName:"Raffaele Ciardiello"}],corrections:null},{id:"52123",title:"Ab-Initio Modeling of Adhesive Behaviors at Material Interfaces",doi:"10.5772/64904",slug:"ab-initio-modeling-of-adhesive-behaviors-at-material-interfaces",totalDownloads:1605,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter, density functional theory (DFT) is employed to identify the essentials of adhesive formation at the Al/Ceramic interfaces. Analyses of electronic structure in the DFT used for atomic bond evolution at interfaces, indicate that, adhesion energy mostly dominated by surface energy, may lead to formation of adhesives, which bind two type bulk-materials strongly together, especially for those polar systems involving cubic oxides, carbides and nitrides. In addition, ab-initio molecular dynamics (AIMD) based upon the DFT is adopted, for example, in the simulation of chemical reaction between two contacting reactive slabs: pure aluminum and iron-oxide. This may provide an insight into the dynamical formation of an adhesive (amorphous Al2O3-texture) occurring between two nascent material surfaces if lubricants are not present or are insufficient. Such a texture may bond onto a hard-roller surface as a protective thin film to resist the elevated temperature.",signatures:"Jun Zhong",downloadPdfUrl:"/chapter/pdf-download/52123",previewPdfUrl:"/chapter/pdf-preview/52123",authors:[{id:"187258",title:"Prof.",name:"Jun",surname:"Zhong",slug:"jun-zhong",fullName:"Jun Zhong"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6736",title:"Abrasive Technology",subtitle:"Characteristics and Applications",isOpenForSubmission:!1,hash:"928e702841e3f565da642039ea0c31ce",slug:"abrasive-technology-characteristics-and-applications",bookSignature:"Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/6736.jpg",editedByType:"Edited by",editors:[{id:"110857",title:"Associate Prof.",name:"Anna",surname:"Rudawska",slug:"anna-rudawska",fullName:"Anna Rudawska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7679",title:"Adhesives and Adhesive Joints in Industry Applications",subtitle:null,isOpenForSubmission:!1,hash:"c52e732b7cc9463f2ddda5b46fca9ad3",slug:"adhesives-and-adhesive-joints-in-industry-applications",bookSignature:"Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/7679.jpg",editedByType:"Edited by",editors:[{id:"110857",title:"Associate Prof.",name:"Anna",surname:"Rudawska",slug:"anna-rudawska",fullName:"Anna Rudawska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3043",title:"New Polymers for Special Applications",subtitle:null,isOpenForSubmission:!1,hash:"dd782fff3bea8992c224dfd3280d6cd1",slug:"new-polymers-for-special-applications",bookSignature:"Ailton De Souza Gomes",coverURL:"https://cdn.intechopen.com/books/images_new/3043.jpg",editedByType:"Edited by",editors:[{id:"135416",title:"Dr.",name:"Ailton",surname:"De Souza Gomes",slug:"ailton-de-souza-gomes",fullName:"Ailton De Souza Gomes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1573",title:"Thermoplastic Elastomers",subtitle:null,isOpenForSubmission:!1,hash:"68733430093bd948f36fd95ab2ff4746",slug:"thermoplastic-elastomers",bookSignature:"Adel Zaki El-Sonbati",coverURL:"https://cdn.intechopen.com/books/images_new/1573.jpg",editedByType:"Edited by",editors:[{id:"98324",title:"Prof.",name:"Adel",surname:"El-Sonbati",slug:"adel-el-sonbati",fullName:"Adel El-Sonbati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"467",title:"Carbon Nanotubes",subtitle:"Polymer Nanocomposites",isOpenForSubmission:!1,hash:null,slug:"carbon-nanotubes-polymer-nanocomposites",bookSignature:"Siva Yellampalli",coverURL:"https://cdn.intechopen.com/books/images_new/467.jpg",editedByType:"Edited by",editors:[{id:"62863",title:"Dr.",name:"Siva",surname:"Yellampalli",slug:"siva-yellampalli",fullName:"Siva Yellampalli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2003",title:"Polyurethane",subtitle:null,isOpenForSubmission:!1,hash:"7391b5a0085d7c0aa0a5c75ee6f275b2",slug:"polyurethane",bookSignature:"Fahmina Zafar and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/2003.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2383",title:"Polyester",subtitle:null,isOpenForSubmission:!1,hash:"79fd9d6314f8e1abd60d7e21896ce878",slug:"polyester",bookSignature:"Hosam El-Din M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/2383.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2385",title:"Polymerization",subtitle:null,isOpenForSubmission:!1,hash:"e83b64f8e9875e507d879fede9f34d1a",slug:"polymerization",bookSignature:"Ailton De Souza Gomes",coverURL:"https://cdn.intechopen.com/books/images_new/2385.jpg",editedByType:"Edited by",editors:[{id:"135416",title:"Dr.",name:"Ailton",surname:"De Souza Gomes",slug:"ailton-de-souza-gomes",fullName:"Ailton De Souza Gomes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2805",title:"High Performance Polymers - Polyimides Based",subtitle:"From Chemistry to Applications",isOpenForSubmission:!1,hash:"45412ef8f76c275a84f6052ab6076355",slug:"high-performance-polymers-polyimides-based-from-chemistry-to-applications",bookSignature:"Marc J.M. Abadie",coverURL:"https://cdn.intechopen.com/books/images_new/2805.jpg",editedByType:"Edited by",editors:[{id:"145543",title:"Prof.",name:"Marc",surname:"Abadie",slug:"marc-abadie",fullName:"Marc Abadie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2434",title:"Advanced Elastomers",subtitle:"Technology, Properties and Applications",isOpenForSubmission:!1,hash:"5af149f1724b92c429f9619a8ee87816",slug:"advanced-elastomers-technology-properties-and-applications",bookSignature:"Anna Boczkowska",coverURL:"https://cdn.intechopen.com/books/images_new/2434.jpg",editedByType:"Edited by",editors:[{id:"137336",title:"D.Sc.",name:"Anna",surname:"Boczkowska",slug:"anna-boczkowska",fullName:"Anna Boczkowska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79672",slug:"corrigendum-the-physiological-ecology-of-white-nose-syndrome-wns-in-north-american-bats",title:"Corrigendum: The Physiological Ecology of White-Nose Syndrome (WNS) in North American Bats",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79672.pdf",downloadPdfUrl:"/chapter/pdf-download/79672",previewPdfUrl:"/chapter/pdf-preview/79672",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79672",risUrl:"/chapter/ris/79672",chapter:{id:"78750",slug:"the-physiological-ecology-of-white-nose-syndrome-wns-in-north-american-bats",signatures:"Craig L. Frank",dateSubmitted:"September 1st 2021",dateReviewed:"September 8th 2021",datePrePublished:"October 15th 2021",datePublished:"April 20th 2022",book:{id:"11032",title:"Bats",subtitle:"Disease-Prone but Beneficial",fullTitle:"Bats - Disease-Prone but Beneficial",slug:"bats-disease-prone-but-beneficial",publishedDate:"April 20th 2022",bookSignature:"Heimo Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/11032.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144330",title:"Dr.",name:"Heimo",middleName:"Juhani",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"423579",title:"Dr.",name:"Craig L.",middleName:"L.",surname:"Frank",fullName:"Craig L. Frank",slug:"craig-l.-frank",email:"frank@fordham.edu",position:null,institution:{name:"Fordham University",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"78750",slug:"the-physiological-ecology-of-white-nose-syndrome-wns-in-north-american-bats",signatures:"Craig L. Frank",dateSubmitted:"September 1st 2021",dateReviewed:"September 8th 2021",datePrePublished:"October 15th 2021",datePublished:"April 20th 2022",book:{id:"11032",title:"Bats",subtitle:"Disease-Prone but Beneficial",fullTitle:"Bats - Disease-Prone but Beneficial",slug:"bats-disease-prone-but-beneficial",publishedDate:"April 20th 2022",bookSignature:"Heimo Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/11032.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144330",title:"Dr.",name:"Heimo",middleName:"Juhani",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"423579",title:"Dr.",name:"Craig L.",middleName:"L.",surname:"Frank",fullName:"Craig L. Frank",slug:"craig-l.-frank",email:"frank@fordham.edu",position:null,institution:{name:"Fordham University",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"11032",title:"Bats",subtitle:"Disease-Prone but Beneficial",fullTitle:"Bats - Disease-Prone but Beneficial",slug:"bats-disease-prone-but-beneficial",publishedDate:"April 20th 2022",bookSignature:"Heimo Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/11032.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144330",title:"Dr.",name:"Heimo",middleName:"Juhani",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11824",leadTitle:null,title:"Metamaterials - History, Current State, Applications, and Perspectives",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tMetamaterials (the name originating from the Greek word μετά (meta) = "beyond" and the Latin word materia = "matter" or "material") are the class of materials designed to possess various properties not found in naturally occurring materials. Metamaterials are constructed from assemblies of multiple elements designed from versatile composite materials. These assemblies are usually arranged in repeating patterns, which have dimension scales smaller than the wavelengths of the phenomena these materials are designed to influence.
\r\n\tThe properties of metamaterials are designed not from the properties of their base materials, but rather from the metamaterial's newly designed structures. The precise shapes, geometries, sizes, orientations, and arrangements of metamaterial composing elements render metamaterials versatile ‘smart’ properties related to manipulating electromagnetic waves, by blocking, absorbing, enhancing, or bending waves of specific wavelengths. This allows achieving benefits extending far beyond what could be achieved by employing conventional materials.
\r\n\tMetamaterials have broad and diverse potential applications including optical filters, medical devices, remote aerospace devices and materials, sensors, infrastructure monitoring, highly effective management of solar power, high-frequency battlefield communication, lenses for high-gain antennas, shielding structures to prevent earthquake damage, acoustic materials, etc. Metamaterial research area is highly interdisciplinary: it involves electrical engineering, electromagnetics, classical optics, studies in the solid-state physics field, antenna engineering, optoelectronics, material science, nanoscience and nanotechnology, semiconductor design, and even can involve computational chemistry.
Partial discharge (PD) is usually observed in power equipment, such as transformers, cables, gas insulated switchgears, and so on, which indicates a gas breakdown in essence induced by a local electric field distortion. It should be noted that it does not bridge the electrodes, differing from the gas breakdown across conductors. The remaining component of the whole insulation which does not suffer from PD could be oil, solid, or gas. On one hand, during the PD process, the heat energy, the charges with high velocity and chemical-active substances are released to erode and change the composite of the remaining component, leading to the deterioration of insulation performance and even the insulation failure. For example, as for high voltage power cable, PD resulting from the insulation defects could induce degradation of the solid dielectric due to chemical effect and physical attack by charge bombardment, and electric trees will be present after long-term service [1]. When the solid dielectric is across by the trees, an insulation fault takes place. On the other hand, PD parameters, such as discharge magnitude, discharge time, and so on, are determined by the characters of the gas and the remaining insulation. In terms of this, the PD measurement is often employed to diagnose the insulation status of power equipment. Whether understanding the negative effect of PD on insulation or equipment condition maintenance in the usage of PD measurement, it is based on the clear PD mechanism.
In essence, PD is a gas breakdown phenomenon. Similar to the other types of low-temperature plasmas, the temperature of electrons during a PD is much higher than that of ions, which is equivalent to the neutral gas molecules. However, PD also shows some distinctive features. For example, because PD always results from the local defect with a high electric field, the discharge channel is very narrow (the radius may be 100 μm) and the duration time is very short (several to tens of nanoseconds). During a PD sequence, once previous PD is terminated, and the subsequent one may take place after several milliseconds or even several days [2]. This phenomenon indicates that PD has a stochastic behavior, due to not only the effect of gas itself but also the interaction between gas breakdown and the remaining insulation. Therefore, as for the PD, the mere investigation of gas breakdown is meaningless. On the contrary, the interaction between PD and the remaining insulation should be considered. More importantly, a large number of PD data should be obtained to seek for its statistical characters because of its stochastic behavior.
According to the type of the remaining insulation and electrode configuration, PD could be divided into three categories [3]: internal discharge, surface discharge, and corona, as in Figure 1. Internal discharge indicates a gas breakdown taking place in a cavity embedded in solid or liquid dielectric. Generally, the former is more common. It consists of the streamer development and the interaction between streamer and cavity walls. A surface charge usually occurs along the solid dielectric surface due to a large tangential component of electric field, during which the interaction between streamer development and dielectric dominates. Corona often takes places in the local region around a conductor, which mainly involves the streamer development. Therefore, internal discharge could best represent PD, because it includes the two processes. In fact, the majority of PD simulations are concentrated on the internal discharge (also called cavity discharge) [4, 5, 6, 7]. And in this chapter, we also focus on it.
Three categories of PD: (a) internal discharge, (b) surface discharge, and (c) corona.
