\r\n\tThe book aims to introduce the potential reader to the problems associated with aeronautics, ranging from academic research to actual application and precise work, and to be of interest to those who want to research and build their techniques in the related fields.
",isbn:"978-1-80355-301-6",printIsbn:"978-1-80355-300-9",pdfIsbn:"978-1-80355-302-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"a6b8e86015392b400a37551116fc0c13",bookSignature:"Associate Prof. Zain Anwar Anwar Ali",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11522.jpg",keywords:"Aeronautics, Aircraft, Control System, Surveillance, Guidance, Fixed-Wing, Rotorcraft, Jet Engine, Modern Drone, Path Planning, Adaptive Control, Hybrid Control",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 9th 2022",dateEndSecondStepPublish:"April 12th 2022",dateEndThirdStepPublish:"June 11th 2022",dateEndFourthStepPublish:"August 30th 2022",dateEndFifthStepPublish:"October 29th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Engr. Dr. Zain Anwar Ali is working as an Associate Prof. and Editor of Sir Syed University Research Journal of Engineering and Technology. He received research funding from Higher Education Commission (HEC), Pakistan, and has research collaborations with several universities in China, including Nanjing University of Aeronautics and Astronautics, Donghua University, Shanghai University, and South East University, under different research grants provided by the National Nature Science Foundation of China.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"415526",title:"Associate Prof.",name:"Zain",middleName:"Anwar",surname:"Anwar Ali",slug:"zain-anwar-ali",fullName:"Zain Anwar Ali",profilePictureURL:"https://mts.intechopen.com/storage/users/415526/images/system/415526.png",biography:"Engr. Dr. Zain Anwar Ali received his B.S. degree in Electronic Engineering from Sir Syed University of Engineering and Technology, Karachi, Pakistan, in 2009. In the same year, he joined Sir Syed UET as a Research Assistant in the Electronic Engineering department, and was soon promoted to a Junior Lecturer due to his hard work and research contributions. He completed his Master's in Industrial Control and Automation at the Hamdard University of Engineering in 2012, securing his second position and soon being promoted to a Lecturer. Later he joined Nanjing University of Aeronautics and Astronautics (NUAA) as a Ph.D. research scholar and the Nanjing Strong Flight Electronics and Machinery LTD to complete his Ph.D. experimental work there. In 2017, he completed his Ph.D. in the field of Control Theory and Control Engineering NUAA. He then rejoined Sir Syed UET as an Assistant Professor in the Electronics Engineering department. In the same year, he was selected as a highly talented foreign expert by the Ministry of China, Beijing, at Liaocheng. After seeing his research background, the vice-chancellor of SSUET gave him the extra responsibility of an Associate Editor of Sir Syed UET research journal which is indexed at various indexing agencies and published in two issues annually. In 2018-2019, he received research funding from Higher Education Commission (HEC), Pakistan, and started some different research collaborations with several universities in China, including Nanjing University of Aeronautics and Astronautics (NUAA-Nanjing), Donghua University (DU-Shanghai), Shanghai University (SU-Shanghai), and South East University (SEU-Nanjing), under different research grants provided by the National Nature Science Foundation of China (NSFC). Currently, Dr. Ali is working as an Associate Professor at the Electronic Engineering Department, Sir Syed University of Engineering and Technology, Karachi, Pakistan, and as the Editor of Sir Syed University Research Journal of Engineering and Technology.",institutionString:"Sir Syed University of Engineering and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Sir Syed University of Engineering and Technology",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"27101",title:"Development of Biopolymers as Binders for Feed for Farmed Aquatic Organisms",doi:"10.5772/28116",slug:"development-of-biopolymers-as-binders-for-feed-for-farmed-aquatic-organisms-",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/27101.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/27101",previewPdfUrl:"/chapter/pdf-preview/27101",totalDownloads:6070,totalViews:205,totalCrossrefCites:7,totalDimensionsCites:18,totalAltmetricsMentions:0,impactScore:6,impactScorePercentile:94,impactScoreQuartile:4,hasAltmetrics:0,dateSubmitted:"February 24th 2011",dateReviewed:"August 8th 2011",datePrePublished:null,datePublished:"January 27th 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/27101",risUrl:"/chapter/ris/27101",book:{id:"1009",slug:"aquaculture"},signatures:"Marina Paolucci, Adele Fabbrocini, Maria Grazia Volpe, Ettore Varricchio and Elena Coccia",authors:[{id:"72790",title:"Prof.",name:"Marina",middleName:null,surname:"Paolucci",fullName:"Marina Paolucci",slug:"marina-paolucci",email:"paolucci@unisannio.it",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of Sannio",institutionURL:null,country:{name:"Italy"}}},{id:"126170",title:"Dr.",name:"Adele",middleName:null,surname:"Fabbrocini",fullName:"Adele Fabbrocini",slug:"adele-fabbrocini",email:"fabbrocini@ismar.cnr.it",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"126172",title:"Dr.",name:"Maria Grazia",middleName:null,surname:"Volpe",fullName:"Maria Grazia Volpe",slug:"maria-grazia-volpe",email:"mgvolpe@isa.cnr.it",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"126173",title:"Dr.",name:"Ettore",middleName:null,surname:"Varricchio",fullName:"Ettore Varricchio",slug:"ettore-varricchio",email:"varricchio@unisannio.it",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"126174",title:"Dr.",name:"Elena",middleName:null,surname:"Coccia",fullName:"Elena Coccia",slug:"elena-coccia",email:"elena.coccia@unisannio.it",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"1009",type:"book",title:"Aquaculture",subtitle:null,fullTitle:"Aquaculture",slug:"aquaculture",publishedDate:"January 27th 2012",bookSignature:"Zainal Abidin Muchlisin",coverURL:"https://cdn.intechopen.com/books/images_new/1009.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-974-5",pdfIsbn:"978-953-51-4373-4",reviewType:"peer-reviewed",numberOfWosCitations:146,isAvailableForWebshopOrdering:!0,editors:[{id:"92673",title:"Dr.",name:"Zainal",middleName:"Abidin",surname:"Muchlisin",slug:"zainal-muchlisin",fullName:"Zainal Muchlisin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"322"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"27101",type:"chapter",title:"Development of Biopolymers as Binders for Feed for Farmed Aquatic Organisms",slug:"development-of-biopolymers-as-binders-for-feed-for-farmed-aquatic-organisms-",totalDownloads:6070,totalCrossrefCites:7,signatures:"Marina Paolucci, Adele Fabbrocini, Maria Grazia Volpe, Ettore Varricchio and Elena Coccia",reviewType:"peer-reviewed",authors:[{id:"72790",title:"Prof.",name:"Marina",middleName:null,surname:"Paolucci",fullName:"Marina Paolucci",slug:"marina-paolucci"},{id:"126170",title:"Dr.",name:"Adele",middleName:null,surname:"Fabbrocini",fullName:"Adele Fabbrocini",slug:"adele-fabbrocini"},{id:"126172",title:"Dr.",name:"Maria Grazia",middleName:null,surname:"Volpe",fullName:"Maria Grazia Volpe",slug:"maria-grazia-volpe"},{id:"126173",title:"Dr.",name:"Ettore",middleName:null,surname:"Varricchio",fullName:"Ettore Varricchio",slug:"ettore-varricchio"},{id:"126174",title:"Dr.",name:"Elena",middleName:null,surname:"Coccia",fullName:"Elena Coccia",slug:"elena-coccia"}]},{id:"27102",type:"chapter",title:"Unsupplemented Artemia Diet Results in Reduced Growth and Jaw Dysmorphogenesis in Zebrafish",slug:"unsupplemented-artemia-diet-results-in-reduced-growth-and-jaw-dysmorphogenesis-in-zebrafish",totalDownloads:2445,totalCrossrefCites:0,signatures:"Michael P. Craig, Mitul B. Desai, Kate E. Olukalns, Scott E. Afton, Joseph A. Caruso and Jay R. Hove",reviewType:"peer-reviewed",authors:[{id:"77790",title:"Prof.",name:"Jay",middleName:null,surname:"Hove",fullName:"Jay Hove",slug:"jay-hove"}]},{id:"27103",type:"chapter",title:"Replacement of Fishmeal with Plant Protein Ingredients in Diets to Atlantic Salmon (Salmo salar) – Effects on Weight Gain and Accretion",slug:"replacement-of-fishmeal-with-plant-protein-ingredients-in-diets-to-atlantic-salmon-salmo-salar-effec",totalDownloads:6704,totalCrossrefCites:1,signatures:"Marit Espe, Adel El-Mowafi and Kari Ruohonen",reviewType:"peer-reviewed",authors:[{id:"80163",title:"Dr.",name:"Marit",middleName:null,surname:"Espe",fullName:"Marit Espe",slug:"marit-espe"},{id:"94977",title:"Dr.",name:"Kari",middleName:null,surname:"Ruohonen",fullName:"Kari Ruohonen",slug:"kari-ruohonen"},{id:"94978",title:"Dr.",name:"Adel",middleName:null,surname:"El-Mowafi",fullName:"Adel El-Mowafi",slug:"adel-el-mowafi"}]},{id:"27104",type:"chapter",title:"Nutritional Value and Uses of Microalgae in Aquaculture",slug:"nutritional-value-and-uses-of-microalgae-in-aquaculture",totalDownloads:6762,totalCrossrefCites:11,signatures:"A. Catarina Guedes and F. Xavier Malcata",reviewType:"peer-reviewed",authors:[{id:"83136",title:"Prof.",name:"F. Xavier",middleName:null,surname:"Malcata",fullName:"F. Xavier Malcata",slug:"f.-xavier-malcata"}]},{id:"27105",type:"chapter",title:"Validation of Endogenous Reference Genes for qPCR Quantification of Muscle Transcripts in Atlantic Cod Subjected to Different Photoperiod Regimes",slug:"validation-of-endogenous-reference-genes-for-qpcr-quantification-of-muscle-transcripts-in-atlantic-c",totalDownloads:2284,totalCrossrefCites:1,signatures:"Kazue Nagasawa, Carlo Lazado and Jorge M. O. Fernandes",reviewType:"peer-reviewed",authors:[{id:"75186",title:"Dr.",name:"Jorge",middleName:null,surname:"Fernandes",fullName:"Jorge Fernandes",slug:"jorge-fernandes"},{id:"75189",title:"Dr.",name:"Kazue",middleName:null,surname:"Nagasawa",fullName:"Kazue Nagasawa",slug:"kazue-nagasawa"},{id:"75190",title:"Mr.",name:"Carlo",middleName:null,surname:"Lazado",fullName:"Carlo Lazado",slug:"carlo-lazado"}]},{id:"27106",type:"chapter",title:"Determination of Fish Origin by Using 16S rDNA Fingerprinting of Microbial Communities by PCR-DGGE: An Application on Fish From Different Tropical Origins",slug:"determination-of-fish-origin-by-using-16s-rdna-or-26-rdna-fingerprinting-of-microbial-communities-by",totalDownloads:2599,totalCrossrefCites:2,signatures:"Didier Montet, Doan Duy Le Nguyen and Amenan Clementine Kouakou",reviewType:"peer-reviewed",authors:[{id:"76153",title:"Dr",name:null,middleName:null,surname:"Montet",fullName:"Montet",slug:"montet"}]},{id:"27107",type:"chapter",title:"Mitochondrial DNA Variation as a Tool for Systematic Status Clarification of Commercial Species – The Case of Two High Commercial Flexopecten Forms in the Aegean Sea",slug:"genetic-tools-for-systematic-status-clarification-of-commercial-species-the-case-of-mitochondrial-dn",totalDownloads:2620,totalCrossrefCites:2,signatures:"Anastasia Imsiridou, Nikoleta Karaiskou, Elena Aggelidou, Vassilios Katsares and Sofia Galinou-Mitsoudi",reviewType:"peer-reviewed",authors:[{id:"77792",title:"Dr.",name:"Vassilios",middleName:null,surname:"Katsares",fullName:"Vassilios Katsares",slug:"vassilios-katsares"},{id:"85151",title:"Dr.",name:"Anastasia",middleName:null,surname:"Imsiridou",fullName:"Anastasia Imsiridou",slug:"anastasia-imsiridou"},{id:"85152",title:"Dr.",name:"Nikoleta",middleName:null,surname:"Karaiskou",fullName:"Nikoleta Karaiskou",slug:"nikoleta-karaiskou"},{id:"85153",title:"Dr.",name:"Elena",middleName:null,surname:"Aggelidou",fullName:"Elena Aggelidou",slug:"elena-aggelidou"},{id:"85155",title:"Dr.",name:"Sofia",middleName:null,surname:"Galinou-Mitsoudi",fullName:"Sofia Galinou-Mitsoudi",slug:"sofia-galinou-mitsoudi"}]},{id:"27108",type:"chapter",title:"Genomics and Genome Sequencing: Benefits for Finfish Aquaculture",slug:"genomics-and-genome-sequencing-benefits-for-finfish-aquaculture",totalDownloads:3496,totalCrossrefCites:2,signatures:"Nicole L. Quinn, Alejandro P. Gutierrez, Ben F. Koop and William S. Davidson",reviewType:"peer-reviewed",authors:[{id:"81919",title:"Dr.",name:"William",middleName:"S",surname:"Davidson",fullName:"William Davidson",slug:"william-davidson"},{id:"83990",title:"Dr.",name:"Nicole",middleName:"Lisa",surname:"Quinn",fullName:"Nicole Quinn",slug:"nicole-quinn"},{id:"84002",title:"Dr.",name:"Ben",middleName:null,surname:"Koop",fullName:"Ben Koop",slug:"ben-koop"},{id:"123877",title:"BSc.",name:"Alejandro",middleName:null,surname:"Gutierrez",fullName:"Alejandro Gutierrez",slug:"alejandro-gutierrez"}]},{id:"27109",type:"chapter",title:"Novel Approach for Controlling Lipid Oxidation and Melanosis in Aquacultured Fish and Crustaceans: Application of Edible Mushroom (Flammulina velutipes) Extract In Vivo",slug:"novel-approach-to-control-lipid-oxidation-and-melanosis-in-aquacultured-fish-and-crustaceans-applica",totalDownloads:3843,totalCrossrefCites:0,signatures:"Angel Balisi Encarnacion, Huynh Nguyen Duy Bao, Reiko Nagasaka and Toshiaki Ohshima",reviewType:"peer-reviewed",authors:[{id:"84395",title:"Dr.",name:"Toshiaki",middleName:null,surname:"Ohshima",fullName:"Toshiaki Ohshima",slug:"toshiaki-ohshima"},{id:"84398",title:"Dr.",name:"Angel",middleName:null,surname:"Encarnacion",fullName:"Angel Encarnacion",slug:"angel-encarnacion"},{id:"129099",title:"Dr.",name:"Reiko",middleName:null,surname:"Nagasaka",fullName:"Reiko Nagasaka",slug:"reiko-nagasaka"}]},{id:"27110",type:"chapter",title:"Improving Larval Culture and Rearing Techniques on Common Snook (Centropomus undecimalis)",slug:"improving-larval-culture-and-rearing-techniques-on-common-snook-centropomus-undecimalis-",totalDownloads:2470,totalCrossrefCites:2,signatures:"Carlos Yanes Roca and Kevan L. Main",reviewType:"peer-reviewed",authors:[{id:"72959",title:"Dr.",name:"Carlos",middleName:null,surname:"Yanes-Roca",fullName:"Carlos Yanes-Roca",slug:"carlos-yanes-roca"}]},{id:"27111",type:"chapter",title:"Advances in Domestication and Culture Techniques for Crayfish Procambarus acanthophorus",slug:"advances-in-domestication-and-culture-techniques-for-crayfish-procambarus-acanthophorus",totalDownloads:4325,totalCrossrefCites:0,signatures:"Martha P. Hernández-Vergara and Carlos I. Pérez-Rostro",reviewType:"peer-reviewed",authors:[{id:"72960",title:"PhD.",name:"Martha",middleName:"Patricia",surname:"Hernandez-Vergara",fullName:"Martha Hernandez-Vergara",slug:"martha-hernandez-vergara"},{id:"85315",title:"Dr.",name:"Carlos",middleName:"Iván",surname:"Perez-Rostro",fullName:"Carlos Perez-Rostro",slug:"carlos-perez-rostro"}]},{id:"27112",type:"chapter",title:"Measurements Population Growth and Fecundity of Daphnia Magna to Different Levels of Nutrients Under Stress Conditions",slug:"measurements-population-growth-and-fecundity-a-culture-of-daphnia-magna-to-different-level-of-nutrie",totalDownloads:4819,totalCrossrefCites:0,signatures:"Lucía E. Ocampo Q., Mónica Botero A. and Luis Fernando Restrepo",reviewType:"peer-reviewed",authors:[{id:"76640",title:"Dr.",name:"Lucia",middleName:null,surname:"Ocampo",fullName:"Lucia Ocampo",slug:"lucia-ocampo"},{id:"81904",title:"Dr.",name:"Monica",middleName:null,surname:"Botero",fullName:"Monica Botero",slug:"monica-botero"},{id:"85496",title:"Dr.",name:"Luis",middleName:null,surname:"fernando Restrepo",fullName:"Luis fernando Restrepo",slug:"luis-fernando-restrepo"}]},{id:"27113",type:"chapter",title:"In Vitro Culture of Freshwater Pearl Mussel from Glochidia to Adult",slug:"in-vitro-culture-of-freshwater-pearl-mussel-from-glochidia-to-adult",totalDownloads:3115,totalCrossrefCites:1,signatures:"Satit Kovitvadhi and Uthaiwan Kovitvadhi",reviewType:"peer-reviewed",authors:[{id:"77102",title:"Dr.",name:"Uthaiwan",middleName:null,surname:"Kovitvadhi",fullName:"Uthaiwan Kovitvadhi",slug:"uthaiwan-kovitvadhi"},{id:"123920",title:"Dr.",name:"Satit",middleName:null,surname:"Kovitvadhi",fullName:"Satit Kovitvadhi",slug:"satit-kovitvadhi"}]},{id:"27114",type:"chapter",title:"An Updating of Withebait Farming (Galaxias maculatus) in Chile",slug:"a-review-of-biology-and-management-of-whitebait-galaxias-maculatus",totalDownloads:2178,totalCrossrefCites:0,signatures:"Alfonso Mardones and Patricio De los Ríos-Escalante",reviewType:"peer-reviewed",authors:[{id:"77336",title:"MSc.",name:"Alfonso",middleName:null,surname:"Mardones",fullName:"Alfonso Mardones",slug:"alfonso-mardones"},{id:"84896",title:"Prof.",name:"Patricio De los",middleName:null,surname:"Ríos-Escalante",fullName:"Patricio De los Ríos-Escalante",slug:"patricio-de-los-rios-escalante"}]},{id:"27115",type:"chapter",title:"Potency of Barnacle in Aquaculture Industry",slug:"potency-of-barnacle-in-aquaculture-industry",totalDownloads:2716,totalCrossrefCites:0,signatures:"Daniel A. López, Boris A. López, Christopher K. Pham and Eduardo