This book chapter will comment on fluorescent reporter proteins and nanocrystals’ applicability as fluorescent markers. Fluorescent reporter proteins in the Drosophila model system offer a degree of specificity that allows monitoring cellular and biochemical phenomena in vivo, such as autophagy, mitophagy, and changes in the redox state of cells. Titanium dioxide (TiO2) nanocrystals (NCs) have several biological applications and emit in the ultraviolet, with doping of europium ions can be visualized in the red luminescence. Therefore, it is possible to monitor nanocrystals in biological systems using different emission channels. CdSe/CdS magic-sized quantum dots (MSQDs) show high luminescence stability in biological systems and can be bioconjugated with biological molecules. Therefore, this chapter will show exciting results of the group using fluorescent proteins and nanocrystals in biological systems.
Part of the book: Bioluminescence
This chapter aims to show significant progress that our group has been developing and the applications of several doped semiconductor nanocrystals (NCs), as nanopowders or embedded in glass systems. Depending on the type of dopant incorporated in the nanocrystals, the physical, chemical, and biological properties can be intensified. However, it can also generate undesired toxic effects that can potentially compromise its use. Here we present the potential of zinc oxide NCs doped with silver (Ag), gold (Au), and magnesium (Mg) ions to control bacterial diseases in agriculture. We have also performed biocompatibility analysis of the pure and Ag-doped sodium titanate (Na2Ti3O7) NCs in Drosophila. The doped nanocrystals embedded in glassy systems are chrome (Cr) or copper (Cu) in ZnTe and Bi2Te3 NCs for spintronic development nanodevices. Therefore, we will show several advantages that doped nanocrystals may present in the technological and biotechnological areas.
Part of the book: Materials at the Nanoscale
Doping is a technique that makes it possible to incorporate substitutional ions into the crystalline structure of materials, generating exciting properties. This book chapter will comment on the transition metals (TM) doped nanocrystals (NCs) and how doping and concentration influence applications and biocompatibility. In the NCs doped with TM, there is a strong interaction of sp-d exchange between the NCs’ charge carriers and the unpaired electrons of the MT, generating new and exciting properties. These doped NCs can be nanopowders or be embedded in glass matrices, depending on the application of interest. Therefore, we show the group results of synthesis, characterization, and applications of iron or copper-doped ZnO nanopowders and chromium-doped Bi2S3, nickel-doped ZnTe, and manganese-doped CdTe quantum dots in the glass matrices.
Part of the book: Transition Metal Compounds
Liposomes are microscopic lipid-based vesicles that have emerged as a promising vehicle for transporting therapeutic agents with precision and efficiency. From enhanced drug bioavailability to targeted delivery, combining nanomaterials and liposomes offers a transformative approach to therapeutic interventions. Encapsulating nanomaterials with drugs in liposomes holds immense significance as it enhances precision, efficiency, and targeted delivery, revolutionizing therapeutic interventions in medicine. This chapter delves into the unique properties of nanomaterials encapsulated within liposomes, examining their potential to revolutionize medicine. In addition, it highlights key advancements, challenges, and prospects in this dynamic and rapidly evolving field, providing readers with a comprehensive understanding of the revolutionary impact on the future of medicinal drugs.
Part of the book: Liposomes - A Modern Approach in Research [Working title]