There are many factors that could affect PD characters, such as the applied voltage (voltage waveform, amplitude, and frequency), electrode configuration, cavity (transportation parameters of gas, location, and size), remaining dielectric (permittivity, conductivity, and surficial parameters, e.g., morphology, surface trap distribution), and so on. To sum it up, two intrinsic factors behind them determine the evolution of PD behavior, that is, electric field and seed electrons. Generally speaking, two conditions must be simultaneously satisfied in order that a gas breakdown can take place: there must be at least one free electron in the gas, and the electric field must be of sufficient strength and duration time to ensure that this electron generates a sequence of avalanches [8]. Based on the conditions, it is inferred that the supply of free electrons and electric field affect not only the occurrence of PD but also its characters. Actually, the electric field is related to the applied voltage, electrode configuration, residual charges within the cavity, the cavity size, and the permittivity of remaining dielectric, while the supply of free electron depends on the gas status and surficial conditions of dielectric, corresponding to the volume generation and surface emission, respectively [9].
Looking back at the evolution of PD simulation methods, the a-b-c model was initially proposed [10, 11, 12], in which the discharge process was considered as charging-discharging of capacitors. Subsequently, some researchers held that the discharge could be represented by the increase of gas conductivity, and the current continuity equation was used to calculate discharge parameters [13, 14, 15]. On the contrary, others thought that a discharge was actually the deployment of charges in the cavity, and Poisson’s equation was enough [16, 17, 18]. Obviously, these models could represent the transient phenomenon of a discharge, but not reflect its physical processes. In recent years, a plasma model was employed to simulate single PD [19, 20, 21], in which the impact ionization, drift, diffusion, recombination, and other processes were quantitatively described by fluid equations. This model successfully obtained microscopic physical processes of a PD, but did not take the stochastic characters into account.
In this chapter, we firstly reviewed PD simulation models in brief, which consisted of the a-b-c model, Pedersen’s model, conductance model, Niemeyer’s model and plasma model, and analyzed their merits and drawbacks. Then, an advanced model was constructed to obtain physical processes, including the streamer propagation and surface charge dynamics, and macroscopic parameters, for example, discharge magnitude and moment of continuous PDs, so that a comprehensive analysis was available.
Since a-b-c model was proposed, numerical modeling of PD has been developed for decades of years. During this period, many kinds of simulation models have been constructed, which could be roughly divided into two categories: based on the point of view of circuit and based on the point of view of field. The former indicates a-b-c model and the latter consists of Pedersen’s model, conductance model, and Niemeyer’s model.
The a-b-c model or the three-capacitor model is the original one to interpret the PD mechanism [3], and then it is usually employed to simulate the stochastic characters of PD [10, 11]. In the model, the dielectrics between electrodes, including the gas and solid insulation, are considered as capacitors, as in Figure 2. In detail,
a-b-c model.
The occurrence and termination of PD depend on the potential difference across the cavity,
It could be found that this model is very simple, but it can represent the transient process related to a discharge event and is often used to explain some experimental results. However, it could not describe the discharge process physically, and the concept, capacitor, is not strictly valid, because the interface between the cavity and the solid dielectric is not equipotential when a discharge takes place [22].
There are two important parameters of PD, that is, physical charges and apparent charges. The former indicate the charges generated during a discharge process, while the latter are measured charges through external circuit. In order to establish the link between physical charges and apparent charges, Pedersen proposed a model to describe the transient process [23]. Without considering the charge exchange between solid dielectric and the adjacent electrode, the amount of apparent charges equals the induced charges at an electrode surface due to charge generation, recombination, and movement during a discharge process. Therefore, if the physical charge distribution is known, the apparent charges could be calculated [24]
where
where
Pedersen’s model is helpful to understand the measured results by using the pulse current method. However, the apparent charges depend on physical charge distribution which results from the discharge process and keeps unknown in this model.
When PD takes place, a plasma region with a high charge concentration in the cavity is formed, so the gas conductivity largely increases in comparison with the initial state. Based on this fact, the discharge process is simplified by the variation of gas conductivity [13], which can be described by the following equations:
where
Forssen compared the simulation results with the experimental data, and they were in general agreement but with a slight difference. Furthermore, Illias developed the simulation model by taking the surface emission and temperature variation during the discharge into account [14]. However, in any case, the increment of gas conductivity could not represent the PD process.
Niemeyer considered PD within the cavity as a streamer-type discharge, because only this type could be detected and has engineering significance [9]. After analyzing the physical processes of PD, he proposed several equations to describe PD, as follows:
Eq. (5) is actually the well-known critical avalanche criterion, in which
Based on the model, Niemeyer simulated PD behaviors within a spherical cavity by considering the stochastic supply of free electrons, which agreed with experimental data qualitatively and quantitatively although there was a slight disagreement in the phase and magnitude distributions of PD. However, there is a significant shortcoming that the electric field distribution was assumed to be uniform within the cavity. Considering this point, Illias developed the simulation model in which the deployed charges were not uniform and Poisson’s equation was employed to calculate PD parameters [16, 17].
In terms of physical processes, a cavity PD is similar to the filamentary dielectric barrier discharge (DBD) [25]. As for the latter, fluid equations are widely used to simulate gas discharge process [26, 27], which describe the impact ionization, charge drift, diffusion, recombination, and some secondary effects. In recent years, several researchers employed them to simulate the PD occurring in a cavity [18, 19, 20]. For example, Novak and Bartnikas established a two-dimensional breakdown model based on the continuity equations for electrons and ions to examine the influence of surface charges upon the partial discharge behavior [19]. In terms of it, the evolution of electric field and charge concentration distribution within the cavity during the discharge process was obtained, as well as the discharge current pulse.
However, the behaviors of single PD could not represent that of continuous PDs due to the memory effect. On one hand, residual charges generated by previous discharge land on the cavity surface and affect the electric field distribution within the cavity, leading to the change of subsequent PD characters. On the other hand, the accumulated surface charges may provide free electrons for the next PD occurrence. The interaction between adjacent PDs could not be represented by singe PD. Therefore, it is necessary to establish a simulation model which could present the discharge development process and take the memory effect into account to obtain the stochastic characters of PD sequences.
As for the PD simulation, on one hand, the model should reflect physical processes as much as possible, and on the other hand, a large number of data should be obtained to get the statistical parameters of repetitive PDs due to the stochastic characters. There is a contraction that taking too much physical processes into account must result in the model complexity and a large calculation consumption which is not beneficial to statistical analysis. Therefore, some important processes should be considered in the simulation model, while others are abandoned.
By reviewing the PD simulation models, it is found that two processes are crucial to cavity PD characters, that is, streamer development and surface process. Obviously, the apparent charges that could be detected by pulse current method are determined by streamer development in the cavity. Surface process mainly consists of charge accumulation on the interface and surface emission of charge. After the streamer lands on the dielectric surface, charges accumulate and will affect the subsequent PD behavior. Besides, surface emission could provide free electrons for the next PD. It should be noted that the distribution of surface charges generated by previous discharge does not keep unchanged until subsequent one takes place. Due to the surface or bulk conductivity of dielectric, the accumulated charges may decay. To sum it up, the streamer development and surface charge accumulation reflect a single PD process, while surface charge accumulation, decay, and emission represent the interaction of adjacent discharges during a PD sequence, which should be considered in the simulation model.
Because sandwich-type samples are widely used in the experimental researches on PD, a cylindrical cavity with a diameter of 2 mm and a height of 0.25 mm is employed in our simulation model, as in Figure 3. The cavity, full of atmospheric pressure air, is embedded within the solid dielectric, of which the relative permittivity equals 2.3. The thickness of dielectric barriers is set to be identical to the cavity height. Although during the discharge process, the temperature of cavity may slightly increase due to the joule heating from discharges, the temperature variation is neglected in our model, which means that the pressure in the cavity keeps unchanged.
Configuration of simulation model.
The streamer development is quantitatively described by fluid equations, as follows:
where
After the streamer arrives at the interface between the cavity and the dielectric, the charges will accumulate on the dielectric surface. We use the following equation to describe the transition from volume charges to surface charges:
where Δ
During the streamer development, the influence of space charges on the electric field should not be neglected, so Poisson’s equation is employed to obtain the electric field within the cavity:
At the upper and lower surfaces of cavity, the boundary conditions for Poisson’s equation are
where
An initial electron-positive ion pair with a concentration of 1013 cm−3 is placed near the upper or lower surface to induce the streamer and avoid Townsend phase of gas discharge [28]. It should be noted that this assumption differs from the consideration of free electrons, which will be described in the later text. During the streamer development, charge concentration varies quickly, and an area with a steep concentration gradient appears at the head of the streamer. Meanwhile, the value of charge concentration should maintain positive, which cannot be guaranteed by the traditional finite difference method. So, the flux-corrected transport (FCT) algorithm is used to solve the convection term of charge continuity equations to overcome the two problems [31, 32, 33], which is listed in Appendix B.
In general, the time step for FCT is chosen based on the electron drift velocity, however, which may not apply to the circumstance in our simulation model. It is because apart from the streamer development, its extinguishment process also needs to be obtained which is responsible for the accumulation of electrons and ions. However, the drift velocity of electrons is about 100 higher than that of ions, and the choice of time step must lead to the large increase of calculation consumption at the later stage of discharge when ion drift dominates. Instead, if it is chosen based on the ion drift velocity, the accuracy of the calculation cannot be guaranteed at the initial stage of discharge. Therefore, as a compromise, the time step is set according to whether there are any electrons within the cavity volume. In detail, during the initial stage of streamer development, it is determined by the electron drift velocity. After electrons completely accumulate at the interface, it depends on the drift velocity of a positive ion or a negative one (both are the same). The expression for the time step is
where
According to Pedersen’s model, the apparent charges are determined by charge transportation within the cavity, which could be detected by pulse current method. However, due to the effect of dielectric barriers, the pulse obtained at the external circuit may not reflect the streamer propagation. So, we use Sato’s equation to calculate the current due to free charge movement [34], as follows:
where
On one hand, the field within the cavity should exceed a critical value so that a discharge may take place. Based on the ignition condition of streamer, the critical field is expressed as follows [35]:
where
where
On the other hand, although free electrons from the volume ionization and surface emission are formulated, their supply shows a strong scholastic behavior. Hence, there is usually a time delay between the instant of application of an electric field in excess of the critical field and the onset of breakdown, which is called a discharge time lag (strictly speaking, it is a statistical time lag, but the formative time lag is very short for cavity discharge and could be neglected). In order to simplify the physical process of free electron production, the discharge time lag is introduced to our model. Some experimental and simulation results show that the discharge time lag is not completely random, but is subject to exponential distribution [37, 38], which is expressed as
where
In terms of Eq. (17), the critical field for gas breakdown is calculated, and it equals 67,000 V/cm. In this case, the potential difference across the electrodes is 3130 V. Because the PD mechanism at AC voltage has been studied by many authors [2, 4, 5, 6, 7], and a comprehensive understanding about it has been obtained, the PD mechanism under DC voltage needs to be clarified. In this chapter, the DC voltage with an amplitude of 3200 V is applied to the anode, and the cathode is grounded all the time. Of course, this model is also applied to the circumstance of AC voltage application.
The process of PD development in the cavity consists of two stages: the streamer propagation and surface charge accumulation. Figures 4 and 5 show the temporal and spatial distribution of electrons and positive ions during this process, respectively. After discharge conditions are satisfied, the streamer is initiated near the lower surface of dielectric. With the help of applied field, electrons propagate toward the anode. At 0.72 ns, the head of streamer arrives at the upper surface of dielectric. Based on this, the streamer development velocity could be calculated, which equals 3.5 × 107 cm/s and the order is in accordance with other researcher’s simulation result [39]. Then, electrons begin to accumulate on the upper surface of dielectric, and the density of surface charges reaches a saturation value after 1.4 ns. During this period, positive ions almost maintain stationary because the drift velocity is approximately 1/100 of the electron. However, positive ions seem to move according to Figure 5, and the distribution appearance looks like a ladle, which are attributed to the impact ionization of electrons. At 11.9 ns, a large number of positive ions land on the lower surface of dielectric, and the accumulation is terminated at 147.8 ns. Therefore, the accumulation time of electrons is much shorter than that of positive ions.
Evolution of electron concentration distribution during the first PD (a) within the cavity volume (unit: cm−3) and (b) on the upper surface of the cavity (unit: cm−2).
Evolution of positive ion concentration distribution during the first PD (a) within the cavity volume (unit: cm−3), (b) on the lower surface of cavity (unit: cm−2).
Based on the simulation results, it is found that the distribution of surface charges appears as a spot, and the maximum charge density locates at the middle of a spot. Compared with the experimental results [36], the distribution shape and surface density level (0.1 nC/mm2) are identical, which show that the simulation results are reasonable. However, there are some slight differences due to the simplification of model.
