Progressing muscle wasting and dramatic neurodegeneration of upper and lower motor neurons are the initial symptoms of amyotrophic lateral sclerosis (ALS) that eventually cause aetiology or death in quick succession. The functional mechanism of ALS is non-cell autonomous but it strongly influences on non-neural cells including microglia, astrocyte muscles and T cell. In ALS, neurodegeneration is triggered by at least four gene mutations that are not related to any classical signalling pathways, molecular mechanism or known cellular ingredients. MicroRNA is endogenous tiny non-coding RNA, which is required for fine-tuning or micromanaging protein expression post-transcriptionally. In this review, we identified numerous microRNAs and their possible targets in ALS-related genes. These microRNAs misprocess ALS-related protein-coding genes via microRNA-gene circuits. This result sheds a strong link between microRNA and ALS genes. The mechanistic insight of multiple microRNAs related to ALS is required to treat neuro-inflammation and neuro-degradation. It is proposed that the micro-regulation of multiple microRNAs is involved in generation of unique neuroprotective agent against ALS. Therefore, a classical and novel microRNA-mediated therapy might unravel an alternative strategy for ALS-related neurodegeneration. This strategy indeed implicates real promises to illustrate a unique impact for ALS cure.
Part of the book: Update on Amyotrophic Lateral Sclerosis