J. Isidro",reviewType:"peer-reviewed",authors:[{id:"76017",title:"Dr.",name:"Daniel",middleName:"A.",surname:"Lopez",fullName:"Daniel Lopez",slug:"daniel-lopez"},{id:"82395",title:"Mr.",name:"Boris",middleName:"A.",surname:"López",fullName:"Boris López",slug:"boris-lopez"},{id:"82409",title:"MSc",name:"Christopher",middleName:"Kim",surname:"Pham",fullName:"Christopher Pham",slug:"christopher-pham"},{id:"82414",title:"Dr.",name:"Eduardo",middleName:null,surname:"Isidro",fullName:"Eduardo Isidro",slug:"eduardo-isidro"}]},{id:"27116",type:"chapter",title:"New Developments in Biotechnology and IPR in Aquaculture – Are They Sustainable?",slug:"new-developments-in-biotechnology-and-ipr-in-aquaculture-are-they-sustainable-",totalDownloads:2436,totalCrossrefCites:0,signatures:"Anne Ingeborg Myhr, G. Kristin Rosendal and Ingrid Olesen",reviewType:"peer-reviewed",authors:[{id:"30163",title:"Dr.",name:"Anne Ingeborg",middleName:null,surname:"Myhr",fullName:"Anne Ingeborg Myhr",slug:"anne-ingeborg-myhr"},{id:"84439",title:"Dr",name:"Ingrid",middleName:null,surname:"Olesen",fullName:"Ingrid Olesen",slug:"ingrid-olesen"},{id:"85432",title:"Dr.",name:"Guri",middleName:null,surname:"Kristin Rosendal",fullName:"Guri Kristin Rosendal",slug:"guri-kristin-rosendal"}]},{id:"27117",type:"chapter",title:"Culture of Harpacticoid Copepods: Understanding the Reproduction and Effect of Environmental Factors",slug:"copepods-in-aquaculture",totalDownloads:5622,totalCrossrefCites:3,signatures:"Kassim Zaleha and Ibrahim Busra",reviewType:"peer-reviewed",authors:[{id:"73665",title:"Prof.",name:"Kassim",middleName:null,surname:"Zaleha",fullName:"Kassim Zaleha",slug:"kassim-zaleha"}]},{id:"27118",type:"chapter",title:"Omics Methodologies: New Tools in Aquaculture Studies",slug:"omics-methodologies-new-tools-in-aquaculture-studies",totalDownloads:2596,totalCrossrefCites:1,signatures:"María-José Prieto-Álamo, Inmaculada Osuna-Jiménez, Nieves Abril, José Alhama, Carmen Pueyo and Juan López-Barea",reviewType:"peer-reviewed",authors:[{id:"85438",title:"Prof.",name:"María-José",middleName:null,surname:"Prieto-Álamo",fullName:"María-José Prieto-Álamo",slug:"maria-jose-prieto-alamo"}]}]},relatedBooks:[{type:"book",id:"2052",title:"Health and Environment in Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"e9bbb1af278ed9e5df351641aaf598f0",slug:"health-and-environment-in-aquaculture",bookSignature:"Edmir Daniel Carvalho, Gianmarco Silva David and Reinaldo J. Silva",coverURL:"https://cdn.intechopen.com/books/images_new/2052.jpg",editedByType:"Edited by",editors:[{id:"80438",title:"Dr.",name:"Edmir",surname:"Carvalho",slug:"edmir-carvalho",fullName:"Edmir Carvalho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"35136",title:"Transmission Biology of the Myxozoa",slug:"transmission-biology-of-the-myxozoa",signatures:"Hiroshi Yokoyama, Daniel Grabner and Sho Shirakashi",authors:[{id:"78409",title:"Dr.",name:"Hiroshi",middleName:null,surname:"Yokoyama",fullName:"Hiroshi Yokoyama",slug:"hiroshi-yokoyama"},{id:"83562",title:"Dr.",name:"Daniel",middleName:"Stefan",surname:"Grabner",fullName:"Daniel Grabner",slug:"daniel-grabner"},{id:"122643",title:"Dr.",name:"Sho",middleName:null,surname:"Shirakashi",fullName:"Sho Shirakashi",slug:"sho-shirakashi"}]},{id:"35137",title:"Metazoan Parasites of the European Sea Bass Dicentrarchus labrax (Linnaeus 1758) (Pisces: Teleostei) from Corsica",slug:"metazoan-parasites-of-the-european-sea-bass-dicentrarchus-labrax-linnaeus-1758-pisces-teleostei-from",signatures:"Laetitia Antonelli and Bernard Marchand",authors:[{id:"85377",title:"Dr.",name:"Laetitia",middleName:null,surname:"Antonelli",fullName:"Laetitia Antonelli",slug:"laetitia-antonelli"}]},{id:"35138",title:"Parasitic Diseases in Cultured Marine Fish in Northwest Mexico",slug:"parasitic-diseases-in-cultured-marine-fish-in-northwest-mexico",signatures:"Emma J. Fajer-Avila, Oscar B. Del Rio-Zaragoza and Miguel Betancourt-Lozano",authors:[{id:"74266",title:"Dr.",name:"Miguel",middleName:null,surname:"Betancourt-Lozano",fullName:"Miguel Betancourt-Lozano",slug:"miguel-betancourt-lozano"},{id:"76748",title:"Dr.",name:"Emma",middleName:"Josefina",surname:"Fajer-Ávila",fullName:"Emma Fajer-Ávila",slug:"emma-fajer-avila"},{id:"101505",title:"Dr.",name:"Oscar Basilio",middleName:null,surname:"Del Rio-Zaragoza",fullName:"Oscar Basilio Del Rio-Zaragoza",slug:"oscar-basilio-del-rio-zaragoza"}]},{id:"35139",title:"Molecular Detection and Characterization of Furunculosis and Other Aeromonas Fish Infections",slug:"molecular-detection-and-characterization-of-furunculosis-and-other-aeromonas-fish-infections",signatures:"Roxana Beaz Hidalgo and María José Figueras",authors:[{id:"79829",title:"Dr",name:"Jose",middleName:null,surname:"Figueras",fullName:"Jose Figueras",slug:"jose-figueras"},{id:"121293",title:"Dr.",name:"Roxana",middleName:null,surname:"Beaz-Hidalgo",fullName:"Roxana Beaz-Hidalgo",slug:"roxana-beaz-hidalgo"}]},{id:"35140",title:"An Overview of Virulence-Associated Factors of Gram-Negative Fish Pathogenic Bacteria",slug:"an-overview-of-virulence-associated-factors-of-gram-negative-fish-pathogenic-bacteria",signatures:"Jessica Méndez, Pilar Reimundo, David Pérez-Pascual, Roberto Navais, Esther Gómez, Desirée Cascales and José A. Guijarro",authors:[{id:"79570",title:"Prof.",name:"Jose A.",middleName:null,surname:"Guijarro",fullName:"Jose A. Guijarro",slug:"jose-a.-guijarro"},{id:"84300",title:"MSc.",name:"Jessica",middleName:null,surname:"Mendez",fullName:"Jessica Mendez",slug:"jessica-mendez"},{id:"84302",title:"MSc.",name:"Pilar",middleName:null,surname:"Reimundo",fullName:"Pilar Reimundo",slug:"pilar-reimundo"},{id:"84304",title:"MSc.",name:"David",middleName:null,surname:"Perez-Pascual",fullName:"David Perez-Pascual",slug:"david-perez-pascual"},{id:"84306",title:"MSc.",name:"Roberto",middleName:null,surname:"Navais",fullName:"Roberto Navais",slug:"roberto-navais"},{id:"84309",title:"MSc.",name:"Esther",middleName:null,surname:"Gomez",fullName:"Esther Gomez",slug:"esther-gomez"},{id:"84311",title:"MSc.",name:"Desirée",middleName:null,surname:"Cascales",fullName:"Desirée Cascales",slug:"desiree-cascales"}]},{id:"35141",title:"Antibiotics in Aquaculture – Use, Abuse and Alternatives",slug:"antibiotics-in-aquaculture-use-abuse-and-alternatives",signatures:"Jaime Romero, Carmen Gloria Feijoo and Paola Navarrete",authors:[{id:"72898",title:"Dr.",name:"Jaime",middleName:null,surname:"Romero",fullName:"Jaime Romero",slug:"jaime-romero"},{id:"79684",title:"Dr.",name:"Paola",middleName:null,surname:"Navarrete",fullName:"Paola Navarrete",slug:"paola-navarrete"},{id:"83411",title:"Dr.",name:"Carmen",middleName:null,surname:"Feijoo",fullName:"Carmen Feijoo",slug:"carmen-feijoo"}]},{id:"35142",title:"The Use of Antibiotics in Shrimp Farming",slug:"the-use-of-antibiotics-in-shrimp-farming",signatures:"M.C. Bermúdez-Almada and A. Espinosa-Plascencia",authors:[{id:"74202",title:"MSc.",name:"Carmen",middleName:null,surname:"Bermúdez-Almada",fullName:"Carmen Bermúdez-Almada",slug:"carmen-bermudez-almada"}]},{id:"35143",title:"Probiotics in Aquaculture - Benefits to the Health, Technological Applications and Safety",slug:"probiotics-in-aquaculture-benefits-to-the-health-technological-applications-and-safety",signatures:"Xuxia Zhou and Yanbo Wang",authors:[{id:"76319",title:"Dr.",name:"Yanbo",middleName:null,surname:"Wang",fullName:"Yanbo Wang",slug:"yanbo-wang"},{id:"122461",title:"Dr.",name:"Xuxia",middleName:null,surname:"Zhou",fullName:"Xuxia Zhou",slug:"xuxia-zhou"}]},{id:"35144",title:"Probiotics in Aquaculture of Kuwait - Current State and Prospect",slug:"probiotics-in-aquaculture-of-kuwait-current-state-and-prospect",signatures:"Ahmed Al-marzouk and Azad I. Saheb",authors:[{id:"84951",title:"Mr.",name:"Ahmed",middleName:"Eebrahim",surname:"Al-Marzouk",fullName:"Ahmed Al-Marzouk",slug:"ahmed-al-marzouk"},{id:"86054",title:"Dr.",name:"Azad",middleName:"Ismail",surname:"Saheb",fullName:"Azad Saheb",slug:"azad-saheb"}]},{id:"35145",title:"Use of Microarray Technology to Improve DNA Vaccines in Fish Aquaculture - The Rhabdoviral Model",slug:"use-of-microarray-technology-to-improve-dna-vaccines-in-fish-aquaculture-the-rhabdoviral-model",signatures:"P. Encinas, E. Gomez-Casado, A. Estepa and J.M. Coll",authors:[{id:"74573",title:"Dr.",name:"Julio",middleName:null,surname:"Coll",fullName:"Julio Coll",slug:"julio-coll"},{id:"79531",title:"Dr.",name:"Estepa Perez",middleName:null,surname:"Maria Amparo",fullName:"Estepa Perez Maria Amparo",slug:"estepa-perez-maria-amparo"},{id:"149247",title:"MSc.",name:"Paloma",middleName:null,surname:"Encinas",fullName:"Paloma Encinas",slug:"paloma-encinas"},{id:"149248",title:"Dr.",name:"Eduardo",middleName:null,surname:"Gomez-Casado",fullName:"Eduardo Gomez-Casado",slug:"eduardo-gomez-casado"}]},{id:"35146",title:"Fighting Virus and Parasites with Fish Cytotoxic Cells",slug:"fighting-virus-and-parasites-with-fish-cytotoxic-cells",signatures:"M. Ángeles Esteban, José Meseguer and Alberto Cuesta",authors:[{id:"72817",title:"Dr.",name:"Alberto",middleName:null,surname:"Cuesta",fullName:"Alberto Cuesta",slug:"alberto-cuesta"}]},{id:"35147",title:"Bacteriocins of Aquatic Microorganisms and Their Potential Applications in the Seafood Industry",slug:"bacteriocins-of-aquatic-microorganisms-and-their-potential-applications-in-the-seafood-industry",signatures:"Suphan Bakkal, Sandra M. Robinson and Margaret A. Riley",authors:[{id:"73438",title:"Dr.",name:"Margaret",middleName:null,surname:"Riley",fullName:"Margaret Riley",slug:"margaret-riley"},{id:"84192",title:"Dr.",name:"Suphan",middleName:null,surname:"Bakkal",fullName:"Suphan Bakkal",slug:"suphan-bakkal"},{id:"84193",title:"BSc",name:"Sandra",middleName:"M.",surname:"Robinson",fullName:"Sandra Robinson",slug:"sandra-robinson"}]},{id:"35148",title:"The Atlantic Salmon (Salmo salar) Vertebra and Cellular Pathways to Vertebral Deformities",slug:"the-atlantic-salmon-salmo-salar-vertebra-and-cellular-pathways-to-vertebral-deformities",signatures:"Elisabeth Ytteborg, Jacob Torgersen, Grete Baeverfjord and Harald Takle",authors:[{id:"83697",title:"Dr.",name:"Harald",middleName:null,surname:"Takle",fullName:"Harald Takle",slug:"harald-takle"},{id:"118808",title:"Dr.",name:"Elisabeth",middleName:null,surname:"Ytteborg",fullName:"Elisabeth Ytteborg",slug:"elisabeth-ytteborg"},{id:"119952",title:"Dr.",name:"Jacob",middleName:null,surname:"Torgersen",fullName:"Jacob Torgersen",slug:"jacob-torgersen"},{id:"119953",title:"Dr.",name:"Grete",middleName:null,surname:"Baeverfjord",fullName:"Grete Baeverfjord",slug:"grete-baeverfjord"}]},{id:"35149",title:"Ecological Features of Large Neotropical Reservoirs and Its Relation to Health of Cage Reared Fish",slug:"ecological-features-of-large-neotropical-reservoirs-and-its-relation-to-health-of-cage-reared-fish",signatures:"Edmir Daniel Carvalho, Reinaldo José da Silva, Igor Paiva Ramos, Jaciara Vanessa Krüger Paes, Augusto Seawright Zanatta, Heleno Brandão, Érica de Oliveira Penha Zica, André Batista Nobile, Aline Angelina Acosta and Gianmarco Silva David",authors:[{id:"80438",title:"Dr.",name:"Edmir",middleName:"Daniel",surname:"Carvalho",fullName:"Edmir Carvalho",slug:"edmir-carvalho"},{id:"124351",title:"Dr.",name:"Reinaldo J.",middleName:null,surname:"Silva",fullName:"Reinaldo J. Silva",slug:"reinaldo-j.-silva"},{id:"124352",title:"MSc.",name:"Igor P.",middleName:null,surname:"Ramos",fullName:"Igor P. Ramos",slug:"igor-p.-ramos"},{id:"124353",title:"Dr.",name:"Jaciara Vanessa Krüger",middleName:null,surname:"Paes",fullName:"Jaciara Vanessa Krüger Paes",slug:"jaciara-vanessa-kruger-paes"},{id:"124354",title:"Dr.",name:"Augusto S.",middleName:null,surname:"Zanatta",fullName:"Augusto S. Zanatta",slug:"augusto-s.-zanatta"},{id:"124355",title:"Dr.",name:"Heleno",middleName:null,surname:"Brandão",fullName:"Heleno Brandão",slug:"heleno-brandao"},{id:"124356",title:"Dr.",name:"Erica O.P.",middleName:null,surname:"Zica",fullName:"Erica O.P. Zica",slug:"erica-o.p.-zica"},{id:"124357",title:"MSc.",name:"André B.",middleName:null,surname:"Nobile",fullName:"André B. Nobile",slug:"andre-b.-nobile"},{id:"124358",title:"Dr.",name:"Gianmarco S.",middleName:null,surname:"David",fullName:"Gianmarco S. David",slug:"gianmarco-s.-david"}]},{id:"35150",title:"Aquacultural Safety and Health",slug:"aquacultural-safety-and-health",signatures:"Melvin L. Myers and Robert M. Durborow",authors:[{id:"77095",title:"Prof.",name:"Melvin",middleName:null,surname:"Myers",fullName:"Melvin Myers",slug:"melvin-myers"},{id:"122861",title:"Dr.",name:"Robert",middleName:null,surname:"Durborow",fullName:"Robert Durborow",slug:"robert-durborow"}]}]}],publishedBooks:[{type:"book",id:"2053",title:"Aquaculture and the Environment",subtitle:"A Shared Destiny",isOpenForSubmission:!1,hash:"896dc149c63ab74b6f76141f3ed6535d",slug:"aquaculture-and-the-environment-a-shared-destiny",bookSignature:"Barbara Sladonja",coverURL:"https://cdn.intechopen.com/books/images_new/2053.jpg",editedByType:"Edited by",editors:[{id:"88464",title:"Dr.",name:"Barbara",surname:"Sladonja",slug:"barbara-sladonja",fullName:"Barbara Sladonja"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8928",title:"Emerging Technologies, Environment and Research for Sustainable Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"9bfeadf50d4d57ea0b440f005d420752",slug:"emerging-technologies-environment-and-research-for-sustainable-aquaculture",bookSignature:"Qian Lu and Mohammad Serajuddin",coverURL:"https://cdn.intechopen.com/books/images_new/8928.jpg",editedByType:"Edited by",editors:[{id:"304473",title:"Prof.",name:"Qian",surname:"Lu",slug:"qian-lu",fullName:"Qian Lu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"612",title:"Recent Advances in Fish Farms",subtitle:null,isOpenForSubmission:!1,hash:"531750867c1b8db770f8557eaf1e21bc",slug:"recent-advances-in-fish-farms",bookSignature:"Faruk Aral and Zafer Doğu",coverURL:"https://cdn.intechopen.com/books/images_new/612.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1009",title:"Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"ed29c6b4a288a1549dc724e247930545",slug:"aquaculture",bookSignature:"Zainal Abidin Muchlisin",coverURL:"https://cdn.intechopen.com/books/images_new/1009.jpg",editedByType:"Edited by",editors:[{id:"92673",title:"Dr.",name:"Zainal",surname:"Muchlisin",slug:"zainal-muchlisin",fullName:"Zainal Muchlisin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2052",title:"Health and Environment in Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"e9bbb1af278ed9e5df351641aaf598f0",slug:"health-and-environment-in-aquaculture",bookSignature:"Edmir Daniel Carvalho, Gianmarco Silva David and Reinaldo J. Silva",coverURL:"https://cdn.intechopen.com/books/images_new/2052.jpg",editedByType:"Edited by",editors:[{id:"80438",title:"Dr.",name:"Edmir",surname:"Carvalho",slug:"edmir-carvalho",fullName:"Edmir Carvalho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"1009",title:"Aquaculture",subtitle:null,isOpenForSubmission:!1,hash:"ed29c6b4a288a1549dc724e247930545",slug:"aquaculture",bookSignature:"Zainal Abidin Muchlisin",coverURL:"https://cdn.intechopen.com/books/images_new/1009.jpg",editedByType:"Edited by",editors:[{id:"92673",title:"Dr.",name:"Zainal",surname:"Muchlisin",slug:"zainal-muchlisin",fullName:"Zainal Muchlisin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"76004",title:"Hydrogenation and Hydrogenolysis with Ruthenium Catalysts and Application to Biomass Conversion",doi:"10.5772/intechopen.97034",slug:"hydrogenation-and-hydrogenolysis-with-ruthenium-catalysts-and-application-to-biomass-conversion",body:'
1. Introduction
Life on earth inherently depends on the element carbon creating the heart of a myriad of chemical compounds that, together with water and some inorganic compounds, build living matter. Over geologic periods, life has established a dynamic equilibrium of the flows of carbon through the different geo-habitats [1]. With the rise of mankind, this balance has been undermined through the exploitation of vast amounts of fossil resources for generating heat and materials. The carbon dioxide (CO2) emissions from combustion of fossil resources have resulted in rising atmospheric CO2 concentrations and an increasingly evident change in the climate worldwide. Replacing fossil resources that at present make up more than 90% of the energy demand and the feedstock for the chemical industry [2] is one of the most pressing challenges of mankind. All our primary energy demand of annually 12.5 TW a−1 could be covered by harnessing a fraction of the 8405 TW a−1 renewable energy available annually that comprises solar, wind, geothermal, tidal and wave energy [3]. Nevertheless, a sustainable energy supply will be needed for carbon-based compounds in order to close carbon recycle streams. Biomass is a globally available resource that is considered a suitable alternative feedstock for producing basic chemical building blocks, so-called platform molecules [4], that could substitute the current fossil-based platform chemicals [5].