Charge transportation within the cavity will induce a current pulse, as in Figure 6, which could reflect the streamer development. The peak value of pulse appears at 0.72 ns; at this moment, the streamer head arrives at the upper surface of the cavity. The pulse width lasts for 1.4 ns; during this period, the accumulation of electrons is terminated. On the contrary, positive ions still move in the cavity volume. It is inferred that positive ions have a minor contribution to the current pulse because of their low drift velocity. A low-inductance resistor connected to the cathode is usually employed to detect a current, but this current slightly differs from that in Figure 6 [40].
Current pulse waveform of the first PD obtained by simulation.
A PD sequence consisting of 100 continuous discharges is obtained by the simulation (Figures 4–6 show the first discharge development process). Figure 7 shows the discharge time and the peak value of current of each discharge. In terms of this information, some statistical parameters of PDs, for example, discharge frequency and average discharge magnitude, could be calculated, and discharge patterns could be depicted.
A PD sequence with 100 continuous discharges.
Besides, by analyzing the PD sequence, the interaction between adjacent discharges is obtained. Figure 8 shows the temporal evolution of surface charges and electric field within the cavity of first eight discharges. The first PD does not take place immediately after the voltage application due to the existence of a discharge time lag. After the discharge is terminated, the electric field within the cavity is dramatically reduced (as in Figure 8c), which is attributed to the effect of surface charge accumulation. Then, the surface charges begin to decay, and the electric field within the cavity gradually recovers. After it exceeds the critical value, and the condition for discharge time lag is satisfied, the next PD takes place.
The first eight discharges during the PD sequence: (a) discharge time and magnitude, (b) surface charge decaying process, and (c) evolution of electric field within the cavity.
During the process of surface charge decaying (as in Figure 8b), the initial concentration of electrons and positive ions is approximately identical, but residual charges are completely distinct at the moment when a next discharge occurs. Due to the decay rate of positive charges faster than that of electrons, the concentration of residual negative surface charges is much higher. Therefore, compared with positive ions, residual electrons resulting from previous discharge have a larger influence on the subsequent one during a PD sequence.
PD, a type of low-temperature plasma, has some distinctive features, which determines its simulation method different from that of other types. In detail, as for the most representative PD type, cavity PD, it is necessary to take the streamer propagation, surface charge accumulation and decay, free electron supply into account so that the PD mechanism could be clarified. Besides, due to the stochastic character of PD, a large number of PD data must be obtained with the help of simulation.
Traditional simulation models about PD could be mainly divided into two categories: based on the point of view of circuit and based on the point of view of field. The former indicates a-b-c model, in which the discharge process is replaced by capacitor charging and discharging. The latter consists of Pedersen’s model, conductance model, and Niemeyer’s model, in which the discharge process is modeled by the variation of gas volume conductivity or significant simplification of discharge process. Anyway, these models could not reflect the PD development process physically.
Based on the simulation method for a single PD, we develop it by using fluid equations combined with Poisson’s equation. In terms of the model, microscopic physical processes, that is, streamer development and surface charge accumulation, could be obtained, as well as macroscopic parameters, that is, discharge current and discharge time, and the interaction between adjacent discharges. It is found that electrons and positive ions, respectively, land on the two surfaces of the cavity, and the accumulation time of positive ions is much longer than that of electrons. During a PD sequence, the decay of surface charges resulting from previous discharge could be considered to be the key factor, contributing to the occurrence of the subsequent one.
We would like to thank Prof. George Chen from the University of Southampton for the inspiring discussion and appreciate the financial support from the National Natural Science Foundation of China (51607128).
The transportation parameters for air are expressed by the following equations:
where
Based on the axisymmetric character of sample configuration in our model, the cylindrical coordinate system is employed, so the convection term could be rewritten as
where
(1) to obtain the low-order flux
where
(2) to obtain high-order flux
(3) to define antidiffusion flux
(4) to obtain the temporary solution
(5) to restrict the antidiffusion flux
If
If
(6) to solve the charge concentration
where
Soybean (
This condition was related to the discouraged situation of soybean production during the last 10 years (2010–2020). The average productivity during this period was 1.50–1.54 t/ha and no significant increase was recorded [2]. Also, only a slight increase in the harvested area occurred. A number of problems were noted regarding such conditions, including (a) high competition of land use with other commodities, (b) low stability of the yield as soybeans are highly susceptible to pest and disease attacks, (c) efforts to extend the planting area has not been fully succeeded, (d) relatively low quality of seeds as the soybean seed industry has not been well developed, (e) less conducive of soybean trading system, (f) less intensive cultivation techniques, and (g) low profit of soybean farming relative to other crops.
Soybean was targeted to be self-sufficiency by the Government in 2014 through four main strategies as follows: (1) gradually increasing the productivity (2) improving the roles of public and private sectors as well as local government in soybean development, (3) improving the marketing and trading system to be more conducive to farmers, and (4) improving the source of farming capital and partnerships. As a follow-up of such strategies, action steps were undertaken to achieve soybean self-sufficiency, including (a) supporting the research activities, which concerned on the release of new improved varieties with high yield potential, resistance to biotic and abiotic stress, short maturity; assembling the advanced cultivation technologies; and implementing different methods of dissemination, (b) initiating the growth of seed industry in soybean producing areas, (c) subsidizing the fertilizer prices, and (d) improving the access for agricultural tools and machinery application. However, these efforts have not fully succeeded as the increased rate of soybean productivity at the farmer level was considerably low, the planting and harvested areas were stagnant and even tended to decline, resulting in a decreased domestic production. As a consequence, a large amount of soybean is imported annually, suggesting more efforts and proper strategies are needed to achieve soybean self-sufficiency in Indonesia.
This paper will discuss the soybean production matters in Indonesia, including the current status and predicted soybean production and demand, the national program for increasing production, land availability for soybean development and specific production technologies for the different agroecosystems as well as the essential socio-economic aspects to support the achievement of soybean self-sufficiency in Indonesia.
The development of the harvested area, productivity, production, and import of soybean in Indonesia during the period 2016–2020 and the prediction for the year 2024 are presented in Table 1. Until 2020, the harvested area and production highly fluctuated, whereas the productivity tended to increase. It is estimated that the soybean harvested area until 2024 will not significantly expand as soybean hardly competes with other commodities, particularly maize. There was a considerable increase in soybean production (49.07%) during 2019–2020 as a result of expanding the harvested area. However, for the next four years, it is predicted that soybean production will tend to decline by 3% per year [3]. This was due to the competition of land use with other profitable commodities, such as corn and chili, resulting in a decrease in the harvested area of about 5% per year. Even though the productivity increased by 2% per year, this value was set below the rate of declined harvested area, thus giving no significant increase in soybean production. As a result, a large amount of soybean needs to be imported with an average of 2.49 million tons per year.
Years | Harvest area (ha) | Productivity (t/ha) | National production (t) | National demand (t) | Net Import (t) | The additional need of harvested area (ha) |
---|---|---|---|---|---|---|
2016 | 576,987 | 1.49 | 859,653 | 3,121,456 | 2,261,803 | 1,517,989 |
2017 | 355,800 | 1.51 | 538,730 | 3,103,475 | 2,671,914 | 1,698,507 |
2018* | 493,546 | 1.31 | 650,000 | 3,215,258 | 2,565,257 | 1,958,212 |
2019* | 285,270 | 1.49 | 424,190 | 2,726,091 | 2,301,902 | 1,544,900 |
2020** | 381,331 | 1.65 | 632,326 | 3,293,377 | 2,661,051 | 1,612,758 |
2021** | 262,612 | 1.69 | 613,318 | 3,279,452 | 2,666,134 | 1,577,594 |
2022** | 344,455 | 1.72 | 594,629 | 3,240,236 | 2,645,607 | 1,538,144 |
2023** | 326,861 | 1.76 | 576,278 | 3,163,759 | 2,587,481 | 1,470,160 |
2024** | 309,849 | 1.80 | 558,293 | 3,030,085 | 2,471,792 | 1,373,218 |
The development and projected of harvested area, production, and import of soybean in Indonesia during the period 2016–2024 [3].
Agreement figures of Central Bureau of Statistics (BPS) and the Indonesian Ministry of Agriculture.
Forecast of the Indonesian Agricultural Data and Information Center.
Note:
The national demand ranged from 2.73 up to 3.29 million tons during the period 2020–2024, which is mostly for consumption purposes. The consumption level of soybeans during this period is predicted to fluctuate and tends to increase by 1.46% per year. In 2019, the figure was 10.17 kg and it slightly increased to 12.15 kg/capita/year in 2020 [3]. It is assumed to be associated with the global pandemic of Covid-19, which led to a decline in people’s purchasing power for animal protein sources and shifting to soybean as an affordable protein source, particularly as tempe and tofu. In addition, the increase in soybean consumption is also influenced by the healthy lifestyle of the middle and upper class who prefer a vegetarian diet. It seems that the consumption level will go back to 10.74 kg/capita/year in 2024. Table 1 shows that the self-sufficiency in soybean within the next four years (2021–2024) can be achieved with an additional harvested area of 1.3–1.5 million hectares per year and productivity of 1.7–1.8 t/ha. Even though it seems hard to achieve such figures, the Government relentlessly encourages both the Ministry of Agriculture and farmers to increase the national soybean production.
Since 2000, the Government has been working hard to increase soybean production in order to achieve self-sufficiency through the program entitled “Gema Palagung”, “Bangkit Kedelai”, and “Farmer’s School for Integrated Crop Management/FSICM for soybean”. In 2018, a particular intercropping program between soybean with upland paddy or maize was launched, covering an area of 22 thousand hectares in 22 provinces [4]. Initially, the Government established the target for soybean self-sufficiently in 2014. However, as it unsucceded, the target was postponed to be 2017 and again postponed to be 2018, and then to 2020. In 2017–2018, the Ministry of Agriculture had a target of soybean planting area approaching 2 million hectares. Planting started from October to December 2017 with the first target of 500 thousand ha (approximately 25% of the total target). The remaining 1.5 million hectares expectedly can be fulfilled in the next planting season in 20 provinces, from Aceh in the west to East Nusa Tenggara in the eastern part of Indonesia. Meanwhile, another 500 hectares of land were available from the existing traditional farmers. It is estimated that in 2018, the soybean planting area will be becoming 2.5 million hectares [5] and would meet the domestic demand if the productivity was 1.5 t/ha.
Nevertheless, such a target was hard to be achieved as in fact, the total soybean production was only 650,000 tons in 2018 with a harvesting area of 493,546 hectares. In addition to climate and technical/cultivation factors, this failure was also related to economic aspects. It is obvious that soybean farming requires high input, possesses a high risk of crop failure, particularly due to pest and disease attacks, and inadequate income or less profitability. Planting of soybean starting from land preparation to harvesting and processing costs seven to nine million IRD per hectare and 60% of which is accounted for labor cost. The soybean production process in the field is also inefficient as most of the activities are done manually. In fact, the Government has established the selling price of soybean at the farm level that was about IDR 8,500 per kg in 2017 as Minister of Trade’s Regulation no 27/2017. However, the price is normally following the market conditions and frequently is below the selling price determined by the Government, particularly during the harvesting season giving a low profit to soybean farming.
Indonesia has a wide and diverse potential land for the development of soybean. Table 2 shows that there are 3.8 million hectares of irrigated paddy fields and 3.6 million hectares of non-irrigated paddy fields available (optimal land). In irrigated paddy fields, soybean can be grown using a cropping system of paddy-paddy-soybean, and a paddy-soybean cropping system in non-irrigated paddy fields. The main obstacle of soybean cultivation in optimal land is competition with other commodities that have higher economic value, especially maize. Therefore, soybean development in this optimal land should be selected to those lands that have less water available for growing maize. The need for water to grow soybean is only about half compared to growing maize.
Islands as central of soybean production | Irrigated lowland (ha) | Non-irrigated lowland (ha) | Drylands (ha) |
---|---|---|---|
Sumatera | 676,816 | 852,985 | 3,655,378 |
Jawa | 2,258,066 | 1,549,255 | 2,613,514 |
Bali+Nusa Tenggara | 197,316 | 245,619 | 921,281 |
Kalimantan | 214,298 | 432,462 | 1,605,806 |
Sulawesi | 430,621 | 508,033 | 1,981,629 |
Maluku | 10,094 | 9,448 | 252,032 |
Papua | 17,180 | 8,558 | 468,358 |
Indonesia | 3,804,391 | 3,606,360 | 11,497,998 |
Irrigated and non-irrigated lowlands available for soybean development in Indonesia [6].
