Energy transfer is one of the most fundamental processes at the nanoscale. Whenever a donor is placed sufficiently close to an acceptor, they could couple via electrostatic interactions and the energy is funnelled down to the acceptor. Only recently graphene, a two-dimensional sp2-hybridized carbon hexagonal lattice, has emerged as highly attractive from the point of view of potential applications in photonics and optoelectronics, as it features uniform absorption, which extends over the whole visible range down to the infrared. With the absence of fluorescence, it renders graphene as an exceptional acceptor in devices that utilize energy and/or electron transfer. In this chapter, we review recent work on the energy transfer in graphene-based assemblies involving also graphene derivatives (graphene oxide and reduced graphene oxide), as well as describe results of fluorescence studies focused on interactions between graphene and photosynthetic protein—pigment complexes. While for organic dyes the efficiency of the energy transfer is very high, in the case of the proteins, there is some shielding of chlorophylls from graphene, partially inhibiting the energy transfer. This allows for observing interesting effects associated with dependencies on the excitation energy, number of graphene layers, or the substrate that graphene is placed onto.
Part of the book: Recent Advances in Graphene Research