Biomass largely consists of complex molecules comprising mostly oxygen and other heteroatoms. Lignocellulose, the structural component of plants and the largest fraction of plant biomass, is essentially composed of cellulose, hemicellulose and lignin. Break down of the structure by depolymerisation of the corresponding molecular entities, followed by oxygen removal, yields fuels and platform chemicals for the value-chain of the chemical industry. Sustainable conversion depends on efficient conversion steps obtained ideally via catalytic processes. In this context, the catalytically highly active element ruthenium provides unique properties. Despite ruthenium being counted among the noble metals, it resembles a non-noble metal in many aspects. In metallic form, ruthenium atoms are highly polarisable. Unlike the higher homologue platinum, e.g., that has similar atomic radius, ruthenium has a much higher average electric dipole polarizability. Consequently, distinct catalytic functions can be realised with ruthenium catalysts.
To help readers understand why ruthenium catalysts are so frequently employed in biomass conversion, this chapter will first investigate the properties of ruthenium. Here, the catalytic properties of ruthenium are linked with its propensity to adsorb certain molecular entities. After exploring the interaction of adsorbed molecules with ruthenium surfaces, we will discuss the nature of selected adsorption states, the corresponding binding energies and structures of the adsorption complexes including ordering phenomena observed for molecules co-adsorbed on the ruthenium metal surface. This sets the scene for rational design of catalysts that are specific for the conversion of chemical entities in biomass. Last but not least, we will discuss selected examples for intriguing transformations of biomolecules.
To note here is that this chapter does not aim to comprehensively review the available data on catalysis with ruthenium. Nor does it attempt to summarise all data on the conversion of biomass with ruthenium catalysts. The extensive interest in this field is reflected presently by the more than 800 articles published each year on catalysis with ruthenium, more than 110 of which focus on biomass conversion. Instead, this chapter aims to summarise the catalytic principles governing hydrogenation and hydrogenolysis reactions with heterogeneous ruthenium catalysts with particular focus on applications in biomass conversion. Cited data and papers were selected to exemplify the field and illuminate the discussion.
2. Ruthenium
Ruthenium, from Latin ruthenia (“Russia”), is one of the late transition metals and is located in the periodic table in the 5th period and group 8 (Figure 1). With an abundance of 7.0 ± 0.9 ng.g−1 in the silicate shell [6], ruthenium is one of the rarest non-radioactive elements on earth. Its low abundance is due to segregation of the platinum group elements in the core of Earth that was partially compensated by addition of 0.3–0.8% of chondritic material after core formation had been complete [6]. Ruthenium is found mostly in deposits associated with the other platinum-group elements [7] and as the rare RuS2 mineral called laurite [8]. Ruthenium is a silvery white, extraordinarily hard and brittle metal. With a density of 12.45 g.cm−3 [9], ruthenium is the second lightest platinum group metal after palladium. In the electronics industry, it is used in devices for perpendicular recording [10], a technology applied in hard disks that enables high-density data storage on magnetic media.
Figure 1.
Calculated heats of formation of the (unstable) binary hydrides MnHy (n > y) for group 8–10 transition metals [12] (left) and position of ruthenium (circle) in the periodic table (right) indicating the group of noble metals (bold, grey) and the platinum group metals (dark grey).
With regard to its chemical properties, ruthenium is stable in the absence of oxygen against non-oxidising acids. Consequently, it counts as a noble metal. Even so, ruthenium resembles a non-noble metal in many respects. Similar to the other metals of the 7th, 8th and 9th group of the periodic table, ruthenium does not form stable binary hydrides under ambient conditions; this region of the periodic table is called the “hydride gap” [11]. For these elements a positive value is obtained for the heats of formation calculated for the binary hydrides (Figure 1) [12]. Nonetheless, ruthenium monohydride (RuH) is formed by reaction of the elements at pressures above 14 GPa at room temperature. It transforms to Ru3H8 at pressures of more than 50 GPa and temperatures exceeding 1000 K, adopting a cubic structure, and RuH4, when the pressure is increased above 85 GPa, crystallising in a structure comprising corner-sharing H6 octahedra [13]. Interestingly, the hydride ligand exerts a strong trans influence in ruthenium complexes (vide infra), thereby weakening the binding of ligands located in trans position [14].
Due to its ability to dissociate hydrogen on the metal surface, ruthenium, in its metallic form, finds numerous applications as a catalyst in chemical processes such as ammonia synthesis, methanation, hydrogenation or hydrogenolysis (vide infra). Moreover, it can catalyse the oxidation of alcohols to aldehydes and carbonic acids. Ruthenium compounds are distinguished for their rich coordination chemistry, and compounds with ruthenium in oxidation states between −2 and + 8 are known. The most stable and most common oxidation states are +3 and + 4. With ruthenium at an intermediate oxidation state, +2, +3 or + 4, complexes have also been obtained that, similar to other late transition metal clusters (e.g., Ni, Pd, Pt [15]; Pt [16]; Co, Rh, Ir [17]; Au [18]), comprise ruthenium-ruthenium bonds. Ruthenium complexes, like Grubbs catalyst and Noyori catalyst (vide infra), play a significant role in chemical syntheses. Likewise, ruthenium compounds are employed in olefin metathesis polymerisation of cyclic alkenes [19, 20, 21]. The perovskite mixed oxide Ba2LaRuO6 is used in automotive exhaust gas catalysts [22]. Titanium electrodes covered with a layer of RuO2 are applied in the chloralkaline electrolysis [23]. Moreover, ruthenium nanoparticles are interesting Deacon catalysts for the gas-phase oxidation of hydrogen chloride to chlorine [24].
3. Concept of catalytic function
At first sight, most catalytic systems appear to be unnecessarily complex. A look at biologic systems, however, reveals that many biological systems are built on chains of different catalysts. There, substrate molecules are passed from one enzyme to another. Thus, in the conversion of molecular oxygen, about ten different catalysts are involved before the oxidising equivalents are reacted with carbon compounds [25].
Thinking in terms of sequences of consequential reaction steps is a useful strategy to rationally design heterogeneous catalysts. A good starting point is considering the catalytic functions [26] necessary for realising the desired transformations. The dissociative adsorption of molecular hydrogen is one of the key steps for hydrogenation and hydrogenolysis reactions, the focus of this chapter. In the case of transfer hydrogenation, the concepts equally apply to suitable hydrogen surrogates. As such, dissociative adsorption of hydrogen, as one of the important steps of catalysis, will be elucidated below. With the Langmuir-Hinshelwood mechanism most prominent in catalysis with late transition metals, co-adsorption of the substrate and transfer of hydrogen atoms to an unsaturated substrate need to be considered next. Other catalytic functions important for biomass conversion are the ability of a catalyst to either cleave or form C-C, C-O or C-N bonds. This results in a list of complementary catalytic functions that are required for realising the desired transformation. Thereby it is useful to consider orthogonal catalytic functions that do not interfere with each other. Rather molecules ought to be passed from one catalytic function to the next, like in a molecular assembly line. Noteworthy, such assembly lines may involve a single material comprising different functions. Frequently the support plays an important role even when the actual transformation occurs on supported metal nanoparticles. One aspect to be considered regarding hydrogenation and hydrogenolysis reactions is spill-over of hydrogen to surface sites on the support. Another concept for realising such assembly lines involve mechanical mixtures of two or more materials that comprise different catalytic functions. An example is given below. Whereas heterogeneous ruthenium catalysts can accommodate many of these catalytic functions, homogeneous ruthenium catalysts enable unique, highly distinct catalytic transformations. Once the necessary catalytic functions have been identified, it is useful to derive the link to the desired active state and the structure of the pre-catalysts that is to be used. This provides a straightforward path for rationally designing a particular catalyst for the desired transformation.
4. Sequential reactions
Rational and straight-forward catalyst design is the foundation of systematic conceptualisation of highly active catalysts that provide extraordinary specificity for a given transformation. Such specificity is essential upon designing catalysts for biomass transformations, because the chemist typically encounters many different molecules or molecular entities rather than single types of molecules that are to be converted. If chosen in the appropriate way, the catalyst will adsorb and convert only one type of molecule or chemical entity while leaving all other molecules and chemical entities untouched. This concept is also valuable for devising catalysts for sequentially connected, mutually exclusive catalytic reactions. To develop such catalysts, the chemist needs to fundamentally understand the nature and catalytic role of active sites to guide the design of new and improved catalysts. Two examples are described here. The general principle is exemplified for a radical reaction with a MOF catalyst; the potential is then demonstrated for the hydrogenation of a multifunctional substrate over a Ru/CNT-Pt/CNT catalyst mixture.
Metal organic framework (MOF) compounds are porous materials commonly obtained by hydrothermal reaction of metal ions and bridging organic ligands [27]. MOFs combine the high porosity of a heterogeneous catalyst with the tunability of molecular functional groups. This combination of features has been exploited for the sequential oxidation of alcohols to carboxylic acids with molecular oxygen in the presence of TEMPO modified MOF UiO-68 [28]. The conversion involves two sequential oxidation steps, i.e., the aerobic oxidation of alcohols to aldehydes, and the consequential autoxidation of the aldehydes to carboxylic acids. Whereas the first step is a radical reaction, the second step is inhibited by radicals. Thus, the two reactions are mutually exclusive. Complete removal of the MOF catalyst after the first radical-catalysed aerobic oxidation step by filtration provides the radical scavenger-free conditions that are necessary for the second radical-inhibited autoxidation step. This is a beautiful example of the use of a functional heterogeneous catalyst for a sequential organic transformation.
The concept of connecting consecutive one-pot reactions with a “molecular assembly line” has been explored for the hydrogenation of bifunctional substrates A-B to products AH-BH [29]. Two catalysts were chosen in such a way that one catalyst (M1) preferentially adsorbs one of the substrate moieties, and the other catalyst (M2) preferentially adsorbs the second substrate moiety (Figure 2). In this case both catalysts function optimally, thereby yielding improved rates and selectivities compared to single or conventional bimetallic catalysts [29]. Moreover, substrate inhibition can be avoided. By adjusting the relative quantity of the two catalysts, the relative rates of the two sequential transformations can be adjusted to be equal, because this results in the highest overall rate at the lowest catalyst concentration.
Figure 2.
Concept of a molecular assembly line for catalysing the consecutive one-pot reaction of a bifunctional subtract A-B to product aH-BH with a mixture of orthogonal catalysts M1 and M2 (right) and requirements concerning the affinity for binding of the respective moieties to the metal centres M1 and M2 (table, left).
This concept has been applied successfully to the full hydrogenation of nitroaromatics to cycloaliphatic amines over a mechanical mixture of carbon nanotube (CNT)-supported Ru/CNT - Pt/CNT catalysts [29]. Noteworthy is that the aromatic ring, considered to be “soft” due to the aromatic π-system delocalised over six carbon atoms, preferentially adsorbs on ruthenium that is readily polarizable. The nitro group, considered to be “hard” due to the negative charge which is delocalised over only two oxygen atoms, preferentially adsorbs on platinum with highly shielded d-electrons. Notably, metallic Ru and Pt have similar atomic radii of 133 and 137 pm, while differing in the static average electric dipole polarizability of 9.6 and 6.4 10−24 cm3, respectively. A 95:5 mixture of the Ru/CNT (M1) and Pt/CNT (M2) catalysts provides the required equal rates for hydrogenation of the two respective moieties and optimum selectivity to the target product cyclohexylamine (Figure 3).
Figure 3.
Concept of a molecular assembly line applied to the hydrogenation of nitrobenzene (NB, A-B, blue) to cyclohexylamine (CA, aH-BH, brown) over a mixture of orthogonal catalysts Pt/CNT (M1) and Ru/CNT (M2) and time-concentration profile showing also the intermediate aniline (AN, AH-B, green) and the side product dicyclohexylamine (DA, purple) (right).
5. Catalytic transformations with ruthenium catalysts
Based on the unique catalytic functions given by heterogeneous and homogeneous ruthenium catalysts, a large number of important transformations have been realised. Many of these transformations are applied on an industrial scale. For hydrogenation and hydrogenolysis reactions, in particular, heterogeneous ruthenium catalysts are among the most frequently applied catalysts, because they provide outstanding activities and excellent selectivities.
5.1 Ammonia synthesis and methanation with ruthenium catalysts
Analogous to iron and osmium, ruthenium catalyses the formation of ammonia from nitrogen and hydrogen (Eq. 1). Ruthenium has superior catalytic activity compared to iron [30] and results in enhanced NH3 yields at lower pressures. A ruthenium catalyst, which is supported on a carbon matrix and improved by barium and caesium as promoters, has been in industrial use in two production sites in Trinidad since 1998 [31]. As the slow methanation of the carbon support [32] interferes with the process, alternative supports are preferred for ruthenium catalysts applied in ammonia synthesis. Efficiencies as close as possible to the theoretical limit are highly relevant for decentralised, islanded ammonia production plants [33, 34], where round-trip efficiencies of up to 61% can be reached [35]. An example for a highly active and stable low-temperature ammonia catalyst are ruthenium nanoparticles on a Ba-Ca(NH2)2 support [36]. At a weight hourly space velocity (WHSV) of 36 L g−1 h−1, a rate of 23.3 mmolNH3 g−1 h−1 is obtained at 300 °C and 9 bar. Such catalytic activity is about 6 times higher than that of industrial iron-based benchmark catalysts (at 340 °C) and 100 times higher than that of industrial ruthenium-based benchmark catalysts (Cs-doped Ru/MgO, at 260 °C) [36]. In addition, for the reverse reaction of ammonia cleavage, high activities are likewise important [37, 38] and imply the use of ruthenium catalysts for the upcoming production of COx-free hydrogen by ammonia cleavage in energy applications.
