Cardiovascular diseases are amongst the main causes of death worldwide, and the main underlying pathological process is atherosclerosis. Over the years, fatty materials are accumulated in the arterial which consequently hinders the blood flow. Due to the great mortality rate of this disease, hemodynamic studies within stenotic arteries have been of great clinical interest, and computational methods have played an important role. Commonly, computational fluid dynamics methods, where only the blood flow behavior is considered, however, the study of both blood and artery walls’ interaction is of foremost importance. In this regard, in the present study, both computational fluid dynamics and fluid-structure interaction modeling analysis were performed in order to evaluate if the arterial wall compliance affects considerably the hemodynamic results obtained in idealized stenotic coronary models. From the overall results, it was observed that the influence of wall compliance was noteworthy on wall shear stress distribution, but its effect on the time-averaged wall shear stress and on the oscillatory shear index was minor.
Part of the book: Applications of Computational Fluid Dynamics Simulation and Modeling