There is also the potential of sub-optimal lands for the development of soybean in Indonesia, including dry acidic land, dryland with dry climate, and tidal land area, accounting for 4.5 million ha, 1.2 million ha, and 0.8 million ha, respectively (Table 3). The acidic land showed the least favorable for soybean production due to lower fertility, potential toxicity from soluble forms of microelements such as Al, Mn, and Fe, and unfavorable physical properties [8, 9, 10]. Therefore, to obtain high soybean productivity in this type of land (soil), use of ameliorants and high doses of inorganic fertilizers are needed. On the dry land with a dry climate, the main constraint faced is the short wet month that is only around 3–4 months/year with a rainfall >200 mm/month. In this region, soybean needs to compete with other staple food crops, such as upland rice and maize. In tidal swampland, constraints like water-saturated root, high pyrite, the toxicity of Al, Fe, and Mn, as well as deficiencies of N, P, K, Ca, and Mg may limit soybean production [10, 11]. Therefore, specific cultivation technology is essential for such different types of land.
Island | Dry acidic soil (× 1,000 ha) | Dryland with dry climate (× 1,000 ha) | Tidal swampland (× 1,000 ha) | Total (× 1,000 ha) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AOU | AFC | AFP | AOU | AFC | AFP | AOU | AFC | AFP | ||
Sumatera | 536.6 | 104.3 | 659.5 | 24.9 | 34.0 | 58.3 | 137.4 | 13.5 | 271.2 | 1,839.7 |
Jawa | 46.3 | 0.0 | 202.2 | 8.7 | 0.0 | 31.6 | 0.3 | 0.0 | 0.0 | 289.1 |
Bali+NT | 1.6 | 0.0 | 0.0 | 257.8 | 10.7 | 30.4 | 0.0 | 0.0 | 0.0 | 300.5 |
Kalimantan | 329.9 | 227.9 | 1,297.8 | 0.0 | 0.0 | 0.0 | 82.1 | 1.6 | 46.5 | 1,985.8 |
Sulawesi | 25.8 | 14.2 | 0.0 | 61.0 | 42.8 | 0.0 | 0.8 | 0.0 | 0.0 | 144.6 |
Maluku | 0.0 | 39.6 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7 | 3.3 | 0.3 | 45.9 |
Papua | 11.0 | 304.3 | 671.4 | 9.7 | 163.5 | 437.2 | 0.4 | 84.8 | 128.0 | 1,810.3 |
Indonesia | 951.2 | 690.3 | 2,830.9 | 362.1 | 251.0 | 557.5 | 223.7 | 103.2 | 446.0 | 6,415.9 |
The suboptimal lands available for soybean development in Indonesia [7].
Note: AOU = Area of Other Uses, AFC = Area of Forest Conversion, AFP = Area of Forest Production, NT = Nusa Tenggara.
Soybean cultivation in the irrigated paddy lowland generally follows the cropping pattern of paddy-secondary food crop, while the pattern is paddy-secondary food crop in the non-irrigated paddy land (rainfed land). It seems that soybeans yet have to compete with other commodities, especially maize or other food crops. Currently, the productivity of soybean using existing farmer’s technology is about 1.5–1.8 t/ha. Using high-yielding improved varieties and good environmental management through the application of advanced cultivation technology makes it possible to achieve soybean productivity as high as 3.0 t/ha in the lowland.
A number of new improved soybean varieties have the yield potential of more than 3.0 t/ha, namely Dega1, Detap 1, Mutiara 1, Dering 2, Biosoy 1, and Demas 2 [12] as presented in Table 5. In additon to new improved varieties, plant spacing is also an important factor in achieving high yield through optimal plant populations. Planting Burangrang, Grobogan, and Anjasmoro varieties at a spacing of 20–30 cm × 40 cm, two plants per hole with optimal fertilization in Malang, East Java gave a grain yield of 3.96 t/ha, 3.93 t/ha, and 3.36 t/ha, respectively [13]. Thus, to achieve the soybean yield >3.0 t/ha, the population of >340 thousand plants/ha which is obtained using a plant spacing of 30 cm × 15 cm needs to be applied as well as planting 2 plants/hole and optimal fertilizer application
Soybean variety | Plant spacing (cm), two plants/hill | ||
---|---|---|---|
50×15 | 40×15 | 30×15 | |
Number of crops can be harvested (×1,000) | |||
Dega 1 | 240.68bc | 255.20 b | 345.29 a |
Detap 1 | 204.41 c | 252.01 b | 344.62 a |
Derap 1 | 202.60 c | 249.16 b | 350.24 a |
Devon 1 | 204.72 c | 260.55 b | 358.90 a |
Seed yield (t/ha) | |||
Dega 1 | 1.98 d | 2.21 d | 3.12 b |
Detap 1 | 2.14 d | 2.61 c | 3.53 a |
Derap 1 | 1.90 d | 1.97 d | 3.15 b |
Devon 1 | 2.11 d | 2.69 c | 3.75 a |
The yield of soybean varieties in several plant spacing in irrigated paddy fields in Banyuwangi-East Java [14].
Note: The values within the same observation followed by the same letter are not significantly different at 5% DMRT level.
A study in the rainfed Alfisol soil of Maros, South Sulawesi, which had a pH level of 6.2–6.7 and moderate soil fertility showed that soybean yield increased from 1.6 t/ha (existing technology) to 2.7 t/ha through the application of advanced cultivation technology [15]. This technology consisted of using good quality seed, sufficient fertilizer (30 kg/ha N + 48 kg/ha P2O4 + 30 kg/ha K2O), rhizobium inoculant 250 g/50 kg of seeds, and organic fertilizer (1.5 t/ha). The performance of soybean crops grown after paddy in the irrigated lowland is presented in Figure 1. Using such technology, the labor cost accounts for the largest portion of the total production costs, reaching about 65% and 72% for advanced and existing technology, respectively. Nevertheless, both the R/C and B/C ratio of applying the advanced technology is higher relative to those of the existing technology (Table 5).
The performance of soybean crop grown after paddy in the irrigated low land.
Components | Soybean cultivation technology | |
---|---|---|
New technology | Existing (Farmers’) technology | |
Production costs (IDR/ha) | ||
a. Production facilities | 2,593,000 (34.7%) | 1,470,000 (27.5%) |
b. Labor | 4,876,667 (65.3%) | 3,880,000 (72.5%) |
Total costs (IDR/ha) | 7,469,667 (100.0%) | 5,350,000 (100.0%) |
Productivity (kg/ha) | 2,725 | 1,590 |
Total revenue (IDR/ha)* | 16,350,000 | 9,540,000 |
Total profit (IDR/ha) R/C ratio | 8,880,333 2.2 | 4,190,000 1.8 |
B/C ratio | 1.2 | 0.8 |
Financial analysis of soybean farming for advanced and farmer’s technologies in the rainfed land of South Sulawesi in the dry season (May to August) of 2017 [15].
With a selling price of soybean IDR 6,000/kg.
Note:
The cropping patterns in the dryland are generally maize-maize, upland paddy-maize, maize-peanuts, or maize-soybeans. Meanwhile, in a dryland with a dry climate, farmers normally only grow maize or upland paddy during the rainy season. The rainfall in the dryland with a dry climate is approximately <2000 mm per year with a dry period >7 months per year (<100 mm rainfall per month). This type of agroecology is mostly found in Bali and Nusa Tenggara, Sulawesi, and Java [11]. However, the insufficient and non-uniform distribution of rainfall in the dryland considerably results in drought stress during the growing period of soybean and may cause yield reduction and even harvesting failure [16]. In this particular land, soybean development can only be performed through intercropping with maize as it is one of the major staple foods as well as a source of cash income for farmers [17]. Maize productivity in the dryland is relatively low, which ranges from 2.5 to 5.0 t/ha [2]. This is caused by the erratic distribution of rainfall and less optimal maize cultivation by farmers. The introduction of soybean in the dryland through intercropping with maize is expectedly would increase the land productivity and farmer’s income. Intercropping system has been adopted all over the world as it can increase land-use efficiency [18, 19].
The use of adapted cultivars and optimal plant spacing in soybean intercropping systems can increase land productivity, reduce the risk of crop failure, increase crop yields and farmers’ income [19, 20, 21]. The cropping pattern of soybean monoculture in the dryland with a dry climate could produce dry seed about 1.4–2.4 t/ha depending on the variety used and distribution of rainfall. However, this cropping pattern is difficult to be developed in the dryland as such a pattern was less profitable relative to growing maize [9]. Therefore, the development of soybean in the dryland, particularly in the maize producing area should be done by intercropping. Soybean intercropping with a plant spacing of 30 cm × 15 cm, planting two seeds per-hill and planting maize in a double row with a plant spacing of (40 × 20) cm × 200 cm and one seed per hill (Figure 2) is able to produce high maize yield and increase the farming profit. Intercropping soybean variety of Dena 1 with maize in the dry land with dry climate (Tuban, East Java) showed higher benefit than using Argomulyo and Dega 1 varieties (Table 6). Dena 1 variety is particularly released for intercropping purposes as it is tolerant to shading up to 50%. Other soybean varieties that are suitable for intercropping with other crops, including young plantation crops are Dena 2, Denasa 1, and Denasa 2 (Table 5). Also, there are soybean varieties tolerant to drought stress, namely Dering 1, Dering 2, and Dering 3 (Table 7).
The optimal crop layout for soybean intercropping with maize in the dryland (a) and the crop performances in the field (b) [
Planting patterns | Yield (t/ha) | Total revenue (IDR 000/ha) | Cost production (IDR 000/ha) | Total cost (IDR 000/ha) | Total benefit (IDR 000/ha) | ||
---|---|---|---|---|---|---|---|
Maize | Soybean | Maize | Soybean | ||||
‘Maize NK212’ monoculture | 5.488 | 0 | 21,952 | 8,032 | 0 | 8,032 | 13,920 |
‘Argomulyo’ monoculture | 0 | 2.430 | 15,795 | 0 | 7,022 | 7,022 | 8,773 |
‘Dena 1’ monoculture | 0 | 1.873 | 12,174.5 | 0 | 6,802 | 6,802 | 5,372.5 |
‘Dega 1’ monoculture | 0 | 1.417 | 9,210.5 | 0 | 6,622 | 6,622 | 2,588.5 |
‘Maize NK 212’ + ‘Argomulyo’ | 4.876 | 1.447 | 28,909.5 | 7,972 | 4,540 | 12,512 | 16,397.5 |
‘Maize NK212’ + ‘Dena 1’ | 6.297 | 1.017 | 31,798.5 | 8,252 | 4,400 | 12,652 | 19,146.5 |
‘Maize NK212’ + ‘Dega 1’ | 5.635 | 0.820 | 27,870 | 8,047 | 4,180 | 12,227 | 15,643 |
‘Maize NK212’ monoculture | 5.648 | 0 | 22,592 | 9,737 | 0 | 9,737 | 12,855 |
‘Argomulyo’ monoculture | 0 | 2.880 | 18,720 | 0 | 7,342 | 7,342 | 11,378 |
‘Dena 1’ monoculture | 0 | 2.280 | 14,820 | 0 | 6,962 | 6,962 | 7,858 |
‘Dega 1’ monoculture | 0 | 3.060 | 19,890 | 0 | 7,542 | 7,542 | 12,348 |
‘Maize NK212’ + ‘Argomulyo’ | 3.657 | 1.927 | 27,153.5 | 9,817 | 4,520 | 14,337 | 12,816 |
‘Maize NK212’ + ‘Dena 1’ | 4.157 | 1.687 | 27,595.5 | 9,927 | 4,360 | 14,287 | 13,306.5 |
‘Maize NK212’ + ‘Dega 1’ | 3.367 | 1.613 | 23,952.5 | 9,787 | 4,380 | 14,167 | 9,785.5 |
Farming income of soybean intercropping with maize, Tuban District, East Java, Indonesia, planting season 2019 [9].
Notes: The population of maize crops 100% (plant spacing of 80 cm × 20 cm, 2 seeds per-hill) was 62,500 crops/ha and soybean 333,333 crops/ha. The selling price of maize and soybean (dry seeds) were IDR 4,000/kg and IDR 6,500/kg, respectively.