N2+3H2⇄2NH3→ΔHr°=−91.8kJmol−1E1
Analogous to nickel, ruthenium catalyses methanation, the production of methane from hydrogen and carbon dioxide (Eq. 2) or carbon monoxide (Eq. 3), the so-called Sabatier reaction. Water is obtained as by-product. Carbon dioxide methanation could be seen as the combination of the reverse water gas shift reaction that converts a mixture of carbon dioxide and hydrogen to carbon monoxide and water (Eq. 4), and methanation. Over ruthenium catalysts, such as Ru/Al2O3, the coproduction of CO is negligible [39]. This suggests a different reaction pathway not involving the intermediate formation of CO. Both reactants, H2 and CO2, are strongly adsorbed on the surface [39] giving rise to a Langmuir-Hinshelwood mechanism. Ruthenium catalysts are highly selective to methane and provide a very low fraction of side products, such as higher hydrocarbons, alcohols, or formic acid. Due to the exothermicity and volume reduction, the reaction is thermodynamically favoured at low temperatures and high pressures. Typical operation conditions are 200–500 °C and pressures of 10–30 bar [40]. Since ruthenium catalysts have a higher activity than nickel catalysts, they enable higher conversions at low temperature. Methanation has long been used for removing COx from the hydrogen-nitrogen syngas mixture used in ammonia production [41]. Carbon dioxide methanation is an option for biogas upgrading that constitutes an alternative to the removal of carbon dioxide [42]. Carbon dioxide methanation has also been discussed in the context of storing intermittent energy generated as a result of electricity production from renewable resources. Methane can be transported and stored in the existing natural gas grid. Therefore, methanation of carbon dioxide is being discussed as one of the promising Power-to-X technologies [43].
CO2+4H2⇄CH4+2H2O→ΔHr°=−165.12kJmol−1E2
CO+3H2⇄CH4+H2O→ΔHr°=−206.28kJmol−1E3
CO2+H2⇄CO+H2O→ΔHr°=+41.16kJmol−1E4
5.2 Hydrogenation with ruthenium catalysts
Ruthenium is an efficient catalyst for hydrogenating aromatics, acids, ketones and unsaturated nitrogen compounds. The selective hydrogenation of aromatic amines to cycloaliphatic primary amines is an industrially relevant transformation, but is impaired by formation of secondary amines and other side products. Modification of carbon nanotube (CNT)-supported ruthenium catalysts Ru/CNT catalysts with a base (LiOH) significantly improves selectivity in toluidine hydrogenation [44, 45] without decreasing the activity of the catalysts. LiOH-modified Ru/CNT catalysts can efficiently convert also other challenging substrates, such as methylnitrobenzenes [46]. The effect of LiOH is understood as (i) LiOH reducing acidic sites on the catalyst support, (ii) enhancing hydrogen dissociation and reducing hydrogen spillover from ruthenium to the support (vide infra) and (iii) shifting the adsorption mode of the substrate on the ruthenium metal nanoparticles from binding of the amine group to the aromatic ring. In a similar manner, nitro compounds are able to change the binding mode of aromatic amines to the ruthenium surface [47, 48].
5.3 Hydrogenolysis with ruthenium catalysts
The hydrogenolysis of alkanes is an important unit operation in refineries for reducing the chain length of acyclic alkanes. It also serves as a model for the hydrogenolysis of C-O and C-N bonds in various applications relevant for oil refining and biofuel generation. Cleavage of the C-C bond is preceded by a series of quasi-equilibrated dehydrogenation steps (see Figure 4 for ethane hydrogenolysis [49]). Desorption of two chemisorbed hydrogen atoms generates the necessary adsorption sites on the surface. Physisorbed ethane dissociates stepwise via CH3CH2*, *CH2CH2*, *CH2CH* to form *CHCH*. Activation of the C-C bond in *CH-CH* has a lower intrinsic barrier in further dehydrogenation. Cleavage of the C-C bond in the *CH-CH* surface intermediate is thought to be the rate limiting step. During the entire process, the surface is covered to a large extent with chemisorbed hydrogen (H*). The high hydrogen coverage also enhances the re-hydrogenation of the unsaturated fragments to produce methane that is desorbed from the surface.
Figure 4.
Calculated reaction enthalpies for the elementary steps in the hydrogenolysis of ethane on a Ru(001) surface (593 K, left) and intermediates with the lowest activation free-energy barrier relative to *CH-CH* bond activation (right) [49]. Energies are relative to a surface covered with chemisorbed hydrogen (H*); * denotes coordination to the ruthenium surface.
Similar to Ru, C-C bond cleavage in more deeply dehydrogenation intermediates is preferred for Os, Rh, Ir, and Pt relative to cleavage of the C-C bond in more saturated intermediates (Figure 4, right). Cleavage of the C-C bond in more saturated intermediates starts to compete as one moves more to the right of the periodic table. For the group 10 metals (Ni, Pd, Pt), the most favourable mechanism is C-C activation in *CHCH*, while other intermediates have activation energies of about 40 kJ mol−1 suggesting that multiple routes may coexist. For the coinage metals (Cu, Ag, Au), there is a preference for cleavage of the C-C bond in the most saturated intermediate CH3CH2*. The overall free-energy barrier for C-C bond activation is lowest for Ru providing the highest turnover rate for *CHCH* bond cleavage. Thus, the less noble metal Ru is more active than the more noble metals. This is also consistent with experimental data that show a decrease in the turnover rate in the sequence Ru > Rh > Ir > Pt [49].
5.4 Catalysis with molecular ruthenium catalysts
Some very active molecular ruthenium (pre)catalysts were developed for catalytic hydrogenation and transfer hydrogenation. Selected examples are shown in Figure 5. Ruthenium hydride complexes [50] with phosphine or diamine ligands are active for the hydrogenation of many substrates. Transfer hydrogenation with ruthenium catalysts is frequently used for the reduction of ketones to alcohols [51] and amides, imines and nitriles to amines [52, 53]. Isopropanol is commonly employed as hydrogen donor [54]. The hydrogenation and transfer hydrogenation can be stereoselective if the starting material is prochiral and a chiral complex is employed [52, 55]. However, chiral BINAP catalysts can reduce only functionalised ketones in a stereoselective manner. Whereas Noyori precatalysts of the type [RuCl2(diphosphane)(diamine)] enable the asymmetric hydrogenation of ß-keto esters as well as the reduction of prochiral ketones and aldehydes, olefins are usually not converted. The stereoselectivity is enhanced, when the substituents on the ligands differ in size. The concept of bifunctional asymmetric catalysis with ruthenium complexes has later been transferred to a variety of C-C, C-O and C-N forming reactions [56].
Figure 5.
Examples of molecular ruthenium complexes that are used in homogeneously catalysed hydrogenation and metathesis reactions.
Ruthenium is also the central metal in the Grubbs catalysts [57], which are among the most important precatalysts for olefin metathesis. There are two generations of Grubbs catalysts (Figure 5). The first generation is often employed for ring-opening polymerisation (ROMP [21]) and for the synthesis of large rings by metathesis. The second generation [58] has a much higher activity. In Grubbs-Hoveyda catalysts, one of the tricyclohexylphosphine (PCy3) ligands of the Grubbs catalysts is replaced by an aromatic ether that links to the carbon substituent. There is a wide field for ruthenium-catalysed cyclisation reactions [59]. Ruthenium N-heterocyclic carbene (NHC) complexes based on the second-generation Grubbs catalysts have also been applied in a variety of related transformations, such as hydrogenation [60], hydrosilylation, and isomerization [61]. Metathesis can also be combined with a second chemical transformation to tandem reaction sequences [61]. Likewise, living free radical polymerizations are feasible with ruthenium complexes [62]. An example is the polymerisation of methyl methacrylate with [RuCl2(PPh3)3] as a catalyst [63, 64].
6. Hydrogen adsorption on metallic ruthenium
As for the other platinum group elements, metallic ruthenium is characterised by excellent catalytic results for a variety of transformations. The interaction of molecular hydrogen with the surface of ruthenium is particularly interesting as far as catalytic hydrogenation or hydrogenolysis reactions are concerned; it will be analysed in further detail here. Accordingly, the fundamental concepts discussed here likewise are valid for transfer hydrogenation reactions.
Dissociative chemisorption of hydrogen on the surface is a pivotal step of the transformation and is often rate-limiting. The adsorption of hydrogen may be considered as competing molecular and dissociative adsorption of hydrogen (Figure 6) [65]. Molecular adsorption is governed by the van der Waals interactions between molecular dihydrogen and the ruthenium surface [66]. On a Ru(0001) surface with point group symmetry C3v [67], the four high-symmetry adsorption sites involve binding of the hydrogen molecule to a single ruthenium atom (on top), a position bridging two ruthenium atoms (brg) or three-fold coordination at fcc or hcp sites (Figure 6) [67, 68]. Physisorption attracts a charge of −0.04 electrons to the hydrogen molecule [66]. This is consistent with promotion of dissociative adsorption of hydrogen in the presence of alkaline metal cations [69]. Electron transfer to the anti-binding orbitals of hydrogen and upward shift of the transition metal d-band centre towards the Fermi level are likely explanations.
Figure 6.
Physisorption and chemisorption of molecular hydrogen on extended ruthenium surfaces and the C3v high-symmetry adsorption sites on the Ru(0001) surface on top (uCM = 0; vCM = 0), brg (1/2;1/2), fcc (2/3;1/3) and hcp (1/3,2/3) (top) [67] and changes in adsorption energy for physisorption of hydrogen Eads(H2), dissociation barrier ΔEdiss and chemisorption of hydrogen Eads(H) (physisorption vdW-DF2 + PBE level, [66], chemisorption GGA with periodic plane-wave basis set, 1 monolayer coverage, no correction for zero point energy [78].
For coordination of hydrogen in the molecular state [70], the on top site provides the highest adsorption energy of −20.3 kJ.mol−1 and the lowest dissociation barrier of 16.4 kJ.mol−1 [66]. Consequently, an entrance channel barrier is missing, and this dissociation channel appears to be active even for dissociation of H2 molecules with negligible incident energy. Nevertheless, a suitable approach of the H2 molecules to the ruthenium surface is essential for such a low dissociation barrier. Dissociation of molecular hydrogen on ruthenium is a rather slow process [69], and equilibrium is obtained only after several hours [71]. Point-like defect structures, like Ru vacancies or Ru adatoms on the surface do not seem to provide comparably low dissociation barriers. Other defects that are present at finite temperatures on the surface include steps, kinks and adatom islands [72, 73]. Low coordinated defect sites may be the preferential sites for a direct dissociative adsorption pathway on ruthenium nanoparticles [74]. Due to the low barrier, the on top site is likely the most reactive site for hydrogen dissociation on extended ruthenium surfaces [67]. For supported ruthenium catalysts, a rapid H2/D2 isotopic equilibration reaction has been reported [69]. Even so, the isotope exchange is slowed down considerably in the presence of alkaline metal cations that prevent spillover [70, 75] of hydrogen atoms to the support.
Dissociative adsorption occurs when the bonds formed between the two hydrogen atoms and the ruthenium surface are stronger than the strength of the hydrogen–hydrogen bond (460 kJ.mol−1). This is the case when the hydrogen atoms adsorb at either the fcc or the hcp hollow site (−258.6 and − 258.2 kJ.mol−1, respectively). Noteworthy is the relatively small difference in energy between the fcc and hcp hollow sites. As for extended surfaces of other late transition metals, hydrogen, thus, has a pronounced preference for binding to multi-fold coordination sites [76, 77]. As far as metal clusters and nanoparticles are concerned, the number of adsorption sites can differ, whereby specific 2-, 3-, and 4-fold coordination to surface atoms has been reported [76]. The barrier for surface diffusion [70] of hydrogen is rather small and was estimated to 13–21 kJ.mol−1. There is a small decrease of −12.1 kJ.mol−1 in adsorption energy with coverage θ increasing from partial (1/3) to monolayer coverage.
At low temperature, the catalytically active ruthenium surface is normally covered to a large extent with hydrogen. The surface coverage remains incomplete under reaction conditions even at elevated pressures. Thus, at 100 bar, a coverage θ of ca. 85% was calculated at room temperature, whereby it decreased to ca. 70% at increasing temperature (500 °C) [78]. Temperature-programmed desorption of hydrogen from ruthenium catalysts shows two distinct desorption peaks as a characteristic feature [71, 74]. The peaks represent strongly and weakly chemisorbed hydrogen, consistent with distinct NMR signals at −60 and − 30 ppm [79]. The corresponding heats of adsorption were determined to be 40–70 kJ.mol−1 (αH) and 10 kJ.mol−1 (βH), respectively, by microcalorimetry [69]. This suggests that part of the hydrogen is not dissociated over real samples. Consequently, a chemisorption stoichiometry xM exceeding unity is frequently considered (xM = 1.4 [74]; 2 [71, 80]; 5 [79]). Although surface processes dominate, subsurface hydrogen cannot be ruled out [70, 81]. Furthermore, the support can act as a reservoir for hydrogen [69].
Under catalytic conditions, surfaces are saturated by hydrogen or one or more adsorbed intermediates. This leads to strong co-adsorbate interactions. These interactions are not accounted for in kinetic models built on Langmuir isotherms. In real catalysts, however, mostly supported metal nanoparticles are employed, where these co-adsorbate interactions are lessened. The curvature of the nanoparticles allows for adlayer relaxation [82]. Thus, CO hydrogenation rates on Ru clusters are much higher at high CO coverage than predicted based on a Langmuir approach [83]. Activation of adsorbed CO by reaction with surface hydrogen results in transition states that occupy less space than [82] the pair of surface moieties that they replace. This causes the overall activation energy to decrease with increasing CO* coverage.
Interestingly, species co-adsorbed on a ruthenium surface may show a strong tendency to segregate. Thus, with carbon monoxide and hydrogen co-adsorbed on a Ru(0001) surface, the carbon monoxide molecules form islands that are surrounded by hydrogen atoms [84]. At cryogenic temperatures, the carbon monoxide molecules form triangular islands of up to 21 molecules located on the on top sites. Through this type of island formation, long-range lateral CO-H repulsive interactions are minimised. With an increase in temperature, the carbon monoxide molecules shift to the hcp sites and the island size decreases to 3–6 molecules [84]. Through this decrease in domain size, repulsive CO–CO interactions that become more prominent upon increasing the temperature are reduced. The proximity of the carbonyl and hydride adsorbate species to one another (3.0–3.7 Å distance) [84] explains the propensity of ruthenium surfaces for Fischer-Tropsch reactions. The ensuing CO bond cleavage is facilitated by the formation of partially hydrogenated CHO and COH intermediates.
7. Supports for heterogeneous ruthenium catalysts
For applicable heterogeneous catalysts, metallic ruthenium is supported in form of ruthenium nanoparticles on a suitable support. This ensures a high dispersion and a large surface area of ruthenium. Carbon supports, in particular active carbons and carbon nanotubes, and oxidic supports are frequently employed. To ensure that the ruthenium nanoparticles are immobile on the support surface under the catalytic conditions, there has to be a sufficiently strong interaction between metal nanoparticles and the support. Otherwise, there would be pronounced sintering of the ruthenium nanoparticles that would lead to gradual loss of the catalytic activity. The support also influences the electron density in the ruthenium nanoparticles, thereby lowering or increasing the Fermi level. For oxidic supports, the interaction between nanoparticles and the support cannot be too strongly pronounced, because ruthenium cations tend to diffuse into the bulk of the support material.
For carbonaceous materials anchoring sites have to be generated on the surface to anchor the ruthenium nanoparticles. Providing high surface area, active carbons and carbon nanotubes thus usually undergo an oxidative pre-treatment. As a result, oxygenated moieties are generated to which the ruthenium nanoparticles strongly bind. In this aspect, the property of ruthenium being at the borderline between noble and non-noble metals is exploited. Under more driving reductive conditions of a hydrogen atmosphere, however, the susceptibility of carbon carriers to methanation is challenging for carbon-supported ruthenium catalysts, because it leads to degradation of the carrier and sintering of the ruthenium clusters. Compared to active carbons, carbon nanotubes lend a more defined support and higher stability.
Carbon nanotubes combine physicochemical properties that make them interesting as support for ruthenium, such as high surface area, good mechanical strength, chemical and thermal stability, high heat and electric conductivity. So far, the high costs incurred by elaborate synthesis procedures [85, 86, 87, 88, 89] hinder their more widespread use as well-defined catalyst supports [90]. For immobilisation of metal nanoparticles, anchoring sites need to be generated on the surface of the carbon support. A method of preparing a Ru/CNT catalyst with supported ruthenium nanoparticles involves treatment of the CNT in refluxing nitric acid [91]. Deposition-precipitation of the ruthenium precursor Ru(NO)(NO3)x(OH)y followed by reduction of the precursor to the metal with molecular hydrogen provides well-dispersed surface-anchored Ru nanoparticles (Figure 7) [29]. Such catalysts are excellent hydrogenation and hydrogenolysis catalysts (see below).
Figure 7.
Particle size distribution of the ruthenium nanoparticles for a typical Ru/CNT catalyst and representative transmission electron microscopy images [29]. The carbon nanotubes are Baytubes C 150 P.
Oxidic supports that are frequently employed comprise silica, alumina (mostly γ-Al2O3), zirconia, ceria and the corresponding mixed oxides. Even though amorphous materials provide the necessary high surface area, they often are associated with certain distribution of surface functions. Yet as surface groups, they may be harmful in catalysis. The presence of different surface sites often leads to alternative catalytic pathways that result in reduced selectivity of the transformation. Instead, more defined support materials are nanoporous zeolites, such as zeolite Y, Beta, and ZSM-5, or mesoporous materials, such as MCM-41. The internal pore system (Table 1) provides a uniform environment for the catalytic transformation. Nevertheless, many biomolecules are too large to enter the pore system and need to be cut to molecular entities first. Catalysis at the pore mouth or using molecular catalysts is an option for the depolymerisation step.
