A nanofluid consists in a liquid suspension of nanometer-sized particles. These fluids may contain (or not) surface-active agents to aid in the suspension of the particles. Nanometer-sized particles have higher thermal conductivity than the base fluids. Oxides, metals, nitrides, and nonmetals, like carbon nanotubes, can be used as nanoparticles in nanofluids. Water, ethylene glycol, oils, and polymer solutions can be used as base fluids. In this chapter, we summarize the recent studies of using CNTs and graphene to improve the thermal conductivity of nanofluids. Moreover, we refer to the studies about the effect of using magnetic fields on enhancing the thermal conductivity of nanofluids. Too much discrepancy about thermal conductivity of nanofluids can be found in the literature. For carbon nanofluids, unfortunately, no significant improvements on thermal conductivity are observed using low concentrations. Different improvement percentages have been reported. This variation in the thermal conductivity can be attributed to many factors, such as particle size temperature, pH, or zeta potential. We believe that more research efforts need to be made in order to, first, improve the thermal conductivity of nanofluids and, second, assess the effect of the different parameters and conditions on the thermal conductivity of nanofluids.
Part of the book: Advances in Carbon Nanostructures