Variety | Seed coat color | 100-seed weight (g) | Protein (% dw) | Fat (% dw) | Potential yield (t/ha) | Specific characters | Year of release |
---|---|---|---|---|---|---|---|
Gepak Kuning | Yellow | 8.3–10.3 | 35.4–41.1 | 13.4–15.1 | 2.9 | Adaptive in irrigated lowland and upland, both in rainy and dry seasons | 2008 |
Dering 1 | Yellow | 10.7 | 34.2 | 17.1 | 2.8 | Drought tolerant; adaptive in irrigated lowland and dry land (upland) | 2012 |
Dering 2 | Light yellow | 14.8 | 35.9 | 19.7 | 3.3 | Drought tolerant during the reproductive phase | 2019 |
Dering 3 | Light yellow | 13.9 | 40.5 | 17.5 | 3.0 | Drought tolerant during the reproductive phase | 2019 |
Gema | Light yellow | 11.3–11.9 | 37.8–39.1 | 15.6–19.1 | 3.1 | Adaptive in irrigated lowland and dryland (upland) | 2011 |
Dena 1 | Yellow | 14.3 | 36.7 | 18.8 | 2.9 | Tolerant up to 50% crop-shading | 2014 |
Dena 2 | Yellow | 13.0 | 36.5 | 18.2 | 2.8 | Highly tolerant up to 50% crop-shading | 2014 |
Demas 1 | Yellow | 13.0 | 36.1 | 19.9 | 2.5 | Adaptive in a dryland with acidic soil; good planted at the altitude of 0–600 m asl | 2014 |
Demas 2 | Light yellow | 14.9 | 37.5 | 19.7 | 3.3 | Adaptive in dryland with acidic soil; early maturity; large-seed size | 2019 |
Demas 3 | Light yellow | 14.4 | 37.2 | 17.7 | 2.9 | Adaptive in dryland with acidic soil; early maturity; large-seed size; break-pods tolerant | 2019 |
Devon 1 | Yellow | 14.3 | 34.8 | 17.3 | 3.1 | High isoflavone content (2219.7 μg/g) | 2015 |
Devon 2 | Yellow | 17.0 | 37.9 | 18.8 | 2.9 | High isoflavone content (303.7 μg/g) | 2017 |
Anjasmoro | Yellow | 14.8–15.3 | 41.8–42.1 | 17.2–18.6 | 2.3 | Broadly adaptive in all land conditions | 2001 |
Panderman | Light yellow | 18.0–19.0 | 36.9 | 17.7 | 2.4 | — | 2003 |
Grobogan | Yellow | 18.0 | 43.9 | 18.4 | 3.4 | Broadly adaptive in all land conditions, particularly irrigated lowland | 2008 |
Burangrang | Yellow | 20.0 | 39.0–41.6 | 14.9–17.0 | 2.5 | — | 1999 |
Argomulyo | Yellow | 19.3–20.8 | 37.0–40.2 | 18.0–19.0 | 2.0 | — | 1998 |
Dega 1 | Yellow | 22.9 | 37.8 | 17.3 | 3.8 | Adaptive in irrigated lowland | 2016 |
Detap 1 | Yellow | 15.4 | 40.1 | 16.2 | 3.6 | Resistant to leaf rust | 2017 |
Deja 1 | Yellow | 12.9 | 39.6 | 17.3 | 2.9 | Highly tolerant to water saturation stress | 2017 |
Deja 2 | Yellow | 14.8 | 37.9 | 17.2 | 2.8 | Tolerant to water saturation stress | 2017 |
Depas 1 | Yellow | 11.9 | 39.8 | 19.5 | 2.8 | Adaptive in tidal land type C; good planted at the altitude of 0–600 m asl | 2020 |
Depas 2 | Yellow | 11.4 | 39.7 | 19.2 | 2.9 | Adaptive in tidal land type C; good planted at the altitude of 0–600 m asl | 2020 |
Denasa 1 | Yellow | 18.1 | 36.4 | 19.6 | 3.4 | Highly tolerant up to 50% crop-shading | 2021 |
Denasa 2 | Light yellow | 18.6 | 34.1 | 20.6 | 3.4 | Tolerant up to 50% crop-shading | 2021 |
Biosoy 1 | Yellow | 21.7 | 39.7 | 18.4 | 3.3 | Gamma irradiated soybean | 2018 |
Biosoy 2 | Yellow | 22.4 | 40.5 | 20.1 | 3.6 | Gamma irradiated soybean | 2018 |
Mutiara 1 | Yellow | 23.2 | 37.7 | 13.8 | 4.1 | High production in irrigated lowland; adaptive in irrigated lowland and dryland (upland) | 2010 |
Mallika | Black | 9.0–10.0 | 37.0 | 20.0 | 2.9 | Well adaptive in low land and high land; in rainy and dry season | 2007 |
Detam 1 | Black | 14.8 | 45.4 | 13.1 | 3.5 | High protein, suitable for soy sauce | 2008 |
Detam 2 | Black | 13.5 | 45.6 | 14.8 | 3.0 | High protein, moderate drought tolerant, suitable for soy sauce | 2008 |
Detam 3 Prida | Black | 11.8 | 36.4 | 18.7 | 3.2 | Moderate drought tolerant; early maturity | 2013 |
Detam 4 Prida | Black | 11.0 | 40.3 | 19.7 | 2.9 | Drought tolerant; early maturity | 2013 |
As discussed previously, acidic soils are the least favorable condition for soybean cultivation, therefore the use of ameliorants and high doses of inorganic fertilizers is essential in terms of increasing productivity. The application of 23 kg/ha N + 27 kg/ha P2O5+ 30 kg/ha K2O + 1,500 kg/ha organic fertilizers and rhizobium biofertilizer 0.25 kg/50 g seeds in acidic soil with a pH of 5.30 and Al saturation of 30% exhibits a good growing performance of four soybean varieties, namely Anjasmoro, Panderman, Dega 1, and Demas 1 [24]. These varieties give a yield of 2.52 t, 2.29 t, 2.72 t, and 1.78 t per hectare, respectively. Demas 1, Demas 2, and Demas 3 varieties are tolerant to acid soil with a potential yield ranging from 2.5 t up to 3.3 t/ha (Table 7). Biofertilizers also have a significant role in increasing soybean yield through the natural processes of nitrogen fixation, solubilizing phosphorus, stimulating plant growth, improving soil texture, pH, and other soil properties [25, 26].
In the acidic soil of Banten with a pH of 5.5, the use of 200 g/ha of biofertilizer could substitute 50% of the recommended inorganic fertilizer [27]. Another study in acidic soil in Lampung reported that the use of Rhizobium biofertilizer tolerant to acidic soil about 1.5 t/ha and organic fertilizer enriched with P and Ca, could replace the use of 100% N and P, and 50% of K. The yield also increased more than 50% relative to control and gave higher yield compared to recommended NPK dosage [28]. The performance of soybean crops grown in acidic soil is presented in Figure 3.
The performance of soybean crop at 40 days after planting in the acidic soil in Lampung, Indonesia.
In tidal swampland, water-saturated roots, high pyrite, the toxicity of Al, Fe, and Mn, deficiencies of N, P, K, Ca, and Mg are the major constraints in soybean development [8, 10]. Among such limitations, low soil pH and high Al saturation are more concerned regarding soybean growth as they may cause a decrease in nitrogen fixation and nutrient uptake, particularly phosphorus which is important for cell growth and photosynthesis. It was reported that liming can improve the growth and yield of soybean in the tidal swampland of South Kalimantan [10]. The highest yield was obtained at a rate of liming equivalent to 10% of Al saturation, which was applied by mixing the lime with soil up to 20 cm depth. Another study in tidal swampland of South Kalimantan investigated that using dolomite to decrease the Al-dd saturation by 20% by using organic fertilizers (1.25 t/ha), application of bio-fertilizer (0.25 kg/50 kg seeds), and inorganic fertilizer (23 kg/ha N, 27 kg/ha P2O5 and 30 kg/ha K2O) gave the yield about 2.0 t/ha [24].
In addition, soil water management can be applied to reduce the pyrite content as the soil is in a reductive condition [29]. The response to water-saturated conditions varied among soybean varieties. Tanggamus and Anjasmoro, the yellow-seeded soybean are classified as adaptive varieties, while the black-seeded soybean varieties, such as Cikuray, Ceneng, and Lokal Malang are less adaptive when grown under the saturated condition in tidal swampland. However, using the technology called water-saturated soybean farming [30], which consisted of appropriate application of Ca (dolomit) and NPK fertilizers with optimal plant population, the yield of soybean cultivation in tidal swampland in South Sumatera could reach 3.2–3.5 t/ha. There are some soybean varieties adapted to tidal swampland, namely Depas 1 and Depas 2 (Table 7).
A study on soybean cultivation in tidal swampland of South Kalimantan [22] also reported that the use of technological package (listed as an alternative technology in Table 8) consisting of the application of dolomite until soil Al saturation is reduced to 30%, NPK fertilizer with a dosage of 23 kg/ha N + 27 kg/ha P2O5 + 30 kg/ha K2O + 1,500 kg/ha organic fertilizers, and rhizobium inoculant of 0.25 kg/50 kg seed as well as the saturated soil culture (SSC) technology was able to increase the number of filled pods per plant and yield per hectare relative to farmer’s existing technology. Using the SSC and alternative technology packages, the seed yield increased by 27% and 17%, respectively compared to that of farmers’ existing technology (Table 8). The performance of soybean crops treated with an alternative technology is presented in Figure 4.
Technological package | Number of filled pods/plant | 100 seeds weight (g) | Seed yield (t/ha) | Increased yield (%) |
---|---|---|---|---|
Existing | 30.70 b | 15.52 a | 2.067 a | 100 |
SSC | 34.55 ab | 15.40 a | 2.422 b | 117 |
Alternative | 40.80 a | 15.45 a | 2.625 c | 127 |
Number of filled pods, 100-seed weight, and soybean seed yield obtained from the application of different technological packages in tidal swampland. Wanaraya District, Barito Kuala Regency, South Kalimantan [24].
Note: The values followed by the same letter do not differ at the 5% DMRT level. SSC = Saturated Soil Culture.
An example of the performance of 40 days after planting of soybean crops in tidal swamps with soil Al saturation of 30% in South Kalimantan Province, Indonesia.
In addition to several types of agroecosystem as described previously, growing soybean under shading is also potential for soybean development. Shaded land is available under young high state crop plantations, such as teak, palm oil, and eucalyptus trees. The land associated with teak and eucalyptus trees is generally under the management of State Company, namely Perhutani where the lands/areas are managed by the local community (FACI/Forest Area Community Institution), while the land planted with palm oil crops belongs to the Government. However, there is no accurate data regarding the potential shaded land that can be used for soybean development. This includes the dry land agroecology with flat or hilly topography. Therefore, soybean planting in this agroecology can be only done in the beginning of the rainy season.
The yield of soybean grown under the shading of four to six-year-old of palm oil tree (50% shading) was relatively lower (0.54 t/ha) than that of without shading (2.6 t/ha). Burangrang, Anjasmoro, and Grobogan varieties show similar tolerance to such shading. The recommended N fertilizer application is 100–150 kg/ha [31]. In another study, the application of 34.5 kg/ha N + 36 kg/ha P2O5 + 60 kg/ha K2O + 20 t/ha manure and planting space of 20 cm × 20 cm using three soybean varieties (Dena 1, Anjasmoro, and Grobogan) were able to produce seeds of about 1.8 t/ha at 25% shading level and about 1.4 t/ha at 50% shading level [32]. In particular, Dena 1, Dena 2, Denasa 1, and Denasa 2 varieties are released for shading cultivation of soybean (Table 7).
In terms of soybean grown under the two-year-old teak tree in Blora, Central Java, using the technological package of NPK fertilization (30 kg/ha N+ 66 kg/ha P2O5 + 30 kg K2O), biofertilizer (20 g/10 kg of seed), “legowo” planting space (30 cm–50 cm × 15 cm) or regular planting space (40 cm × 15 cm), gave a yield about 1.5 t/ha. Meanwhile, using the existing technology (farmer’s method), only 0.75 t/ha of seeds was obtained (Table 9) [33]. Soybean grown under the young teak stands and eucalyptus trees is presented in Figure 5.
Components of performance | Soybean variety | ||||
---|---|---|---|---|---|
Dega 11 | Dena 11 | Anjasmoro1 | Argomulyo1 | Local2 | |
Average of productivity (t/ha) | 1.35 | 1.10 | 1.05 | 0.99 | 0.63 |
a. Production input (IDR/ha) | 3,844,000 | 3,844,000 | 3,844,000 | 3,844,000 | 3,844,000 |
b. Labor (IDR/ha) | 1,350,000 | 1,350,000 | 1,350,000 | 1,350,000 | 1,350,000 |
Total production cost (IDR/ha) | 5,194,000 | 5,194,000 | 5,194,000 | 5,194,000 | 5,194,000 |
Total revenue* (IDR/ha) | 9,450,000 | 7,700,000 | 7,350,000 | 6,930,000 | 4,410,000 |
Total income (IDR/ha) | 4,256,000 | 2,506,000 | 2,156,000 | 1,736,000 | (784,000) |
R/C ratio | 1.8 | 1.5 | 1.4 | 1.3 | 0.7 |
B/C ratio | 0.8 | 0.5 | 0.4 | 0.3 |
Farming income of soybean farming under teak shade, Blora Regency, Central Java, 2018 [33].