Activated carbons
Oxidic supports
Adsorbent
Hydrophobicity index (HI)
Adsorbent
Pore size [Å]
Hydrophobicity index (HI)
Darco-KBB
26.3
Y
7.35
0
SX1G
26.2
Beta
5.95
1.4
F300
160
ZSM-5, Silicalite-1
4.46
8, 15.2
Duksan
296
MCM-41
16–42
9
Table 1.
Comparison of the hydrophobicity of carbon supports (left) and oxidic supports (right) [27]; the pore size of zeolites (Beta, Y, ZSM-5, Silicalite-1 [92]) and mesoporous materials (MCM-41 [93]) is the maximum diameter of a sphere that can diffuse through the channels.
The hydrophobicity index (HI) is a good measure for assessing the internal hydrophobicity of porous materials. HI can be determined by the competitive adsorption of a toluene-water mixture. The hydrophobicity index is defined by the ratio of the adsorption capacity for toluene (QToluene) to that of water (QWater). For comparison, the reported HIs of some activated carbons, microporous zeolites, and mesoporous materials are listed in Table 1 [27]. The hydrophobicity index (HI) of typical zeolites, such as beta, Y and ZSM-5 is low (HI = 1.4, 0, 8, respectively), which is consistent with the hydrophilic nature of the pore walls. This is attributed to a certain polarity of the zeolite walls that results from the aluminium atoms substituting a certain part of the silicon atoms. All-silica zeolites, such as Silicalite-1, are clearly more hydrophobic (HI = 15.2) and more resemble activated carbons which are commonly regarded as hydrophobic adsorbents.
Unsupported metal nanoparticles can be employed as quasi-homogeneous catalysts but need to be stabilised by ligation or generation of an electric double layer to prevent agglomeration of the nanoparticles [94]. Upon decreasing the size of the metal nanoparticles, the boundary of the metallic state is obtained for two-shell clusters of about 1.5 nm in diameter [95]. Ruthenium nanoparticles stabilised with a thin layer of ionic liquid tartaric acid tetraoctylammonium [TA2−][N+8888]2 or glycine tetraoctylammonium [Gly−][N+8888] have shown excellent catalytic properties for the hydrogenation of challenging substrates. One example is the conversion of nitrobenzene to cyclohexylamine. Catalytic activity and selectivity of the quasi-homogeneous nanoparticle catalyst resemble that of a corresponding supported Ru/C catalyst. Upon switching to the less polar ionic liquid dimethylglycine tetraoctylammonium [Me2Gly−][N+8888], the selectivity changes to the reaction intermediate aniline. This is attributed to the relative binding strength of ionic liquid and intermediates to the ruthenium surface. Thus, the use of ionic liquids as stabiliser lends a ready method to tailor the properties of the catalyst. Interestingly, ionic liquid-stabilised nanoparticles are readily supported on a mesoporous support [96, 97] thus turning the quasi-homogeneous catalyst into a true heterogeneous catalyst. Noteworthy, the catalytically active site remains in the flexible environment of the ionic liquid [98] which imparts beneficial properties to the catalyst [99]. During the chemical transformation, the active species can easily adapt to the geometry changes that occur during the path from reactant to transition and product state. Moreover, the equivalence of all catalytically active sites is readily maintained which can render enhanced selectivity. The ionic liquid then again provides a polar medium for tailoring the adsorption of the substrate molecules and desorption of the product molecules [100] that precede and succeed the catalytic reaction, respectively. Interestingly, in supported films of ionic liquid. Rates as well as chiral induction can be enhanced, as was demonstrated for the hydrogenation of the prochiral substrate acetophenone over [Ru((R)-BINAP)(PPh3)nCl3-n], n = 0, 1 [101]. A useful feature of such supported catalysts is that fixed-bed reactor technology common in continuous chemical processes can be employed [97].
8. Biomass conversion with ruthenium catalysts
About 1% of the incoming solar radiation on earth is captured for generating biomass [102]. This energy is utilised in photosynthesis [103] to build a myriad of complex molecules [104] such as carbohydrates, lignin, proteins, fats and oils, and terpenes. In this way about 170 x 109 t/a of complex substances are produced annually [105]. In plants, the radiation use efficiency is controlled by the net-photosynthetic capacity and the canopy structure [106, 107]. Cultivars with a heavy canopy and long growth period are able to harness more solar radiation [108]. A large fraction of the produced biomass is characterised by a high oxygen content (Table 2). Cellulose, a polymeric carbohydrate, and lignin a randomly linked phenolic polymer constitute a major fraction of plant biomass (around 95% [109]). Their oxygen content is much higher than that of fossil resources such as crude oil, natural gas and coal (Table 2). About 56% of the oil extracted from the resources is utilised to make liquid fuels (70.6%) for transport purposes [2]. About 14% of the oil and 8% of the gas extracted from these resources is utilised to make petrochemicals. Both fuels and many petrochemical products are characterised by a low oxygen-to-carbon ratio. Some examples are given in Table 2. Consequently, in order to exploit biomass, a controlled de-functionalisation is necessary. In particular, efficient strategies are needed to decrease the oxygen-to-carbon ratio.
Table 2.
Oxygen content of typical components of biomass in comparison to fossil resources and selected derived products.
*1 [110]; *2 increasing degree of coalification relates with decreasing O/C ratio; *3 originating from Pennsylvania [4]; *4 [111];*5 [112]; *6 [113]; *7 [114]; *8 [115]; *9 [116]; *10 [117]; *11 for global mass flows refer to [5];
At present, biorefinery routes [118, 119] have been improved to more efficiently exploit biomass feedstock. In the production of bioethanol from lignocellulosic biomass, e.g., by hydrolysis of wood with dilute acids, hexoses are obtained that are good feedstock for fermentation [4]. The target product then needs to be separated from the aqueous fermentation broth. By producing ethanol in this way, about 8.7% of the mass and 11% of the energy contained originally in the wood are found in the product [109]. The remainder are 37% by-products and 40% waste products, mostly carbon dioxide (36%) that need to be utilised or disposed. Green chemistry metrics [120], notably the E-factor and atom economy, clearly need to be improved further. One option is the direct chemical conversion of lignocellulosic biomass in a single reaction step over a multifunctional catalyst as outlined below. Such transformation follows the principles of a molecular assembly line. Thus, efficient and frequently multistep catalysis is one of the keys for realising fast and highly selective conversion of biomass [109]. Before the particular aspects of ruthenium catalysts in biomass conversion are considered, the general architecture and the availability of biomass is analysed briefly. Lignocellulose makes up the structural components of plants and a large fraction of the plant biomass available for producing platform chemicals. Wood, e.g., is essentially composed of cellulose (39–45%), hemicelluloses (27–32%) and lignin (22–31%) [121].
9. Sustainable feedstock from biomass
Cellulose is an important structural component of the cell wall of green plants, many forms of algae and the oomycetes. Many bacteria secrete it to form biofilms [122]. Plants build about 1011–1012 t/a of cellulose annually mostly in combination with hemicelluloses and lignin [123]. This makes cellulose the most abundant organic polymer on Earth [124]. Cellulose is a polysaccharide, a linear chain with the formula (C6H10O5)n consisting of 7,000–15,000 of β(1 → 4) linked D-glucose units [125].
Even though hemicellulose is a polysaccharide often associated with cellulose, cellulose and hemicellulose have distinct compositions and structures. Hemicellulose is a branched polymer but cellulose is unbranched. Whereas hemicellulose is built from diverse sugars, cellulose is derived exclusively from glucose. For instance [126], besides glucose, sugar monomers in hemicelluloses can include hexose sugars, such as mannose and galactose, and pentose sugars, such as xylose and arabinose. Unlike cellulose, the side chains in hemicelluloses are often modified with acetyl and glycosyl groups.
Lignin is a randomly linked polymer (Figure 8) comprising phenolic p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) moieties (see also Figure 9) that are linked via ether linkages (ß-O-4’, α-O-4’, 4-O-5’), biphenyl (5–5’), resinol (ß-ß’), and other condensed linkages (ß-5′, ß-1′) as well as dibenzodioxocin, and phenylcoumaran linkages [109, 127]. The complex structure of lignin is the result of the biosynthetic pathway that involves oxidation of phenolic precursors to radicals followed by radical coupling that leads to stepwise build-up of the lignin structure [128].
Figure 8.
Chemical structure of important biomass fractions, lignin (left), cellulose with 1,4-glycosidic linkages and selected hydrogen bonds (right, top) and the common molecular motif of hemicellulose (right, bottom). For the structure of lignin, the characteristic aromatic p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) moieties as well as aromatic ether linkages (-O-), dibenzodioxocin, biphenyl, resinol, and phenylcoumaran linkages [109, 127] were marked.
Figure 9.
Biomass derived platform chemicals.
The components of plant biomass are normally fractionated using biochemical [129, 130], thermochemical [131] and/or catalytic methods [132]. Lignin is particular is that respect that it is highly resistant to depolymerisation. Consequently, at present the lignin fraction is often used to a large extent as fuel for heat generation. Methods have been developed to utilise the phenolic structure for producing polymers, resins, additives, fuels and chemicals. Common methods for depolymerisation of lignin into monomeric phenolic compounds involve pyrolysis [133, 134, 135, 136], enzyme [137, 138], acid or base [139, 140] catalysed hydrolysis, and hydrogenolysis [141, 142, 143]. Catalysts based on metallic ruthenium are frequently employed in hydrolysis and hydrogenolysis of the ether linkages or hydrodeoxygenation [110, 144] of the phenol products (vide supra).
In subsequent downstream processing, the biomass fractions are converted to platform chemicals. Based on the generally accessible biomass, platform molecules (Figure 9 [4]) include organic acids, such as propionic acid, 3-hydroxypropionic acid, succinic acid, fumaric acid, itaconic acid, and levulinic acid [145], fat and oil-derived polyols, in particular glycerol, as well as sugar-derived polyols such as sorbitol and xylitol. Additional platform chemicals are alcohols such as methanol, ethanol, and propanol, cyclic ethers, such as furfural and 5-hydroxymethylfurfural, and terpenes, such as isoprene. Such platform molecules can be exploited as fuels and industrially relevant chemicals or are readily transformed into such fuels and chemicals. Ruthenium-based catalysts are frequently employed in key transformations such as hydrogenation, hydrogenolysis, and oxydehydrogenation [146]. Compared to nickel-based catalysts, ruthenium-based catalysts provide higher activity and better stability that result in lower catalyst loadings, longer lifetimes and less pronounced deactivation. Although ruthenium-based catalysts are more expensive, these costs are offset by their higher activity and their lower tendency to leach.
10. Ruthenium catalysts in cellulose conversion
While first-generation bioethanol is produced on the million t/a scale, production of second-generation bioethanol from cellulosic biomass is still in its infancy [4]. The challenge is the enzyme- or acid-catalysed hydrolysis of lignocellulosic materials to simple sugars that can be fed into fermentation, from which ethanol is separated by distillation [147]. A one-step catalytic conversion of cellulosic biomass (bagasse and corn stalk) to bioethanol has been realised with a ruthenium-based catalyst [148]. The catalyst comprises well-dispersed Ru and WOx nanoparticles on a H-ZSM-5 solid acid support. Under catalytic conditions, also highly dispersed Ru3W17 alloy nanoparticles are formed. In a cascade reaction cellulose undergoes hydrolysis on moderately acidic sites of the H-ZSM-5 support, followed by glucose retro-aldol condensation to glycolaldehyde over WOx and hydrogenation over Ru to yield ethylene glycol that is dehydrated and finally hydrogenated to ethanol on the Ru3W17 alloy sites.
Interestingly, subcritical water is an efficient reaction medium for cellulose conversion [149, 150]. Thus, cellulose is converted to polyols over ruthenium supported on crosslinked polystyrene [149, 151]. Swelling of the polymer [152] thereby facilitates access of the substrate to the catalytic sites.
A carbon-supported ruthenium hybrid catalyst with a specific surface area of 1200 m2 g−1 was employed for the direct hydrogenolytic cleavage of cellulose to sorbitol [153]. High microporosity and low acidity of the carbon support favour high dispersion of the metallic ruthenium. Interestingly, ball-milling of cellulose with carbon supported ruthenium provides enhanced conversions and selectivities to sorbitol [154, 155].
Selective conversion of cellulose to sorbitol is achieved i.a. by use of bi-functional ruthenium catalysts supported on sulphated zirconia and sulphated silica-zirconia [156]. Tetragonal zirconia, associated with generation of superacidity, is the active phase for cellulose depolymerisation that accompanies the hydrogenation function of ruthenium. Also, zeolite- [146, 157] and silica- [158] supported ruthenium nanoparticles are suitable for the hydrogenation of glucose to the sugar alcohol sorbitol.
Hydrogenolysis of sorbitol to ethylene glycol and 1,2-propanediol is obtained over bifunctional Ru-WOx/CNT catalysts [159]. Furthermore, addition of Ca(OH)2 proved beneficial for the hydrogenolysis activity.
11. Ruthenium catalysts in lignin conversion
Hydrogenolysis of lignin involves reductive bond cleavage of C-O bonds linking the phenolic moieties, thereby generating hydrogenated and therefore less reactive monomeric species. For the reduction step, ruthenium catalysts are frequently employed. A variety of reducing agents have been suggested [141, 160, 161], such as hydrogen [142], carbon monoxide, formic acid (HCOOH/NEt3 [53]), methanol, ethanol, isopropyl alcohol [54], acetonitrile, acetone. The energy needed for producing the reductant and the associated CO2-footprint ought to be taken into account when the lignin-derived products are utilised as biofuels [162]. Supercritical fluids as solvent have been claimed to produce fewer solid residues and provide higher biomass conversions [163, 164]. Catalytic transfer hydrogenolysis of corn stover lignin in supercritical ethanol with a Ru/C catalyst yields bio-oil with a high fraction of monomeric moieties [163]. The key transformation is the reductive cleavage of ether linkages. Sequential extraction with a series of solvents differing in polarity results in monomer fractions that are enriched in alkylated phenols, guaiacols, syringols and hydrogenated hydroxycinnamic acid derivatives (Figure 10).
Figure 10.
Phenol-, guaiacol-, syringol- and hydroxycinnamic acid (top row)-derived monomers typically found in lignin hydrogenolysates (bottom row).
For using bio-oils as fuel, hydrotreating is necessary for lowering the oxygen content. Hydrotreating increases stability and energy density while decreasing the viscosity of the bio-oils. Ruthenium catalysts are often used in this hydrogenolytic upgrading of bio-oils. Even though zeolites are a good support material, substituted phenols cannot enter the micropores of typical zeolites. One concept for overcoming this challenge are catalysts comprising hierarchical pore systems. Thus, Ru supported on mesoporous ZSM-5 with a characteristic pore size of 4.5–4.7 Å of the MFI lattice channels (Figure 11) [92] and the mesopore system aligned to the b-axis was found to be effective for the hydrodeoxygenation of phenolic biomolecules [144]. For comparison, the Van-der-Waals radius of the syringol molecule is estimated to be 9.88 × 7.61 Å (Figure 11) based on the distance of the outermost hydrogen atoms [165] and a Van-der-Waals radius for hydrogen of 1.04 Å [166]. Only at the channel entries do the open mesopores expose acid sites to the approach of bulky molecules necessary for catalysing the cleavage of the phenolic C-O bonds. This type of catalyst was found to effectively catalyse the hydrodeoxygenation of phenol and 2,6-dimethoxyphenol at 4.0 MPa H2-pressure and a temperature of 150 °C [144]. Conversions were > 99.5 and 97.5% after a 4 h reaction time, respectively; product selectivities to cyclohexane were accordingly 95.0 and 70.0%.
Figure 11.
Comparison of the characteristic dimensions of syringol (top right) and the three-dimensional MFI pore system of zeolite ZSM-5, here viewed down the b-direction (left; not to scale; red, oxygen atoms; orange, silicon atoms), and maximum diameter of a sphere that can diffuse through the channel system (bottom right).
12. Conclusions on biomass transformation with ruthenium catalysts
Ruthenium, a late transition element, provides catalytic pathways that make it highly promising for catalysts applied for biomass conversion. Biomass, a globally available resource, is a sustainable feedstock for producing platform chemicals, that could substitute the current fossil-based platform chemicals in the chemical industry. However, in order to implement further processes in small and large-scale biorefineries, more efficient transformations will be required. Here, the distinct catalytic functions provided by ruthenium and ruthenium complexes could open new pathways. Biomass largely consists of complex molecules that comprise oxygen and other heteroatoms. Catalytic transformations need to accommodate for these heteroatoms, because molecules with heteroatoms tend to adsorb strongly to catalytic sites possibly causing substrate- or product inhibition. However, the preferential adsorption of chemical moieties associated with heteroatoms on the catalytically active site can be exploited for directing catalytic transformations. The principle has been explored for the consecutive hydrogenation of unsaturated moieties on a molecular assemble line. In this context, it is useful considering the concept of orthogonal catalytic functions, where a catalyst preferentially binds and transforms a selected chemical entity without hindering other catalysts that may be added for realising preceding or subsequent catalytic transformations.
In this context, the catalytically highly active element ruthenium embodies unique features. Ruthenium does not form binary hydrides that are stable under usual catalytic conditions. Nevertheless, metallic ruthenium can dissociate molecular hydrogen. Under an atmosphere of hydrogen, the surface of metallic ruthenium is covered with hydrogen atoms. Adsorption states and chemical reactivity of this hydrogen is well understood. Desorption of a fraction of the hydrogen provides the empty coordination sites necessary for co-adsorption of reactant molecules. Typically following a Langmuir-Hinshelwood-type mechanism, hydrogen atoms can be transferred to unsaturated moieties. Remarkably, ruthenium can also form and cleave C-C, C-O and C-N bonds. Combined with its strong propensity for hydrogenation, this ability gives rise to hydrogenation, hydrogenolysis and hydrodeoxygenation transformations that make ruthenium catalysts so interesting for biomass conversion. Noteworthy are the distinct catalytic transformations that can be realised with ruthenium catalysts. Selected examples for intriguing transformations of biomolecules and bio-derived molecules have been discussed above.
