This research was carried out to infer the genetic value to produce royal jelly in Africanized Apis mellifera L. honeybees with the compilation of data collected from 2006 to 2011. Genetic information of the selected and accessed colonies was obtained using the total DNA extraction techniques of nurse honeybees’ thorax with molecular markers for MRJP3 protein and characterized in Apis mellifera L. From the information on the colonies and genealogical structure were predicted genetic values of the colonies and queens for the larvae acceptance trait (%), royal jelly per colony (g), and royal jelly per cup (mg). Animal model with Bayesian Inference was used from Multiple Trait Gibbs Sampling software in Animal Models, Gibbs chains 58,500 cycles resulting from 650,000 cycles with intervals and disposal of 65,000 and 10 withdraw, respectively. From the predicted values, the colonies were classified into upper and lower. To compare the average of the genetic values according to the genotypes, the average multiple comparison tests were proceeded and implemented in routine PROC GENMOD from the Statistical Analysis System. Environmental effects were considered, time and hive type (standard Langstroth) as having flat distribution and collection as chi-square distribution. The studies presented an increase in the alleles C and D and the alleles D and E—referring to MRJPs—found in the highest genetic value for royal jelly production. Alleles D, E, and C are important when evaluating the parameters larvae acceptance, royal jelly per colony, and royal jelly per cup and, occasionally, it was the DE genotype that stood out royal jelly production. Genotypes DE, DC, and EC are those that should be kept in this evaluation system for royal jelly production, and the other genotypes should be discarded because they had the worst performance for the parameters evaluated.
Part of the book: Beekeeping and Bee Conservation