Planting spacing was 40 cm × 15 cm (technology of Iletri).
Planting spacing was 20 cm × 20 cm (existing technology).
Revenue = the average of yield multiplied by the selling price of soybean seeds i.e. IDR 7,000/kg. Figure in the bracket showed total income was minus or soybean farming lost.
Note:
Soybean grown under the teak stands (left) and eucalyptus trees (right) in Blora, Central Java.
There are three primary challenges in terms of increasing the soybean production in Indonesia in order to achieve self-sufficiency, i.e. low fertility of the available land, less competition of existing soybean varieties in terms of the quality traits, and relatively low selling price of locally produced soybean.
Java Island is the most fertile and largest planted area of soybean in Indonesia. Shifting the soybean planting area to outside of Java has been started since the 1980s. The available land for crop cultivation in such areas, including soybean, is more than 40 million hectares, however, the major soil type is ultisol. This mostly exists in Sumatra, Bali, Kalimantan, Sulawesi, and Papua. Constraints, like acidity, low content of organic matter, and phosphorus (P) availability naturally occurred in ultisol soil, thus more inputs are needed to provide optimal conditions for producing soybean [34].
Quality traits of local or domestic soybean are also important to drive or push the production of soybean in Indonesia. However, there is a limited quality trait of local soybean to compete with imported soybean. Previously, the improved soybean varieties belonged to small and medium-seeded, which is not desired for tempeh ingredients. Large-seeded (> 14 g/100 seeds) is favored for tempeh preparation as it would give a good appearance and high volume development, while small to large seed sizes are suitable for tofu making [22]. Therefore, for the last two decades, a number of improved varieties with large seed sizes have been released (Table 7) to meet such preferences. However, the released varieties concerning health benefits, such as Devon 1 and Devon 2 with high isoflavone content (Table 7) that has antioxidant activity, have not been attractive for consumers and farmers based on this superiority or character as the market is not yet available. Therefore, lack of market quality traits is also an essential challenge for producing local soybean.
In the case of price, the imported soybean always has a lower price than the local soybean. It is calculated [35] that the profitable price for farmers is minimally IDR 9,000 per kg or US$ 0.6/kg (US$ 1 = IDR 14,000). With this selling price, farmers would be able to cover the expenses for soybean production activity and gain some profit. However, the price of local soybean at the farm level is frequently around IDR 6,500 per kg, causing less interest of farmers to grow soybean. Therefore, the current average soybean productivity at the farm level (1.5 t/ha) needs to be increased to at least 3.0 t/ha, thus soybean farming income can compete with those of other commodities, such as maize as presented in Table 10.
Parameter | Commodity farming | ||
---|---|---|---|
Maize | Soybean (Farmer technology) | Soybean (Improved technology) | |
Productivity (t/ha) | 5,648 | 1,873 | 3,060 |
Selling price (IDR/kg) | 4,000 | 6,500 | 6,500 |
Revenue (IDR/ha) | 22,592,000 | 12,174,500 | 19,890,000 |
Production cost (IDR/ha) | 9,737,000 | 6,800,200 | 7,542,000 |
Profit (IDR/ha) | 12,855,000 | 5,372,500 | 12,348,000 |
B/C | 1.32 | 0.79 | 1.64 |
Income of maize farming compared to soybean farming using existing farmer technology and improved technology [9].
Indonesia has a good chance to increase soybean production and fulfills domestic needs. This opportunity can be seen from the market demand, land and improved varieties availability, and the Government’s strong will. Soybean demand as food and feed increases continuously and be expected to increase in the next years. The highest portion of demand comes from processed food mainly tempeh and tofu. Another high demand is coming from the cattle feed industry which is expected to increase continuously as part of increasing cattle production. Therefore, by increasing the national soybean production, the Government wants to fulfill these demands by using national production and reducing imports [36].
Other potential opportunities are the availability of source seeds, especially in the form of “Breeder Seeds” for the production of certified seed of “Foundation Seeds”, “Stock Seeds”, and “Extension Seeds” to fulfill the need for quality soybean seed for the area of production. The “Breeder Seeds” available are various soybean varieties with a various specific traits, including the variety tolerance to pod borer and pod sucking insect, shading, flooding, and drought. The readiness of soybean production technology for various agroecosystems can also be stated as an opportunity because those significantly contribute to the high productivity and also for the production of soybean in the country.
Soybean in Indonesia is the third important staple food after rice and maize. The need for this commodity continuously increases every year due to the increase in population. The trend of domestic soybean production tended to decline and do not meet the demand leading to the increase of soybean import every year. There are three challenges that require drastic changes so that local soybean production is able to meet domestic needs. First, the current productivity at the farm level, which is around 1.5 t/ha must be increased to at least 2.0–3.0 t/ha. It will also help soybean farming income compete with those of other commodities. Second, the soybean harvested area which only reaches 0.3 million hectares in 2019 must be increased at least become 1.7 million hectares. The potential soybean planting areas in Indonesia are the optimal land including irrigated lowland and rainfed after paddy (rice), as well as suboptimal lands such as dryland, acidic land, tidal land, and shaded land under young plantation crops. Soybean productivity in those kinds of agroecosystems can reach 1.8–3.0 t/ha, depending on the type of land, the improved varieties used, and the applied of cultivation technological package. Third, it is necessary to develop agricultural machinery that can reduce the farming cost, so that soybean farming is more efficient and able to provide higher profit.
Some efforts should be made to increase national soybean production to achieve self-sufficiency, including improving the attractiveness point of soybean farming, launching the program(s) to increase soybean production starting from the central government to the regions, accelerating technology transfer dan adoption of the high yielding improved varieties, reducing soybean import gradually, improving the cooperation among stakeholders, and providing a good market guarantee for soybean farming.
We would like to thank to the Indonesian Agency for Agricultural Research and Development (IAARD) through the Indonesian Legumes and Tuber Crops Research Institute (ILETRI) for the support of research results facilities to compile this manuscript.
We declare that we have no conflicts of interest on the entire manuscript.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6669},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2457},{group:"region",caption:"Asia",value:4,count:12710},{group:"region",caption:"Australia and Oceania",value:5,count:1016},{group:"region",caption:"Europe",value:6,count:17716}],offset:12,limit:12,total:134176},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-F-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11994",title:"MXenes - Fabrications and Applications",subtitle:null,isOpenForSubmission:!0,hash:"184e1a0c9b5e62ebb3c7ebc53103db9f",slug:null,bookSignature:"Prof. Dhanasekaran Vikraman",coverURL:"https://cdn.intechopen.com/books/images_new/11994.jpg",editedByType:null,editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12143",title:"Herbs and Spices - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"dbbc40b4b09244389b52ca80dcc10768",slug:null,bookSignature:"Dr. Eva Ivanišová",coverURL:"https://cdn.intechopen.com/books/images_new/12143.jpg",editedByType:null,editors:[{id:"352448",title:"Dr.",name:"Eva",surname:"Ivanišová",slug:"eva-ivanisova",fullName:"Eva Ivanišová"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12007",title:"Updates in Volcanology - Linking Active Volcanism and the Geological Record",subtitle:null,isOpenForSubmission:!0,hash:"a55d00d84b7616824cc783586c092525",slug:null,bookSignature:"Dr. Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/12007.jpg",editedByType:null,editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12307",title:"New Insights Into Dystonia",subtitle:null,isOpenForSubmission:!0,hash:"1b011946aab26d18e0f4cfa61eb4249a",slug:null,bookSignature:" Tamer Rizk",coverURL:"https://cdn.intechopen.com/books/images_new/12307.jpg",editedByType:null,editors:[{id:"170531",title:null,name:"Tamer",surname:"Rizk",slug:"tamer-rizk",fullName:"Tamer Rizk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12326",title:"Drug Formulation Design",subtitle:null,isOpenForSubmission:!0,hash:"be61949c97a884e4342d41ec7414e678",slug:null,bookSignature:"Dr. Rahul Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/12326.jpg",editedByType:null,editors:[{id:"319705",title:"Dr.",name:"Rahul",surname:"Shukla",slug:"rahul-shukla",fullName:"Rahul Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11856",title:"Testosterone - Functions, Uses, Deficiencies, and Substitution",subtitle:null,isOpenForSubmission:!0,hash:"8549d2b1fcd1242f85a6a70447b1db10",slug:null,bookSignature:"Associate Prof. Hirokazu Doi",coverURL:"https://cdn.intechopen.com/books/images_new/11856.jpg",editedByType:null,editors:[{id:"473383",title:"Associate Prof.",name:"Hirokazu",surname:"Doi",slug:"hirokazu-doi",fullName:"Hirokazu Doi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Prof. Jose Marti",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12387",title:"Natural Killer Cells - Lessons and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"5576cda9d50adf4e4256e47427560510",slug:null,bookSignature:"Associate Prof. Leisheng Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/12387.jpg",editedByType:null,editors:[{id:"439674",title:"Associate Prof.",name:"Leisheng",surname:"Zhang",slug:"leisheng-zhang",fullName:"Leisheng Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:16},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:120},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:424},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4430},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:135,numberOfSeries:0,numberOfAuthorsAndEditors:3945,numberOfWosCitations:7870,numberOfCrossrefCitations:3736,numberOfDimensionsCitations:9038,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"17",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization and Applications",subtitle:null,isOpenForSubmission:!1,hash:"3478d05926950f475f4ad2825d340963",slug:"crystallization-and-applications",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:"Edited by",editors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10644",title:"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization",subtitle:null,isOpenForSubmission:!1,hash:"30a4c22b98d8dd2b18e5c33dade4b94b",slug:"recent-developments-in-atomic-force-microscopy-and-raman-spectroscopy-for-materials-characterization",bookSignature:"Chandra Shakher Pathak and Samir Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10644.jpg",editedByType:"Edited by",editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",middleName:null,surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10386",title:"Ionic Liquids",subtitle:"Thermophysical Properties and Applications",isOpenForSubmission:!1,hash:"e995617af1c5e63353ae91bbdac4c894",slug:"ionic-liquids-thermophysical-properties-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10386.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10463",title:"Nanomechanics",subtitle:"Theory and Application",isOpenForSubmission:!1,hash:"c0c14ad42c145ac8720b4ab4d666f395",slug:"nanomechanics-theory-and-application",bookSignature:"Alexander V. Vakhrushev",coverURL:"https://cdn.intechopen.com/books/images_new/10463.jpg",editedByType:"Edited by",editors:[{id:"140718",title:"Prof.",name:"Alexander V.",middleName:null,surname:"Vakhrushev",slug:"alexander-v.-vakhrushev",fullName:"Alexander V. Vakhrushev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!1,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:"nanopores",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10479",title:"21st Century Advanced Carbon Materials for Engineering Applications",subtitle:"A Comprehensive Handbook",isOpenForSubmission:!1,hash:"712d04d43dbe1dca7dec9fcc08bc8852",slug:"21st-century-advanced-carbon-materials-for-engineering-applications-a-comprehensive-handbook",bookSignature:"Mujtaba Ikram and Asghari Maqsood",coverURL:"https://cdn.intechopen.com/books/images_new/10479.jpg",editedByType:"Edited by",editors:[{id:"286820",title:"Dr.",name:"Mujtaba",middleName:null,surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9913",title:"Carbon Nanotubes",subtitle:"Redefining the World of Electronics",isOpenForSubmission:!1,hash:"43a22b8570e841b7a26d70159b2f755d",slug:"carbon-nanotubes-redefining-the-world-of-electronics",bookSignature:"Prasanta Kumar Ghosh, Kunal Datta and Arti Dinkarrao Rushi",coverURL:"https://cdn.intechopen.com/books/images_new/9913.jpg",editedByType:"Edited by",editors:[{id:"294687",title:"Dr.",name:"Prasanta",middleName:"Kumar",surname:"Ghosh",slug:"prasanta-ghosh",fullName:"Prasanta Ghosh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10411",title:"Materials at the Nanoscale",subtitle:null,isOpenForSubmission:!1,hash:"be29908600b7067c583ac21da1544a2d",slug:"materials-at-the-nanoscale",bookSignature:"Awadesh Kumar Mallik",coverURL:"https://cdn.intechopen.com/books/images_new/10411.jpg",editedByType:"Edited by",editors:[{id:"178218",title:"Dr.",name:"Awadesh",middleName:null,surname:"Mallik",slug:"awadesh-mallik",fullName:"Awadesh Mallik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10465",title:"Silver Micro-Nanoparticles",subtitle:"Properties, Synthesis, Characterization, and Applications",isOpenForSubmission:!1,hash:"dcc19a2b44c91940e16d82fd5eb8fffa",slug:"silver-micro-nanoparticles-properties-synthesis-characterization-and-applications",bookSignature:"Samir Kumar, Prabhat Kumar and Chandra Shakher Pathak",coverURL:"https://cdn.intechopen.com/books/images_new/10465.jpg",editedByType:"Edited by",editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10469",title:"Nanofibers",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"28dc655dde01b94399cab954663f8bff",slug:"nanofibers-synthesis-properties-and-applications",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10469.