Understanding the interaction of adsorbed molecules with ruthenium surfaces, the nature of adsorption states, binding energies and structures of the adsorption complexes lies at the heart of rational design of catalysts that are specific for the conversion of the chosen chemical entity in biomass. It is anticipated that new transformations will be realised based on the unique catalytic functions provided by heterogeneous and homogeneous ruthenium catalysts. Serving as important tools for the synthetic chemist, these transformations will bolster the use of biomass as sustainable feedstock for the chemical industry.
Acknowledgments
With financial support from the state government of North Rhine-Westphalia and the Indo-German Science & Technology Centre (IGSTC). TEM acknowledges the support of Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT. P. Tomkins and E. Gebauer-Henke are gratefully acknowledged for the characterisation of the Ru/CNT catalyst, C. Herwartz (GFE) for TEM measurements, M. Hermesmann for the literature searches on environmental impact, as well as D. Panke for drawing the chemical structure of biomass fractions.
Conflict of interest
There are no conflicts of interest to declare.
Notes
For compiling Figure 2, image 1961095 was obtained with the standard licence from Shutterstock.
Abbreviations and nomenclature
*
Surface adsorbed species
Θ
Coverage
xM
Chemisorption stoichiometry
ads
Adsorption
AN
Aniline
CA
Cyclohexylamine
CNT
Carbon nanotube
diss
Dissociation
GFE
Gemeinschaftszentrum für Elektronenmikroskopie
HI
Hydrophobicity index
M
Metal
NB
Nitrobenzene
NMR
Nuclear magnetic resonance
ROMP
Ring opening metathesis polymerisation
Beta
Zeolite Beta with BEA structure
H-ZSM-5
Zeolite ZSM-5 with MFI structure in the proton form
MCM-41
Mesoporous material
Y
Zeolite Y with FAU structure
brg
bridging adsorption site
fcc
three-fold coordination
hcp
three-fold coordination
on top
terminal adsorption site
a
annum
kJ
kilojoule
t
metric ton
TW
Terawatts
\n',keywords:"ruthenium, catalysis, reaction network, sequential reactions, hydrogen dissociation, hydrogenation, hydrogenolysis, biomass conversion",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/76004.pdf",chapterXML:"https://mts.intechopen.com/source/xml/76004.xml",downloadPdfUrl:"/chapter/pdf-download/76004",previewPdfUrl:"/chapter/pdf-preview/76004",totalDownloads:303,totalViews:0,totalCrossrefCites:0,dateSubmitted:null,dateReviewed:"March 4th 2021",datePrePublished:"April 16th 2021",datePublished:"January 26th 2022",dateFinished:"March 29th 2021",readingETA:"0",abstract:"With the rising emphasis on efficient and highly selective chemical transformations, the field of ruthenium-catalysed hydrogenation and hydrogenolysis reactions has grown tremendously over recent years. The advances are triggered by the detailed understanding of the catalytic pathways that have enabled researchers to improve known transformations and realise new transformations in biomass conversion. Starting with the properties of ruthenium, this chapter introduces the concept of the catalytic function as a basis for rational design of ruthenium catalysts. Emphasis is placed on discussing the principles of dissociative adsorption of hydrogen. The principles are then applied to the conversion of typical biomolecules such as cellulose, hemicellulose and lignin. Characteristic features make ruthenium catalysis one of the most outstanding tools for implementing sustainable chemical transformations.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/76004",risUrl:"/chapter/ris/76004",signatures:"Thomas Ernst Müller",book:{id:"6832",type:"book",title:"Ruthenium",subtitle:"An Element Loved by Researchers",fullTitle:"Ruthenium - An Element Loved by Researchers",slug:"ruthenium-an-element-loved-by-researchers",publishedDate:"January 26th 2022",bookSignature:"Hitoshi Ishida",coverURL:"https://cdn.intechopen.com/books/images_new/6832.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-917-4",printIsbn:"978-1-83962-916-7",pdfIsbn:"978-1-83962-922-8",isAvailableForWebshopOrdering:!0,editors:[{id:"210140",title:"Dr.",name:"Hitoshi",middleName:null,surname:"Ishida",slug:"hitoshi-ishida",fullName:"Hitoshi Ishida"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"327605",title:"Prof.",name:"Thomas",middleName:"Ernst",surname:"Ernst Müller",fullName:"Thomas Ernst Müller",slug:"thomas-ernst-muller",email:"mueller@ls-csc.rub.de",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/327605/images/14068_n.jpg",institution:{name:"Ruhr University Bochum",institutionURL:null,country:{name:"Germany"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Ruthenium",level:"1"},{id:"sec_3",title:"3. Concept of catalytic function",level:"1"},{id:"sec_4",title:"4. Sequential reactions",level:"1"},{id:"sec_5",title:"5. Catalytic transformations with ruthenium catalysts",level:"1"},{id:"sec_5_2",title:"5.1 Ammonia synthesis and methanation with ruthenium catalysts",level:"2"},{id:"sec_6_2",title:"5.2 Hydrogenation with ruthenium catalysts",level:"2"},{id:"sec_7_2",title:"5.3 Hydrogenolysis with ruthenium catalysts",level:"2"},{id:"sec_8_2",title:"5.4 Catalysis with molecular ruthenium catalysts",level:"2"},{id:"sec_10",title:"6. Hydrogen adsorption on metallic ruthenium",level:"1"},{id:"sec_11",title:"7. Supports for heterogeneous ruthenium catalysts",level:"1"},{id:"sec_12",title:"8. Biomass conversion with ruthenium catalysts",level:"1"},{id:"sec_13",title:"9. Sustainable feedstock from biomass",level:"1"},{id:"sec_14",title:"10. Ruthenium catalysts in cellulose conversion",level:"1"},{id:"sec_15",title:"11. Ruthenium catalysts in lignin conversion",level:"1"},{id:"sec_16",title:"12. Conclusions on biomass transformation with ruthenium catalysts",level:"1"},{id:"sec_17",title:"Acknowledgments",level:"1"},{id:"sec_20",title:"Conflict of interest",level:"1"},{id:"sec_17",title:"Notes",level:"1"},{id:"sec_18",title:"Abbreviations and nomenclature",level:"1"}],chapterReferences:[{id:"B1",body:'Tomkins P, Müller TE. Evaluating the carbon inventory, carbon fluxes and carbon cycles for a long-term sustainable world. Green Chemistry. 2019;21(15):3994-4013.'},{id:"B2",body:'The Future of Petrochemicals. IEA International Energy Agency; 2018.'},{id:"B3",body:'Jacobson MZ, Delucchi MA. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy. 2011;39(3):1154-69.'},{id:"B4",body:'Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews. 2018;118(2):505-613.'},{id:"B5",body:'Levi PG, Cullen JM. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products. Environmental Science & Technology. 2018;52(4):1725-34.'},{id:"B6",body:'Puchtel IS. Platinum Group Elements. In: White WM, editor. Encyclopedia of Geochemistry. Switzerland: Springer International Publishing; 2016.'},{id:"B7",body:'Zientek ML, Loferski PJ. Platinum-Group Elements—So Many Excellent Properties. Reston, VA; 2014. Contract No.: 2014-3064.'},{id:"B8",body:'Crundwell FK, Moats MS, Ramachandran V, Robinson TG, Davenport WG. Platinum-Group Element. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals. Surface Coating and Modification of Metallic Biomaterials. 2011. p. 1-18.'},{id:"B9",body:'Ruthenium [Internet]. Thieme Gruppe. 2006 [cited 2006/12/17]. Available from: https://roempp.thieme.de/lexicon/RD-18-02130.'},{id:"B10",body:'Yuan H, Laughlin DE, Zhu X, Lu B. Ru+oxide interlayer for perpendicular magnetic recording media. Journal of Applied Physics. 2008;103(7):07F513.'},{id:"B11",body:'Wulfsberg G. Hydrides, Alkyls, and Aryls of the Elements. Inorganic Chemistry. Sausalito, CA, US: University Science Books; 2000. p. 978.'},{id:"B12",body:'Bouten PCP, Miedema AR. On the heats of formation of the binary hydrides of transition metals. Journal of the Less Common Metals. 1980;71(1):147-60.'},{id:"B13",body:'Binns J, He Y, Donnelly M-E, Peña-Alvarez M, Wang M, Kim DY, et al. Complex Hydrogen Substructure in Semimetallic RuH4. The Journal of Physical Chemistry Letters. 2020;11(9):3390-5.'},{id:"B14",body:'Morris RH. Estimating the Wavenumber of Terminal Metal-Hydride Stretching Vibrations of Octahedral d6 Transition Metal Complexes. Inorganic Chemistry. 2018;57(21):13809-21.'},{id:"B15",body:'Soini TM, Genest A, Nikodem A, Rösch N. Hybrid Density Functionals for Clusters of Late Transition Metals: Assessing Energetic and Structural Properties. Journal of Chemical Theory and Computation. 2014;10(10):4408-16.'},{id:"B16",body:'Müller TE, Ingold F, Menzer S, Mingos DMP, Williams DJ. Platinum (I) dimers and platinum (0) triangles with polyaromatic phosphine ligands. Journal of organometallic chemistry. 1997;528(1-2):163-78.'},{id:"B17",body:'Meng X, Wang F, Jin G-X. Construction of M–M bonds in late transition metal complexes. Coordination Chemistry Reviews. 2010;254(11):1260-72.'},{id:"B18",body:'Mingos DMP. High nuclearity clusters of the transition metals and a re-evaluation of the cluster surface analogy. Journal of Cluster Science. 1992;3(4):397-409.'},{id:"B19",body:'Luh T-Y, Lin W-Y, Lai G. Determination of the Orientation of Pendants on Rigid-Rod Polymers. Chemistry – An Asian Journal. 2020;15(12):1808-18.'},{id:"B20",body:'Dragutan I, Dragutan V. Ruthenium allenylidene complexes. A promising alternative in metathesis catalysis. Platinum Metals Review. 2006;50(2):81-94.'},{id:"B21",body:'Muhlebach A, Van Der Schaaf PA, Hafner A, Kolly R, Rime F, Kimer HJ. Ruthenium catalysts for ring-opening metathesis polymerization (ROMP) and related chemistry. NATO Science Series II: Mathematics, Physics and Chemistry. 2002;56(Ring Opening Metathesis Polymerisation and Related Chemistry):23-44.'},{id:"B22",body:'Donohue PC, McCann EL, III. Novel perovskites M2IILnIIIRuVO6 as emission control catalysts. Materials Research Bulletin. 1977;12(5):519-24.'},{id:"B23",body:'Cairns JF, Hodgson DR, inventors; Imperial Chemical Industries PLC, UK . assignee. Electrode patent EP479423A1. 1992.'},{id:"B24",body:'Schmidt T, Gürtler C, Kintrup J, Müller TE, Loddenkemper T, Gerhartz F, et al., inventors; Bayer MaterialScience AG, Germany . assignee. Method for production of chlorine by gas phase oxidation on nano-structured ruthenium carrier catalysts patent WO2011012226A2. 2011.'},{id:"B25",body:'Williams RJP. Possible functions of chains of catalysts. Journal of Theoretical Biology. 1961;1(1):1-17.'},{id:"B26",body:'Heidary N, Ly KH, Kornienko N. Probing CO2 Conversion Chemistry on Nanostructured Surfaces with Operando Vibrational Spectroscopy. Nano Letters. 2019;19(8):4817-26.'},{id:"B27",body:'Xie L-H, Xu M-M, Liu X-M, Zhao M-J, Li J-R. Hydrophobic Metal–Organic Frameworks: Assessment, Construction, and Diverse Applications. Advanced Science. 2020;7(4):1901758.'},{id:"B28",body:'Kim S, Lee H-E, Suh J-M, Lim MH, Kim M. Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids. Inorganic Chemistry. 2020;59(23):17573-82.'},{id:"B29",body:'Tomkins P, Gebauer-Henke E, Müller TE. Molecular Assembly Line: Stepwise Hydrogenation of Multifunctional Substrates over Catalyst Mixtures. ChemCatChem. 2016;8(3):546-50.'},{id:"B30",body:'Saadatjou N, Jafari A, Sahebdelfar S. Ruthenium Nanocatalysts for Ammonia Synthesis: A Review. Chemical Engineering Communications. 2015;202(4):420-48.'},{id:"B31",body:'Anon. KBR’s KAAP Ammonia Plant Design, Proven in Trinidad, Available for 2000 MTPD. IP.com Journal. 2012;12(5B):68.'},{id:"B32",body:'Iost KN, Borisov VA, Temerev VL, Surovikin YV, Pavluchenko PE, Trenikhin MV, et al. Study on the metal-support interaction in the Ru/C catalysts under reductive conditions. Surfaces and Interfaces. 2018;12:95-101.'},{id:"B33",body:'Morgan E, Manwell J, McGowan J. Wind-powered ammonia fuel production for remote islands: A case study. Renewable Energy. 2014;72:51-61.'},{id:"B34",body:'Valera-Medina A, Xiao H, Owen-Jones M, David WIF, Bowen PJ. Ammonia for power. Progress in Energy and Combustion Science. 2018;69:63-102.'},{id:"B35",body:'Rouwenhorst KHR, Van der Ham AGJ, Mul G, Kersten SRA. Islanded ammonia power systems: Technology review & conceptual process design. Renewable and Sustainable Energy Reviews. 2019;114:109339.'},{id:"B36",body:'Kitano M, Inoue Y, Sasase M, Kishida K, Kobayashi Y, Nishiyama K, et al. Self-organized Ruthenium–Barium Core–Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis. Angewandte Chemie International Edition. 2018;57(10):2648-52.'},{id:"B37",body:'Ju X, Liu L, Yu P, Guo J, Zhang X, He T, et al. Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Applied Catalysis B: Environmental. 2017;211:167-75.'},{id:"B38",body:'Yao L, Shi T, Li Y, Zhao J, Ji W, Au C-T. Core–shell structured nickel and ruthenium nanoparticles: Very active and stable catalysts for the generation of COx-free hydrogen via ammonia decomposition. Catalysis Today. 2011;164(1):112-8.'},{id:"B39",body:'Garbarino G, Bellotti D, Riani P, Magistri L, Busca G. Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: Catalysts activation, behaviour and stability. International Journal of Hydrogen Energy. 2015;40(30):9171-82.'},{id:"B40",body:'Stangeland K, Kalai D, Li H, Yu Z. CO2 Methanation: The Effect of Catalysts and Reaction Conditions. Energy Procedia. 2017;105:2022-7.'},{id:"B41",body:'Wender I. Reactions of synthesis gas. Fuel Processing Technology. 1996;48(3):189-297.'},{id:"B42",body:'Jürgensen L, Ehimen EA, Born J, Holm-Nielsen JB. Dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation. Bioresource Technology. 2015;178:323-9.'},{id:"B43",body:'Hermesmann M, Grübel K, Scherotzki L, Müller TE. Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen. Renewable and Sustainable Energy Reviews. 2021;138:110644.'},{id:"B44",body:'Gebauer-Henke E, Blumenthal L, Prokofieva A, Vogt H, Voss G, Müller TE. Diastereomer control in the hydrogenation of o- and p-toluidine over ruthenium catalysts. Al’ternativnaya Energetika i Ekologiya. 2010(4):29-36.'},{id:"B45",body:'Tomkins P, Müller TE. Enhanced Selectivity in the Hydrogenation of Anilines to Cyclo-aliphatic Primary Amines over Lithium-Modified Ru/CNT Catalysts. ChemCatChem. 2018;10(6):1438-45.'},{id:"B46",body:'Kraynov A, Gebauer-Henke E, Leitner W, Müller TE. Unexpectedly high catalytic activity of ruthenium catalysts in the hydrogenation of nitrobenzene. Al\'ternativnaya Energetika i Ekologiya. 2010;4:37-44.'},{id:"B47",body:'Gebauer-Henke E, Tomkins P, Leitner W, Müller TE. Nitro Promoters for Selectivity Control in the Core Hydrogenation of Toluidines: Controlling Adsorption on Catalyst Surfaces. ChemCatChem. 2014;6(10):2910-7.'},{id:"B48",body:'Tomkins P, Gebauer-Henke E, Leitner W, Müller TE. Concurrent Hydrogenation of Aromatic and Nitro Groups over Carbon-Supported Ruthenium Catalysts. ACS Catalysis. 2015;5(1):203-9.'},{id:"B49",body:'Almithn A, Hibbitts D. Comparing Rate and Mechanism of Ethane Hydrogenolysis on Transition-Metal Catalysts. The Journal of Physical Chemistry C. 2019;123(9):5421-32.'},{id:"B50",body:'Morris RH. Physical insights into mechanistic processes in organometallic chemistry: an introduction. Faraday Discussions. 2019;220(0):10-27.'},{id:"B51",body:'Morris RH. Moving Hydrogen Using Iron Catalysts. Preprints of Papers- American Chemical Society, Division of Energy & Fuels. 2013;58(1):694-5.'},{id:"B52",body:'Václavík J, Kačer P, Kuzma M, Červený L. Opportunities Offered by Chiral η6-Arene/N-Arylsulfonyl-diamine-RuII Catalysts in the Asymmetric Transfer Hydrogenation of Ketones and Imines. Molecules. 2011;16(7):5460-95.'},{id:"B53",body:'Pan Y, Luo Z, Xu X, Zhao H, Han J, Xu L, et al. Ru-Catalyzed Deoxygenative Transfer Hydrogenation of Amides to Amines with Formic Acid/Triethylamine. Advanced Synthesis & Catalysis. 2019;361(16):3800-6.'