Diverse functioning biosystems in nature have inspired us and offered unique opportunities in developing novel concepts as well as new class of materials and devices. The design of bioinspired functional materials with tailored properties for actuation, sensing, electronics, and communication has enabled synthetic devices to mimic natural behavior. Among which, artificial muscle and electronic skin that enable to sense and respond to various environmental stimuli in a human-like way have been widely recognized as a significant step toward robotics applications. Polymer materials have previously been dominant in fabricating such functional biomimetic devices owing to their soft nature. However, lacking multifunctionality, handling difficulty, and other setbacks have limited their practical applications. Recently, versatile and high-performance two-dimensional (2D) materials such as graphene and its derivatives have been studied and proven as promising alternatives in this area. In this chapter, we highlight the recent efforts on fabrication and assembly of 2D nanomaterials into functional biomimetic systems. We discuss the structure-function relationships for the development of 2D materials–based biomimetic devices, their tailoring property features, and their variety of applications. We start with a brief introduction of artificial functional biomimetic materials and devices, then summarize some key 2D materials–based systems, including their fabrication, properties, advantages and demonstrations, and finally present concluding remarks and outlook.
Part of the book: Two-dimensional Materials