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:135,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"15270",doi:"10.5772/14156",title:"Thermal Reduction of Graphene Oxide",slug:"thermal-reduction-of-graphene-oxide",totalDownloads:21105,totalCrossrefCites:20,totalDimensionsCites:160,abstract:null,book:{id:"57",slug:"physics-and-applications-of-graphene-experiments",title:"Physics and Applications of Graphene",fullTitle:"Physics and Applications of Graphene - Experiments"},signatures:"Seung Hun Huh",authors:[{id:"17002",title:"Dr.",name:"Seung Hun",middleName:null,surname:"Huh",slug:"seung-hun-huh",fullName:"Seung Hun Huh"}]},{id:"46983",doi:"10.5772/58459",title:"Liposomes as Potential Drug Carrier Systems for Drug Delivery",slug:"liposomes-as-potential-drug-carrier-systems-for-drug-delivery",totalDownloads:14091,totalCrossrefCites:45,totalDimensionsCites:138,abstract:null,book:{id:"3828",slug:"application-of-nanotechnology-in-drug-delivery",title:"Application of Nanotechnology in Drug Delivery",fullTitle:"Application of Nanotechnology in Drug Delivery"},signatures:"Melis Çağdaş, Ali Demir Sezer and Seyda Bucak",authors:[{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"},{id:"129638",title:"Prof.",name:"Seyda",middleName:null,surname:"Bucak",slug:"seyda-bucak",fullName:"Seyda Bucak"}]},{id:"47116",doi:"10.5772/58673",title:"Nanoemulsions — Advances in Formulation, Characterization and Applications in Drug Delivery",slug:"nanoemulsions-advances-in-formulation-characterization-and-applications-in-drug-delivery",totalDownloads:7730,totalCrossrefCites:42,totalDimensionsCites:120,abstract:null,book:{id:"3828",slug:"application-of-nanotechnology-in-drug-delivery",title:"Application of Nanotechnology in Drug Delivery",fullTitle:"Application of Nanotechnology in Drug Delivery"},signatures:"S.A. Chime, F.C. Kenechukwu and A.A. Attama",authors:[{id:"142947",title:"Prof.",name:"Anthony",middleName:null,surname:"Attama",slug:"anthony-attama",fullName:"Anthony Attama"}]},{id:"46807",doi:"10.5772/58422",title:"Polymer Nanoparticles for Smart Drug Delivery",slug:"polymer-nanoparticles-for-smart-drug-delivery",totalDownloads:11625,totalCrossrefCites:48,totalDimensionsCites:118,abstract:null,book:{id:"3828",slug:"application-of-nanotechnology-in-drug-delivery",title:"Application of Nanotechnology in Drug Delivery",fullTitle:"Application of Nanotechnology in Drug Delivery"},signatures:"Devasier Bennet and Sanghyo Kim",authors:[{id:"170171",title:"Dr.",name:"Sanghyo",middleName:null,surname:"Kim",slug:"sanghyo-kim",fullName:"Sanghyo Kim"},{id:"170816",title:"Dr.",name:"Devasier",middleName:null,surname:"Bennet",slug:"devasier-bennet",fullName:"Devasier Bennet"}]},{id:"37656",doi:"10.5772/38797",title:"The Use of Spectrophotometry UV-Vis for the Study of Porphyrins",slug:"the-use-of-spectrophotometry-uv-vis-for-the-study-of-porphyrins",totalDownloads:18945,totalCrossrefCites:44,totalDimensionsCites:105,abstract:null,book:{id:"2094",slug:"macro-to-nano-spectroscopy",title:"Macro To Nano Spectroscopy",fullTitle:"Macro To Nano Spectroscopy"},signatures:"Rita Giovannetti",authors:[{id:"119492",title:"Dr.",name:"Rita",middleName:null,surname:"Giovannetti",slug:"rita-giovannetti",fullName:"Rita Giovannetti"}]}],mostDownloadedChaptersLast30Days:[{id:"71103",title:"Preparation of Nanoparticles",slug:"preparation-of-nanoparticles",totalDownloads:3228,totalCrossrefCites:11,totalDimensionsCites:25,abstract:"Innovative developments of science and engineering have progressed very fast toward the synthesis of nanomaterials to achieve unique properties that are not the same as the properties of the bulk materials. The particle reveals interesting properties at the dimension below 100 nm, mostly from two physical effects. The two physical effects are the quantization of electronic states apparent leading to very sensitive size-dependent effects such as optical and magnetic properties and the high surface-to-volume ratio modifies the thermal, mechanical, and chemical properties of materials. The nanoparticles’ unique physical and chemical properties render them most appropriate for a number of specialist applications.",book:{id:"9109",slug:"engineered-nanomaterials-health-and-safety",title:"Engineered Nanomaterials",fullTitle:"Engineered Nanomaterials - Health and Safety"},signatures:"Takalani Cele",authors:[{id:"305934",title:"Dr.",name:"Takalani",middleName:null,surname:"Cele",slug:"takalani-cele",fullName:"Takalani Cele"}]},{id:"62151",title:"Proton Exchange Membrane Water Electrolysis as a Promising Technology for Hydrogen Production and Energy Storage",slug:"proton-exchange-membrane-water-electrolysis-as-a-promising-technology-for-hydrogen-production-and-en",totalDownloads:3311,totalCrossrefCites:3,totalDimensionsCites:13,abstract:"Proton exchange membrane (PEM) electrolysis is industrially important as a green source of high-purity hydrogen, for chemical applications as well as energy storage. Energy capture as hydrogen via water electrolysis has been gaining tremendous interest in Europe and other parts of the world because of the higher renewable penetration on their energy grid. Hydrogen is an appealing storage medium for excess renewable energy because once stored, it can be used in a variety of applications including power generation in periods of increased demand, supplementation of the natural gas grid for increased efficiency, vehicle fueling, or use as a high-value chemical feedstock for green generation of fertilizer and other chemicals. Today, most of the cost and energy use in PEM electrolyzer manufacturing is contributed by the cell stack manufacturing processes. Current state-of-the-art electrolysis technology involves two options: liquid electrolyte and ion exchange membranes. Membrane-based systems overcome many of the disadvantages of alkaline liquid systems, because the carrier fluid is deionized water, and the membrane-based cell design enables differential pressure operation.",book:{id:"7325",slug:"nanostructures-in-energy-generation-transmission-and-storage",title:"Nanostructures in Energy Generation, Transmission and Storage",fullTitle:"Nanostructures in Energy Generation, Transmission and Storage"},signatures:"Radenka Maric and Haoran Yu",authors:null},{id:"72636",title:"Nanocomposite Materials",slug:"nanocomposite-materials",totalDownloads:2196,totalCrossrefCites:5,totalDimensionsCites:13,abstract:"Nanocomposites are the heterogeneous/hybrid materials that are produced by the mixtures of polymers with inorganic solids (clays to oxides) at the nanometric scale. Their structures are found to be more complicated than that of microcomposites. They are highly influenced by the structure, composition, interfacial interactions, and components of individual property. Most popularly, nanocomposites are prepared by the process within in situ growth and polymerization of biopolymer and inorganic matrix. With the rapid estimated demand of these striking potentially advanced materials, make them very much useful in various industries ranging from small scale to large to very large manufacturing units. With a great deal to mankind with environmental friendly, these offer advanced technologies in addition to the enhanced business opportunities to several industrial sectors like automobile, construction, electronics and electrical, food packaging, and technology transfer.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Mousumi Sen",authors:[{id:"310218",title:"Dr.",name:"Mousumi",middleName:null,surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}]},{id:"64843",title:"Polymer Nanocomposites with Different Types of Nanofiller",slug:"polymer-nanocomposites-with-different-types-of-nanofiller",totalDownloads:4106,totalCrossrefCites:21,totalDimensionsCites:59,abstract:"The development of polymer nanocomposites has been an area of high scientific and industrial interest in the recent years, due to several improvements achieved in these materials, as a result of the combination of a polymeric matrix and, usually, an inorganic nanomaterial. The improved performance of those materials can include mechanical strength, toughness and stiffness, electrical and thermal conductivity, superior flame retardancy and higher barrier to moisture and gases. Nanocomposites can also show unique design possibilities, which offer excellent advantages in creating functional materials with desired properties for specific applications. The possibility of using natural resources and the fact of being environmentally friendly have also offered new opportunities for applications. This chapter aims to review the main topics and recent progresses related to polymer nanocomposites, such as techniques of characterization, methods of production, structures, compatibilization and applications. First, the most important concepts about nanocomposites will be presented. Additionally, an approach on the different types of filler that can be used as reinforcement in polymeric matrices will be made. After that, sections about methods of production and structures of nanocomposites will be detailed. Finally, some properties and potential applications that have been achieved in polymer nanocomposites will be highlighted.",book:{id:"6854",slug:"nanocomposites-recent-evolutions",title:"Nanocomposites",fullTitle:"Nanocomposites - Recent Evolutions"},signatures:"Amanda Dantas de Oliveira and Cesar Augusto Gonçalves Beatrice",authors:[{id:"249768",title:"Ph.D.",name:"Amanda",middleName:null,surname:"Oliveira",slug:"amanda-oliveira",fullName:"Amanda Oliveira"},{id:"254512",title:"Ph.D.",name:"Cesar",middleName:"Augusto Gonçalves",surname:"Beatrice",slug:"cesar-beatrice",fullName:"Cesar Beatrice"}]},{id:"38951",title:"Carbon Nanotube Transparent Electrode",slug:"carbon-nanotube-transparent-electrode",totalDownloads:4027,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3077",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",fullTitle:"Syntheses and Applications of Carbon Nanotubes and Their Composites"},signatures:"Jing Sun and Ranran Wang",authors:[{id:"153508",title:"Prof.",name:"Jing",middleName:null,surname:"Sun",slug:"jing-sun",fullName:"Jing Sun"},{id:"153596",title:"Ms.",name:"Ranran",middleName:null,surname:"Wang",slug:"ranran-wang",fullName:"Ranran Wang"}]}],onlineFirstChaptersFilter:{topicId:"17",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82277",title:"Application of Iron Oxide in Supercapacitor",slug:"application-of-iron-oxide-in-supercapacitor",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.105001",abstract:"Iron oxide nanostructures have been considered very promising material as electrode in electrochemical energy storage devices because of their lower cost of synthesis and high theoretical charge storage capacity. Iron oxide nanoparticles and their nanocomposites have performed excellent in supercapacitor. Iron oxide as negative electrode has extended the working voltage window of a supercapacitor. The main problems associated with iron oxide based electrodes are their poor electrical conductivity and cycle stability. Therefore, a conductive carbon matrix has been added to the iron oxide based electrodes to improve the electrochemical performance. In this chapter, recent progress on iron oxide and its composite with different materials as electrode in supercapacitor is summarized. The various synergistic effects of nanocomposites and compositional engineering to enhance the electrochemical performance of iron oxide are also discussed.",book:{id:"10824",title:"Iron Oxide Nanoparticles",coverURL:"https://cdn.intechopen.com/books/images_new/10824.jpg"},signatures:"Rajan Lakra, Rahul Kumar, Parasanta Kumar Sahoo, Sandeep Kumar and Ankur Soam"},{id:"82030",title:"Magnetite Nanoparticles (Fe3O4) for Radio-Frequency and Microwave Applications",slug:"magnetite-nanoparticles-fe3o4-for-radio-frequency-and-microwave-applications",totalDownloads:7,totalDimensionsCites:0,doi:"10.5772/intechopen.104930",abstract:"The size and shape dependent tunable electromagnetic (EM) properties of magnetite – Fe3O4 nanoparticles makes them an attractive material for various future electronics and biomedical device applications such as tunable attenuators, miniaturized isolators and circulators, RF antennas, EM shielding, and biomedical implants etc. The strategic design of RF devices requires specific dielectric and magnetic properties according to the applications, which in turn depends on the size and shape of the particles. At nanoscale, iron oxide’s magnetic and dielectric properties are very different from its bulk properties and can be tuned and enhanced by utilizing different synthesis approaches. In this chapter, we summarize electromagnetic properties of magnetite (Fe3O4) nanomaterials such as, complex permeability, complex permittivity, magnetic and dielectric loss tangents, saturation magnetization, temperature dependence, and ferromagnetic resonance; and how these properties can be optimized by varying different synthesis parameters. Finally, Fe3O4 nanocomposites will be explored by using different synthesis approaches for implementation of RF and microwave applications and we will conclude the chapter with future recommendations.",book:{id:"10824",title:"Iron Oxide Nanoparticles",coverURL:"https://cdn.intechopen.com/books/images_new/10824.jpg"},signatures:"Poonam Lathiya and Jing Wang"},{id:"81878",title:"Recent Progress and Overview of Nanocomposites",slug:"recent-progress-and-overview-of-nanocomposites",totalDownloads:17,totalDimensionsCites:0,doi:"10.5772/intechopen.102469",abstract:"Nanocomposites