},{id:"B54",body:'Labes R, González-Calderón D, Battilocchio C, Mateos C, Cumming GR, de Frutos O, et al. Rapid Continuous Ruthenium-Catalysed Transfer Hydrogenation of Aromatic Nitriles to Primary Amines. Synlett. 2017;28(20):2855-8.'},{id:"B55",body:'Cotman AE. Escaping from Flatland: Stereoconvergent Synthesis of Three-Dimensional Scaffolds via Ruthenium(II)-Catalyzed Noyori–Ikariya Transfer Hydrogenation. Chemistry – A European Journal. 2021;27(1):39-53.'},{id:"B56",body:'Ikariya T, Murata K, Noyori R. Bifunctional transition metal-based molecular catalysts for asymmetric syntheses. Organic & Biomolecular Chemistry. 2006;4(3):393-406.'},{id:"B57",body:'Grubbs RH, Trnka TM. Ruthenium-Catalyzed Olefin Metathesis. Ruthenium in Organic Synthesis. 2004:153-77.'},{id:"B58",body:'Beligny S, Blechert S. N-Heterocyclic Carbene–Ruthenium Complexes in Olefin Metathesis. In: Nolan SP, editor. N-Heterocyclic Carbenes in Synthesis. Weinheim: Wiley‐VCH; 2006. p. 1-25.'},{id:"B59",body:'Schmidt B. Ruthenium-Catalyzed Cyclizations: More than Just Olefin Metathesis! Angewandte Chemie International Edition. 2003;42(41):4996-9.'},{id:"B60",body:'Hey DA, Reich RM, Baratta W, Kühn FE. Current advances on ruthenium(II) N-heterocyclic carbenes in hydrogenation reactions. Coordination Chemistry Reviews. 2018;374:114-32.'},{id:"B61",body:'Burling S, Paine BM, Whittlesey MK. Ruthenium N-Heterocyclic Carbene Complexes in Organic Transformations (Excluding Metathesis). In: Nolan SP, editor. N-Heterocyclic Carbenes in Synthesis. Weinheim: Wiley‐VCH; 2006. p. 27-53.'},{id:"B62",body:'Nishikawa T, Kamigaito M, Sawamoto M. Living Radical Polymerization in Water and Alcohols: Suspension Polymerization of Methyl Methacrylate with RuCl2(PPh3)3 Complex. Macromolecules. 1999;32(7):2204-9.'},{id:"B63",body:'Ando T, Sawauchi C, Ouchi M, Kamigaito M, Sawamoto M. Amino alcohol additives for the fast living radical polymerization of methyl methacrylate with RuCl2(PPh3)3. Journal of Polymer Science Part A: Polymer Chemistry. 2003;41(22):3597-605.'},{id:"B64",body:'Hamasaki S, Kamigaito M, Sawamoto M. Amine Additives for Fast Living Radical Polymerization of Methyl Methacrylate with RuCl2(PPh3)3. Macromolecules. 2002;35(8):2934-40.'},{id:"B65",body:'Nieuwenhuys BE. Adsorption and Reactions of CO, NO, H2 and O2 on Group VIII Metal Surfaces. In: Joyner RW, van Santen RA, editors. Elementary Reaction Steps in Heterogeneous Catalysis. Dordrecht: Springer Netherlands; 1993. p. 155-77.'},{id:"B66",body:'Puisto M, Nenonen H, Puisto A, Alatalo M. Effect of van der Waals interactions on H2 dissociation on clean and defected Ru(0001) surface. The European Physical Journal B. 2013;86(9):396.'},{id:"B67",body:'Luppi M, Olsen RA, Baerends EJ. Six-dimensional potential energy surface for H2 at Ru(0001). Physical Chemistry Chemical Physics. 2006;8(6):688-96.'},{id:"B68",body:'Gutmann T, del Rosal I, Chaudret B, Poteau R, Limbach H-H, Buntkowsky G. From Molecular Complexes to Complex Metallic Nanostructures—2H Solid-State NMR Studies of Ruthenium-Containing Hydrogenation Catalysts. ChemPhysChem. 2013;14(13):3026-33.'},{id:"B69",body:'García-García FR, Bion N, Duprez D, Rodríguez-Ramos I, Guerrero-Ruiz A. H2/D2 isotopic exchange: A tool to characterize complex hydrogen interaction with carbon-supported ruthenium catalysts. Catalysis Today. 2016;259:9-18.'},{id:"B70",body:'Walaszek B, Yeping X, Adamczyk A, Breitzke H, Pelzer K, Limbach H-H, et al. 2H-solid-state-NMR study of hydrogen adsorbed on catalytically active ruthenium coated mesoporous silica materials. Solid State Nuclear Magnetic Resonance. 2009;35(3):164-71.'},{id:"B71",body:'Scholten JJF, Pijpers AP, Hustings AML. Surface Characterization of Supported and Nonsupported Hydrogenation Catalysts. Catalysis Reviews. 1985;27(1):151-206.'},{id:"B72",body:'Groß A. Theoretical Surface Science. 2 ed. Berlin Heidelberg: Springer-Verlag; 2009. XIII, 342 p.'},{id:"B73",body:'Vattuone L, Savio L, Rocca M. Bridging the structure gap: Chemistry of nanostructured surfaces at well-defined defects. Surface Science Reports. 2008;63(3):101-68.'},{id:"B74",body:'Zupanc C, Hornung A, Hinrichsen O, Muhler M. The Interaction of Hydrogen with Ru/MgO Catalysts. Journal of Catalysis. 2002;209(2):501-14.'},{id:"B75",body:'Vayssilov GN, Petrova GP, Shor EAI, Nasluzov VA, Shor AM, Petkov PS, et al. Reverse hydrogen spillover on and hydrogenation of supported metal clusters: insights from computational model studies. Physical Chemistry Chemical Physics. 2012;14(17):5879-90.'},{id:"B76",body:'Swart I, de Groot FMF, Weckhuysen BM, Gruene P, Meijer G, Fielicke A. H2 Adsorption on 3d Transition Metal Clusters: A Combined Infrared Spectroscopy and Density Functional Study. The Journal of Physical Chemistry A. 2008;112(6):1139-49.'},{id:"B77",body:'Nordlander P, Holloway S, Nørskov JK. Hydrogen adsorption on metal surfaces. Surface Science. 1984;136(1):59-81.'},{id:"B78",body:'Faglioni F, Goddard WA. Energetics of hydrogen coverage on group VIII transition metal surfaces and a kinetic model for adsorption/desorption. The Journal of Chemical Physics. 2004;122(1):014704.'},{id:"B79",body:'Bhatia S, Engelke F, Pruski M, Gerstein BC, King TS. Interaction of Hydrogen with Supported Ru Catalysts: High Pressure in Situ NMR Studies. Journal of Catalysis. 1994;147(2):455-64.'},{id:"B80",body:'Berthoud R, Délichère P, Gajan D, Lukens W, Pelzer K, Basset J-M, et al. Hydrogen and oxygen adsorption stoichiometries on silica supported ruthenium nanoparticles. Journal of Catalysis. 2008;260(2):387-91.'},{id:"B81",body:'Peden CHF, Goodman DW, Houston JE, Yates JT. Subsurface hydrogen on Ru(0001): Quantification by Cu titration. Surface Science. 1988;194(1):92-100.'},{id:"B82",body:'Almithn A, Hibbitts D. Effects of Catalyst Model and High Adsorbate Coverages in ab Initio Studies of Alkane Hydrogenolysis. ACS Catalysis. 2018;8(7):6375-87.'},{id:"B83",body:'Liu J, Hibbitts D, Iglesia E. Dense CO Adlayers as Enablers of CO Hydrogenation Turnovers on Ru Surfaces. Journal of the American Chemical Society. 2017;139(34):11789-802.'},{id:"B84",body:'Lechner BAJ, Feng X, Feibelman PJ, Cerdá JI, Salmeron M. Scanning Tunneling Microscopy Study of the Structure and Interaction between Carbon Monoxide and Hydrogen on the Ru(0001) Surface. The Journal of Physical Chemistry B. 2018;122(2):649-56.'},{id:"B85",body:'Makgabutlane B, Nthunya LN, Maubane-Nkadimeng MS, Mhlanga SD. Green synthesis of carbon nanotubes to address the water-energy-food nexus: A critical review. Journal of Environmental Chemical Engineering. 2020;9(1):104736.'},{id:"B86",body:'Omoriyekomwan JE, Tahmasebi A, Dou J, Wang R, Yu J. A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Processing Technology. 2020;214:106686.'},{id:"B87",body:'Müller TE, Reid DG, Hsu WK, Hare JP, Kroto HW, Walton DRM. Synthesis of nanotubes via catalytic pyrolysis of acetylene: A SEM study. Carbon. 1997;35(7):951-66.'},{id:"B88",body:'Reddy CK, Priya L, Saikumari G. Carbon nano tubes. Eur J Biomed Pharm Sci. 2019;6(13):201-4.'},{id:"B89",body:'Soni SK, Thomas B, Kar VR. A Comprehensive Review on CNTs and CNT-Reinforced Composites: Syntheses, Characteristics and Applications. Materials Today Communications. 2020;25:101546.'},{id:"B90",body:'Esteves LM, Oliveira HA, Passos FB. Carbon nanotubes as catalyst support in chemical vapor deposition reaction: A review. Journal of Industrial and Engineering Chemistry. 2018;65:1-12.'},{id:"B91",body:'Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008;46(6):833-40.'},{id:"B92",body:'Database of Zeolite Structures [Internet]. [cited 30.12.2020]. Available from: http://www.iza-structure.org/databases/.'},{id:"B93",body:'Jana SK, Mochizuki A, Namba S. Progress in Pore-Size Control of Mesoporous MCM-41 Molecular Sieve Using Surfactant Having Different Alkyl Chain Lengths and Various Organic Auxiliary Chemicals. Catalysis Surveys from Asia. 2004;8(1):1-13.'},{id:"B94",body:'Kraynov A, Müller TE. Concepts for the Stabilization of Metal Nanoparticles in Ionic Liquids. In: Scott, editor. Applications of Ionic Liquids in Science and Technology. 9. Tennessee: InTech; 2011. p. 235-60.'},{id:"B95",body:'Schmid G, editor. At the boundary of the metallic state. 1996: Vieweg.'},{id:"B96",body:'Gu Y, Li G. Ionic Liquids-Based Catalysis with Solids: State of the Art. Advanced Synthesis & Catalysis. 2009;351(6):817-47.'},{id:"B97",body:'Meijboom R, Haumann M, Müller TE, Szesni N. Synthetic methodologies for supported ionic liquid materials. In: Fehrmann R, Riisager A, Haumann M, editors. Supported Ionic Liquids. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. p. 75-93.'},{id:"B98",body:'Sievers C, Jimenez O, Müller TE, Steuernagel S, Lercher JA. Formation of Solvent Cages around Organometallic Complexes in Thin Films of Supported Ionic Liquid. Journal of the American Chemical Society. 2006;128(43):13990-1.'},{id:"B99",body:'Müller TE. Supported Ionic Liquids as Part of a Building-Block System for Tailored Catalysts. Supported Ionic Liquids. Wiley Online Books. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. p. 209-32.'},{id:"B100",body:'Jimenez O, Müller TE, Lercher JA. Tailoring Adsorption—Desorption Properties of Hydroamination Catalysts with Ionic Liquids. Ionic Liquids in Organic Synthesis. ACS Symposium Series. 950: American Chemical Society; 2007. p. 267-80.'},{id:"B101",body:'Fow KL, Jaenicke S, Müller TE, Sievers C. Enhanced enantioselectivity of chiral hydrogenation catalysts after immobilisation in thin films of ionic liquid. Journal of Molecular Catalysis A: Chemical. 2008;279(2):239-47.'},{id:"B102",body:'Goldstein IS. Chemicals from cellulose. In Goldstein IS, editor. Organic chemicals from biomass. Boca Raton: CRC Press; 1981. p. 101-24.'},{id:"B103",body:'Okada K, Fujiwara S, Tsuzuki M. Energy conservation in photosynthetic microorganisms. The Journal of General and Applied Microbiology. 2020;66(2):59-65.'},{id:"B104",body:'Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. The Path Forward for Biofuels and Biomaterials. Science. 2006;311(5760):484.'},{id:"B105",body:'Kamm B, Gruber PR, Kamm M. Biorefineries-industrial processes and products. Weinheim: Wiley-VCH; 2016.'},{id:"B106",body:'Louarn G, Lecoeur J, Lebon E. A Three-dimensional Statistical Reconstruction Model of Grapevine (Vitis vinifera) Simulating Canopy Structure Variability within and between Cultivar/Training System Pairs. Annals of Botany. 2008;101(8):1167-84.'},{id:"B107",body:'Vargas LA, Andersen MN, Jensen CR, Jørgensen U. Estimation of leaf area index, light interception and biomass accumulation of Miscanthus sinensis ‘Goliath’ from radiation measurements. Biomass and Bioenergy. 2002;22(1):1-14.'},{id:"B108",body:'Bai Z, Mao S, Han Y, Feng L, Wang G, Yang B, et al. Study on Light Interception and Biomass Production of Different Cotton Cultivars. PLOS ONE. 2016;11(5):e0156335.'},{id:"B109",body:'Rinaldi R, Schüth F. Design of solid catalysts for the conversion of biomass. Energy & Environmental Science. 2009;2(6):610-26.'},{id:"B110",body:'Laskar DD, Yang B, Wang H, Lee J. Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels, Bioproducts and Biorefining. 2013;7(5):602-26.'},{id:"B111",body:'Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews. 2012;16(1):143-69.'},{id:"B112",body:'Dorrestijn E, Laarhoven LJJ, Arends IWCE, Mulder P. The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. Journal of Analytical and Applied Pyrolysis. 2000;54(1):153-92.'},{id:"B113",body:'BabeŁ K, Janasiak D, Waliszewska B, PrĄDzyŃSki W. Chemical composition of lignocellulose materials and porous structure of activated carbons. Annals of Warsaw University of Life Sciences-SGGW, Forestry and Wood Technology. 2012;77:33-40.'},{id:"B114",body:'Figueiras FG, Fraga F, Pérez FF, Ríos AF. Theoretical limits of oxygen:carbon and oxygen:nitrogen ratios during photosynthesis and mineralisation of organic matter in the sea. Scientia Marina. 1998;62(1-2):161-8.'},{id:"B115",body:'Moore TR, Large D, Talbot J, Wang M, Riley JL. The Stoichiometry of Carbon, Hydrogen, and Oxygen in Peat. Journal of Geophysical Research: Biogeosciences. 2018;123(10):3101-10.'},{id:"B116",body:'Strel’nikova EB, Goncharov IV, Serebrennikova OV. Concentration and distribution of oxygen-containing compounds in crude oils from the southeastern part of Western Siberia. Petroleum Chemistry. 2012;52(4):278-83.'},{id:"B117",body:'Guo K, Zhang Y, Shi Q, Yu Z. The Effect of Carbon-Supported Nickel Nanoparticles in the Reduction of Carboxylic Acids for in Situ Upgrading of Heavy Crude Oil. Energy & Fuels. 2017;31(6):6045-55.'},{id:"B118",body:'Wagemann, K. et al. Roadmap Bioraffinerien. Berlin: Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV), Bundesministerium für Bildung und Forschung (BMBF), Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Bundesministerium für Wirtschaft undEnergie (BMWi); 2014.'},{id:"B119",body:'Chaturvedi T, Torres AI, Stephanopoulos G, Thomsen MH, Schmidt JE. Developing Process Designs for Biorefineries—Definitions, Categories, and Unit Operations. Energies. 2020;13(6):1493.'},{id:"B120",body:'Sheldon RA. Biocatalysis and Green Chemistry. In: Patel, RN, editor. Green Biocatalysis. Hoboken: Wiley & Sons Ltd; 2016:1-15.'},{id:"B121",body:'Sjostrom E. Wood chemistry: fundamentals and applications. London: Academic Press; 2013. 293 p.'},{id:"B122",body:'Sun L, Vella P, Schnell R, Polyakova A, Bourenkov G, Li F, et al. Structural and Functional Characterization of the BcsG Subunit of the Cellulose Synthase in Salmonella typhimurium. Journal of Molecular Biology. 2018;430(18, Part B):3170-89.'},{id:"B123",body:'Yang P, Kobayashi H, Fukuoka A. Recent Developments in the Catalytic Conversion of Cellulose into Valuable Chemicals. Chinese Journal of Catalysis. 2011;32(5):716-22.'},{id:"B124",body:'Pontes MH, Lee E-J, Choi J, Groisman EA. Salmonella promotes virulence by repressing cellulose production. Proceedings of the National Academy of Sciences. 2015;112(16):5183.'},{id:"B125",body:'Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. Arabidopsis Book. 2014;12:e0169-e.'},{id:"B126",body:'Berglund J, Angles d\'Ortoli T, Vilaplana F, Widmalm G, Bergenstråhle-Wohlert M, Lawoko M, et al. A molecular dynamics study of the effect of glycosidic linkage type in the hemicellulose backbone on the molecular chain flexibility. The Plant Journal. 2016;88(1):56-70.'},{id:"B127",body:'Schulze M, Bergs M, Monakhova Y, Diehl B, Konow C, Völkering G, et al. Lignins Isolated via Catalyst-free Organosolv Pulping from Miscanthus x giganteus, M. sinensis, M. robustus and M. nagara: A Comparative Study. Preprints 2021:2021010181.'},{id:"B128",body:'Crestini C, Melone F, Sette M, Saladino R. Milled Wood Lignin: A Linear Oligomer. Biomacromolecules. 2011;12(11):3928-35.'},{id:"B129",body:'Song B, Lin R, Lam CH, Wu H, Tsui T-H, Yu Y. Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renewable and Sustainable Energy Reviews. 2021;135:110370.'},{id:"B130",body:'Hiras J, Wu Y-W, Deng K, Nicora CD, Aldrich JT, Frey D, et al. Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis. mBio. 2016;7(4):e01106-16.'},{id:"B131",body:'Solarte-Toro JC, González-Aguirre JA, Poveda Giraldo JA, Cardona Alzate CA. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading. Renewable and Sustainable Energy Reviews. 2021;136:110376.'},{id:"B132",body:'Morales G, Iglesias J, Melero JA. Sustainable catalytic conversion of biomass for the production of biofuels and bioproducts. Catalysts. 2020;10(5):581.'},{id:"B133",body:'Li W, Wanninayake N, Gao X, Li M, Pu Y, Kim D-Y, et al. Mechanistic Insight into Lignin Slow Pyrolysis by Linking Pyrolysis Chemistry and Carbon Material Properties. ACS Sustainable Chemistry & Engineering. 