are versatile materials because of possessing superior properties as compared to their parent materials. Due to their improved electrical, mechanical, thermomechanical, electronic, optoelectronic, thermal, and magnetic properties, these materials are receiving much attention from researchers all over the world. In every field, the focus of the research is to develop such materials which have low weight, superior strength, and enhanced performance as well as cost competitiveness in comparison to existing materials. The nanocomposite materials have been used in the fields of avionics, biomedical, auto industry, sports industry, oil/gas, construction, food industry, agriculture industry, and information technology. This chapter addresses the synthesis, unique properties, and diverse applications of nanocomposites in different fields.",book:{id:"10825",title:"Nanocomposite Materials",coverURL:"https://cdn.intechopen.com/books/images_new/10825.jpg"},signatures:"Muhammad Hafeez"},{id:"81328",title:"Nanocomposites Thin Films: Manufacturing and Applications",slug:"nanocomposites-thin-films-manufacturing-and-applications",totalDownloads:14,totalDimensionsCites:0,doi:"10.5772/intechopen.103961",abstract:"Thin films of nanocomposite materials arouse a lot of interest due to their excellent mechanical, electrical, optical, tribological properties and also by the vast field of application. This chapter covers some techniques of thin films growth, such as the processes of physical vapor deposition, such as magnetron sputtering; the processes of chemical vapor deposition; layer-by-layer; among other techniques. Additionally, relevant features and applications of some nanocomposites thin films are presented. The wide variety of thin films growth techniques have allowed the development of several devices including those that act as: transistors, actuators, sensors, solar cells, devices with shape memory effect, organic light-emitting diodes (OLEDs), thermoelectric devices.",book:{id:"10825",title:"Nanocomposite Materials",coverURL:"https://cdn.intechopen.com/books/images_new/10825.jpg"},signatures:"Weslley Rick Viana Sampaio, Petteson Linniker Carvalho Serra, Noelio Oliveira Dantas, Rômulo Ríbeiro Magalhães de Sousa and Anielle Christine Almeida Silva"},{id:"81463",title:"Perovskite-Based Nanomaterials and Nanocomposites for Photocatalytic Decontamination of Water",slug:"perovskite-based-nanomaterials-and-nanocomposites-for-photocatalytic-decontamination-of-water",totalDownloads:27,totalDimensionsCites:0,doi:"10.5772/intechopen.102824",abstract:"The exploration of functional nanomaterials with superior catalytic activity for practical photocatalytic water decontamination is of significant importance. Perovskite-based nanomaterials, which demonstrate excellent photophysical and catalytic properties, are widely investigated as a class of adaptable materials for the photocatalytic degradation of environmental pollutants. This chapter introduces the recent progresses in using perovskite-based nanocomposites with particular emphasis on the applications for effective photocatalytic degradation of organic pollutants in wastewater. It starts by presenting the general principles and mechanisms governing photocatalytic degradation of organic pollutants in water by perovskite, along with the design criteria for perovskite-based nanocomposites. It then explains various strategies used to prepare perovskite-based nanocomposites with the aim of enhancing their photocatalytic activity. By the end of the chapter, the remaining challenges and perspectives for developing efficient perovskite-based photocatalysts with potential large-scale application are highlighted.",book:{id:"10825",title:"Nanocomposite Materials",coverURL:"https://cdn.intechopen.com/books/images_new/10825.jpg"},signatures:"Yousef Faraj and Ruzhen Xie"},{id:"81438",title:"Research Progress of Ionic Thermoelectric Materials for Energy Harvesting",slug:"research-progress-of-ionic-thermoelectric-materials-for-energy-harvesting",totalDownloads:38,totalDimensionsCites:0,doi:"10.5772/intechopen.101771",abstract:"Thermoelectric material is a kind of functional material that can mutually convert heat energy and electric energy. It can convert low-grade heat energy (less than 130°C) into electric energy. Compared with traditional electronic thermoelectric materials, ionic thermoelectric materials have higher performance. The Seebeck coefficient can generate 2–3 orders of magnitude higher ionic thermoelectric potential than electronic thermoelectric materials, so it has good application prospects in small thermoelectric generators and solar power generation. According to the thermoelectric conversion mechanism, ionic thermoelectric materials can be divided into ionic thermoelectric materials based on the Soret effect and thermocouple effect. They are widely used in pyrogen batteries and ionic thermoelectric capacitors. The latest two types of ionic thermoelectric materials are in this article. The research progress is explained, and the problems and challenges of ionic thermoelectric materials and the future development direction are also put forward.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jianwei Zhang, Ying Xiao, Bowei Lei, Gengyuan Liang and Wenshu Zhao"}],onlineFirstChaptersTotal:24},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X",scope:"\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"June 27th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",slug:"taufiq-choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:15,paginationItems:[{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81975",title:"Self-Sustained Communities: Food Security in Times of Crisis",doi:"10.5772/intechopen.104425",signatures:"Kriengsak Chareonwongsak",slug:"self-sustained-communities-food-security-in-times-of-crisis",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",doi:"10.5772/intechopen.105528",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82270",title:"From Corporate Social Opportunity to Corporate Social Responsibility",doi:"10.5772/intechopen.105445",signatures:"Brian Bolton",slug:"from-corporate-social-opportunity-to-corporate-social-responsibility",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82339",title:"Green Human Resource Management: An Exploratory Study from Moroccan ISO 14001 Certified Companies",doi:"10.5772/intechopen.105565",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"green-human-resource-management-an-exploratory-study-from-moroccan-iso-14001-certified-companies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82194",title:"CSR and Female Directors: A Review and Future Research Agenda",doi:"10.5772/intechopen.105112",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Sirimon Treepongkaruna",slug:"csr-and-female-directors-a-review-and-future-research-agenda",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Marketing",value:88,count:1,group:"subseries"},{caption:"Business and Management",value:86,count:7,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:739,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"333824",title:"Dr.",name:"Ahmad Farouk",middleName:null,surname:"Musa",slug:"ahmad-farouk-musa",fullName:"Ahmad Farouk Musa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333824/images/22684_n.jpg",biography:"Dato’ Dr Ahmad Farouk Musa\nMD, MMED (Surgery) (Mal), Fellowship in Cardiothoracic Surgery (Monash Health, Aust), Graduate Certificate in Higher Education (Aust), Academy of Medicine (Mal)\n\n\n\nDato’ Dr Ahmad Farouk Musa obtained his Doctor of Medicine from USM in 1992. He then obtained his Master of Medicine in Surgery from the same university in the year 2000 before subspecialising in Cardiothoracic Surgery at Institut Jantung Negara (IJN), Kuala Lumpur from 2002 until 2005. He then completed his Fellowship in Cardiothoracic Surgery at Monash Health, Melbourne, Australia in 2008. He has served in the Malaysian army as a Medical Officer with the rank of Captain upon completing his Internship before joining USM as a trainee lecturer. He is now serving as an academic and researcher at Monash University Malaysia. He is a life-member of the Malaysian Association of Thoracic & Cardiovascular Surgery (MATCVS) and a committee member of the MATCVS Database. He is also a life-member of the College of Surgeons, Academy of Medicine of Malaysia; a life-member of Malaysian Medical Association (MMA), and a life-member of Islamic Medical Association of Malaysia (IMAM). Recently he was appointed as an Interim Chairperson of Examination & Assessment Subcommittee of the UiTM-IJN Cardiothoracic Surgery Postgraduate Program. As an academic, he has published numerous research papers and book chapters. He has also been appointed to review many scientific manuscripts by established journals such as the British Medical Journal (BMJ). He has presented his research works at numerous local and international conferences such as the European Association for Cardiothoracic Surgery (EACTS) and the European Society of Cardiovascular Surgery (ESCVS), to name a few. He has also won many awards for his research presentations at meetings and conferences like the prestigious International Invention, Innovation & Technology Exhibition (ITEX); Design, Research and Innovation Exhibition, the National Conference on Medical Sciences and the Annual Scientific Meetings of the Malaysian Association for Thoracic and Cardiovascular Surgery. He was awarded the Darjah Setia Pangkuan Negeri (DSPN) by the Governor of Penang in July, 2015.",institutionString:null,institution:{name:"Monash University Malaysia",country:{name:"Malaysia"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:34,paginationItems:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",doi:"10.5772/intechopen.104725",signatures:"Ivica Pelivan",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",doi:"10.5772/intechopen.101489",signatures:"Gopathy Sridevi and Seshadri Srividya",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",doi:"10.5772/intechopen.99575",signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79724",title:"Implant Stability Quotient (ISQ): A Reliable Guide for Implant Treatment",doi:"10.5772/intechopen.101359",signatures:"Gaurav Gupta",slug:"implant-stability-quotient-isq-a-reliable-guide-for-implant-treatment",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80223",title:"Bridging the Gap: Nasoalveolar Moulding in Early Cleft Palate Rehabilitation",doi:"10.5772/intechopen.101986",signatures:"Amanda Nadia Ferreira",slug:"bridging-the-gap-nasoalveolar-moulding-in-early-cleft-palate-rehabilitation",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80186",title:"Effects of Various Dentofacial Orthopedic and Orthognathic Treatment Modalities on Pharyngeal Airway",doi:"10.5772/intechopen.101719",signatures:"Tejashri Pradhan and Aarti Sethia",slug:"effects-of-various-dentofacial-orthopedic-and-orthognathic-treatment-modalities-on-pharyngeal-airway",totalDownloads:83,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78834",title:"Current Methods for Acceleration of Orthodontic Tooth Movement",doi:"10.5772/intechopen.100221",signatures:"Mehmet Akin and Leyla Cime Akbaydogan",slug:"current-methods-for-acceleration-of-orthodontic-tooth-movement",totalDownloads:127,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79817",title:"Peri-Implant Soft Tissue Augmentation",doi:"10.5772/intechopen.101336",signatures:"Marko Blašković and Dorotea Blašković",slug:"peri-implant-soft-tissue-augmentation",totalDownloads:128,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Marko",surname:"Blašković"},{name:"Dorotea",surname:"Blaskovic"}],book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79100",title:"Orthodontics and the Periodontium: A Symbiotic Relationship",doi:"10.5772/intechopen.100801",signatures:"Betsy Sara Thomas and Mohan Alexander",slug:"orthodontics-and-the-periodontium-a-symbiotic-relationship",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79680",title:"Digital Workflow for Homemade Aligner",doi:"10.5772/intechopen.100347",signatures:"Dalal Elmoutawakkil and Nabil Hacib",slug:"digital-workflow-for-homemade-aligner",totalDownloads:202,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79611",title:"Growth Factors and Dental Implantology",doi:"10.5772/intechopen.101082",signatures:"Deeksha Gupta",slug:"growth-factors-and-dental-implantology",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79584",title:"Orthodontic Management of Adult Sleep Apnea: Clinical Case Reports",doi:"10.5772/intechopen.101193",signatures:"Lahcen Ousehal, Soukaina Sahim, Hajar Bouzid, Hakima Aghoutan, Asmaa El Mabrak, Mohamed Mahtar and Mohamed El Fatmi Kadri Hassani",slug:"orthodontic-management-of-adult-sleep-apnea-clinical-case-reports",totalDownloads:86,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78791",title:"Surface Modification of Titanium Orthodontic Implants",doi:"10.5772/intechopen.100038",signatures:"Abdulqadir Rampurawala and Amol Patil",slug:"surface-modification-of-titanium-orthodontic-implants",totalDownloads:146,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79334",title:"Orthodontic Therapeutic Biomarkers in Saliva and Gingival Crevicular Fluid",doi:"10.5772/intechopen.100733",signatures:"Sagar S. Bhat, Ameet V. Revankar and Shrinivas M. Basavaraddi",slug:"orthodontic-therapeutic-biomarkers-in-saliva-and-gingival-crevicular-fluid",totalDownloads:127,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78213",title:"A Review of Current Concepts in Full Arch Rehabilitation with Dental Implants",doi:"10.5772/intechopen.99704",signatures:"Leandro Díez-Suárez",slug:"a-review-of-current-concepts-in-full-arch-rehabilitation-with-dental-implants",totalDownloads:139,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Leandro",surname:"Díez Suárez"}],book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 28th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:317,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/37071",hash:"",query:{},params:{id:"37071"},fullPath:"/profiles/37071",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()