2020;8(42):15843-54.'},{id:"B134",body:'Ghysels S, Dubuisson B, Pala M, Rohrbach L, Van den Bulcke J, Heeres HJ, et al. Improving fast pyrolysis of lignin using three additives with different modes of action. Green Chemistry. 2020;22(19):6471-88.'},{id:"B135",body:'Terrell E, Dellon LD, Dufour A, Bartolomei E, Broadbelt LJ, Garcia-Perez M. A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. Industrial & Engineering Chemistry Research. 2020;59(2):526-55.'},{id:"B136",body:'Kawamoto H, Horigoshi S, Saka S. Pyrolysis reactions of various lignin model dimers. Journal of Wood Science. 2007;53(2):168-74.'},{id:"B137",body:'Dionisi D, Anderson JA, Aulenta F, McCue A, Paton G. The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. Journal of Chemical Technology & Biotechnology. 2015;90(3):366-83.'},{id:"B138",body:'Zeng Y, Zhao S, Yang S, Ding S-Y. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Current Opinion in Biotechnology. 2014;27:38-45.'},{id:"B139",body:'Beauchet R, Monteil-Rivera F, Lavoie JM. Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresource Technology. 2012;121:328-34.'},{id:"B140",body:'Evstigneyev EI, Shevchenko SM. Lignin valorization and cleavage of arylether bonds in chemical processing of wood: a mini-review. Wood Science and Technology. 2020;54(4):787-820.'},{id:"B141",body:'Margellou A, Triantafyllidis KS. Catalytic Transfer Hydrogenolysis Reactions for Lignin Valorization to Fuels and Chemicals. Catalysts. 2019;9(1):43.'},{id:"B142",body:'Jing Y, Dong L, Guo Y, Liu X, Wang Y. Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen. ChemSusChem. 2020;13(17):4181-98.'},{id:"B143",body:'Chen X, Guan W, Tsang C-W, Hu H, Liang C. Lignin Valorizations with Ni Catalysts for Renewable Chemicals and Fuels Productions. Catalysts. 2019;9(6):488.'},{id:"B144",body:'Wang L, Zhang J, Yi X, Zheng A, Deng F, Chen C, et al. Mesoporous ZSM-5 Zeolite-Supported Ru Nanoparticles as Highly Efficient Catalysts for Upgrading Phenolic Biomolecules. ACS Catalysis. 2015;5(5):2727-34.'},{id:"B145",body:'Fiorani G, Crestini C, Selva M, Perosa A. Advancements and Complexities in the Conversion of Lignocellulose Into Chemicals and Materials. Frontiers in Chemistry. 2020;8:797.'},{id:"B146",body:'Mishra DK, Dabbawala AA, Park JJ, Jhung SH, Hwang J-S. Selective hydrogenation of d-glucose to d-sorbitol over HY zeolite supported ruthenium nanoparticles catalysts. Catalysis Today. 2014;232:99-107.'},{id:"B147",body:'Ziolkowska JR. Chapter 1 - Biofuels technologies: An overview of feedstocks, processes, and technologies. In: Ren J, Scipioni A, Manzardo A, Liang H, editors. Biofuels for a More Sustainable Future. Amsterdam: Elsevier; 2020. p. 1-19.'},{id:"B148",body:'Li C, Xu G, Wang C, Ma L, Qiao Y, Zhang Y, et al. One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WOx/HZSM-5. Green Chem. 2019;21(9):2234-9.'},{id:"B149",body:'Manaenkov OV, Kislitza OV, Filatova AE, Doluda VY, Sulman EM, Sidorov AI, et al. Cellulose conversion to polyols in subcritical water. Russian Journal of Physical Chemistry B. 2016;10(7):1116-22.'},{id:"B150",body:'Matveeva VG, Sulman EM, Manaenkov OV, Filatova AE, Kislitza OV, Sidorov AI, et al. Hydrolytic hydrogenation of cellulose in subcritical water with the use of the Ru-containing polymeric catalysts. Catalysis Today. 2017;280:45-50.'},{id:"B151",body:'Dabbawala AA, Mishra DK, Hwang J-S. Selective hydrogenation of D-glucose using amine functionalized nanoporous polymer supported Ru nanoparticles based catalyst. Catalysis Today. 2016;265:163-73.'},{id:"B152",body:'Martinuzzi S, Cozzula D, Centomo P, Zecca M, Müller TE. The distinct role of the flexible polymer matrix in catalytic conversions over immobilised nanoparticles. RSC Advances. 2015;5(69):56181-8.'},{id:"B153",body:'Rey-Raap N, Ribeiro LS, Orfao JJdM, Figueiredo JL, Pereira MFR. Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Applied Catalysis B: Environmental. 2019;256:117826.'},{id:"B154",body:'S. Ribeiro L, Órfão JJM, R. Pereira MF. Enhanced direct production of sorbitol by cellulose ball-milling. Green Chemistry. 2015;17(5):2973-80.'},{id:"B155",body:'Ribeiro LS, Delgado JJ, de Melo Órfão JJ, Pereira MFR. Direct conversion of cellulose to sorbitol over ruthenium catalysts: Influence of the support. Catalysis Today. 2017;279:244-51.'},{id:"B156",body:'Song Z, Wang H, Niu Y, Liu X, Han J. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. Frontiers of Chemical Science and Engineering. 2015;9(4):461-6.'},{id:"B157",body:'Guo X, Wang X, Guan J, Chen X, Qin Z, Mu X, et al. Selective hydrogenation of D-glucose to D-sorbitol over Ru/ZSM-5 catalysts. Chinese Journal of Catalysis. 2014;35(5):733-40.'},{id:"B158",body:'Wang S, Wei W, Zhao Y, Li H, Li H. Ru–B amorphous alloy deposited on mesoporous silica nanospheres: An efficient catalyst for D-glucose hydrogenation to D-sorbitol. Catalysis Today. 2015;258:327-36.'},{id:"B159",body:'Guo X, Guan J, Li B, Wang X, Mu X, Liu H. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts. Scientific Reports. 2015;5:16451pp.'},{id:"B160",body:'Bouxin FP, Strub H, Dutta T, Aguilhon J, Morgan TJ, Mingardon F, et al. Elucidating transfer hydrogenation mechanisms in non-catalytic lignin depolymerization. Green Chemistry. 2018;20(15):3566-80.'},{id:"B161",body:'Wu H, Song J, Xie C, Wu C, Chen C, Han B. Efficient and Mild Transfer Hydrogenolytic Cleavage of Aromatic Ether Bonds in Lignin-Derived Compounds over Ru/C. ACS Sustainable Chemistry & Engineering. 2018;6(3):2872-7.'},{id:"B162",body:'Petrus L, Noordermeer MA. Biomass to biofuels, a chemical perspective. Green Chemistry. 2006;8(10):861-7.'},{id:"B163",body:'Kalinoski RM, Li W, Mobley JK, Asare SO, Dorrani M, Lynn BC, et al. Antimicrobial Properties of Corn Stover Lignin Fractions Derived from Catalytic Transfer Hydrogenolysis in Supercritical Ethanol with a Ru/C Catalyst. ACS Sustainable Chemistry & Engineering. 2020;8(50):18455-67.'},{id:"B164",body:'Shirai M, Osada M, Yamaguchi A, Hiyoshi N, Sato O. Chapter 15 - Utilization of Supercritical Fluid for Catalytic Thermochemical Conversions of Woody-Biomass Related Compounds. In: Pandey A, Bhaskar T, Stöcker M, Sukumaran RK, editors. Recent Advances in Thermo-Chemical Conversion of Biomass. Boston: Elsevier; 2015. p. 437-53.'},{id:"B165",body:'Müller TE, Mingos DMP. Determination of the Tolman cone angle from crystallographic parameters and a statistical analysis using the crystallographic data base. Transition Metal Chemistry. 1995;20(6):533-9.'},{id:"B166",body:'Batsanov SS. Van der Waals Radii of Hydrogen in Gas-Phase and Condensed Molecules. Structural Chemistry. 1999;10(6):395-400.'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Thomas Ernst Müller",address:"thomas.mueller@ls-csc.ruhr-uni-bochum.de",affiliation:'
Carbon Sources and Conversion, Ruhr-Universität Bochum, Bochum, Germany
'}],corrections:null},book:{id:"6832",type:"book",title:"Ruthenium",subtitle:"An Element Loved by Researchers",fullTitle:"Ruthenium - An Element Loved by Researchers",slug:"ruthenium-an-element-loved-by-researchers",publishedDate:"January 26th 2022",bookSignature:"Hitoshi Ishida",coverURL:"https://cdn.intechopen.com/books/images_new/6832.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83962-917-4",printIsbn:"978-1-83962-916-7",pdfIsbn:"978-1-83962-922-8",isAvailableForWebshopOrdering:!0,editors:[{id:"210140",title:"Dr.",name:"Hitoshi",middleName:null,surname:"Ishida",slug:"hitoshi-ishida",fullName:"Hitoshi Ishida"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"345758",title:"Mr.",name:"Vivek",middleName:null,surname:"Kumar",email:"vkvivekmdl@gmail.com",fullName:"Vivek Kumar",slug:"vivek-kumar",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Banaras Hindu University",institutionURL:null,country:{name:"India"}}},booksEdited:[],chaptersAuthored:[{id:"75498",title:"Artificial Light at Night: A Global Threat to Plant Biological Rhythms and Eco-Physiological Processes",slug:"artificial-light-at-night-a-global-threat-to-plant-biological-rhythms-and-eco-physiological-processe",abstract:"Light is crucial environmental factor for primary resource and signalling in plants and provide optimum fitness under fluctuating environments from millions of year. However, due to urbanization, and human development activities lot of excess light generated in environment during night time and responsible for anthropogenic generated pollution (ALAN; artificial night light pollution). This pollution has cause for serious problem in plants as it affects their processes and functions which are under the control of light or diurnal cycle. Plant biorhythms mostly diurnal rhythms such as stomatal movements, photosynthetic activity, and many more metabolic processes are under the control of period of light and dark, which are crucially affected by artificial light at night. Similarly, the crucial plant processes such as pollination, flowering, and yield determining processes are controlled by the diurnal cycle and ALAN affects these processes and ultimately hampers the plant fitness and development. To keep in mind the effect of artificial light at night on plant biorhythm and eco-physiological processes, this chapter will focus on the status of global artificial night light pollution and the responsible factors. Further, we will explore the details mechanisms of plant biorhythm and eco-physiological processes under artificial light at night and how this mechanism can be a global threat. Then at the end we will focus on the ANLP reducing strategies such as new light policy, advanced lightening technology such as remote sensing and lightening utilisation optimisation.",signatures:"Rekha Sodani, Udit Nandan Mishra, Subhash Chand, Indu, Hirdayesh Anuragi, Kailash Chandra, Jyoti Chauhan, Bandana Bose, Vivek Kumar, Gopal Shankar Singh, Devidutta Lenka and Rajesh Kumar Singhal",authors:[{id:"249796",title:"Dr.",name:"Kailash",surname:"Chandra",fullName:"Kailash Chandra",slug:"kailash-chandra",email:"kailash5026@gmail.com"},{id:"320400",title:"Dr.",name:"Rajesh",surname:"Singhal",fullName:"Rajesh Singhal",slug:"rajesh-singhal",email:"rajasinghal151@gmail.com"},{id:"326742",title:"Dr.",name:"Subhash",surname:"Chand",fullName:"Subhash Chand",slug:"subhash-chand",email:"subhashchand5415@gmail.com"},{id:"332315",title:"Dr.",name:"Indu",surname:null,fullName:"Indu null",slug:"indu",email:"indubachchan24@gmail.com"},{id:"337943",title:"Dr.",name:"Rekha",surname:"Sodani",fullName:"Rekha Sodani",slug:"rekha-sodani",email:"rekha.sodani093@gmail.com"},{id:"338585",title:"Dr.",name:"Udit Nandan",surname:"Mishra",fullName:"Udit Nandan Mishra",slug:"udit-nandan-mishra",email:"muditnandan@gmail.com"},{id:"338588",title:"Ms.",name:"Devidutta",surname:"Lenka",fullName:"Devidutta Lenka",slug:"devidutta-lenka",email:"devidutta.lenka16@gmail.com"},{id:"345755",title:"Mr.",name:"Hirdayesh",surname:"Anuragi",fullName:"Hirdayesh Anuragi",slug:"hirdayesh-anuragi",email:"heartyanuragi@gmail.com"},{id:"345756",title:"Dr.",name:"Jyoti",surname:"Chauhan",fullName:"Jyoti Chauhan",slug:"jyoti-chauhan",email:"jc6173000@gmail.com"},{id:"345757",title:"Prof.",name:"Bandana",surname:"Bose",fullName:"Bandana Bose",slug:"bandana-bose",email:"bbosebhu@gmail.com"},{id:"345758",title:"Mr.",name:"Vivek",surname:"Kumar",fullName:"Vivek Kumar",slug:"vivek-kumar",email:"vkvivekmdl@gmail.com"},{id:"345759",title:"Prof.",name:"Gopal Shankar",surname:"Singh",fullName:"Gopal Shankar Singh",slug:"gopal-shankar-singh",email:"gopalsingh.bhu@gmail.com"}],book:{id:"9653",title:"Light Pollution, Urbanization and Ecology",slug:"light-pollution-urbanization-and-ecology",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"249796",title:"Dr.",name:"Kailash",surname:"Chandra",slug:"kailash-chandra",fullName:"Kailash Chandra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/249796/images/14922_n.jpg",biography:"Working as Assistant Professor in Plant Breeding and Genetics at College of Agriculture, (Sri Karan Narendra Agriculture University) Fatehpur-Shekhawati-332301 Sikar. Received ICAR National Talent Scholarship, ICAR JRF and ICAR SRF during graduation (Agriculture) from University of Agricultural Sciences, Dharwad; Post graduation (Genetics and Plant Breeding) from University of Agricultural Sciences, Bangalore and Ph.D. from Banaras Hindu University, Varanasi respectively. Qualified ICAR NET in the discipline of Genetics and Plant Breeding and CSIR-UGC NET and JRF in life science stream. Research work mainly focuses on Pulse breeding, barley breeding, breeding for biotic and abiotic stress and molecular breeding.",institutionString:null,institution:{name:"Sri Karan Narendra Agriculture University, Jobner",institutionURL:null,country:{name:"India"}}},{id:"320400",title:"Dr.",name:"Rajesh",surname:"Singhal",slug:"rajesh-singhal",fullName:"Rajesh Singhal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"326742",title:"Dr.",name:"Subhash",surname:"Chand",slug:"subhash-chand",fullName:"Subhash Chand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"332315",title:"Dr.",name:"Indu",surname:null,slug:"indu",fullName:"Indu null",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"337943",title:"Dr.",name:"Rekha",surname:"Sodani",slug:"rekha-sodani",fullName:"Rekha Sodani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"338585",title:"Dr.",name:"Udit Nandan",surname:"Mishra",slug:"udit-nandan-mishra",fullName:"Udit Nandan Mishra",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"338588",title:"Ms.",name:"Devidutta",surname:"Lenka",slug:"devidutta-lenka",fullName:"Devidutta Lenka",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Assam Agricultural University",institutionURL:null,country:{name:"India"}}},{id:"345755",title:"Mr.",name:"Hirdayesh",surname:"Anuragi",slug:"hirdayesh-anuragi",fullName:"Hirdayesh Anuragi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"345756",title:"Dr.",name:"Jyoti",surname:"Chauhan",slug:"jyoti-chauhan",fullName:"Jyoti Chauhan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"345757",title:"Prof.",name:"Bandana",surname:"Bose",slug:"bandana-bose",fullName:"Bandana Bose",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Banaras Hindu University",institutionURL:null,country:{name:"India"}}}]},generic:{page:{slug:"retraction-and-correction-policy",title:"Retraction and Correction Policy",intro:"
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"
IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n
1. RETRACTIONS
\\n\\n
A Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\n
A formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\n
\\n\\t
Data fabrication
\\n\\t
Data recycling in a purportedly original research article
\\n\\t
Severe plagiarism - whether or not the plagiarism is to be deemed severe will be determined by the Academic Editor and verified by plagiarism checking software
\\n\\t
Double publication
\\n\\t
Copyright infringement - for example, if a Chapter uses copyrighted figures without permission.
\\n\\t
Unreliable findings
\\n\\t
Unethical research practices
\\n\\t
Any other practice or act considered potentially harmful to the scientific community.
\\n
\\n\\n
Publishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n\\n\\t
All relevant bibliographic information about a retracted Chapter will be given in the title.
\\n\\t
A Retraction Notice will be published as a regular book Chapter and will be given its own Chapter number.
\\n\\n\\n
\\n\\t
Authors shall be required to approve a proposed retraction of their Chapter. If Authors maintain that their Chapter should not be retracted, the Academic Editor may issue a Statement of Concern (see 2. below).
\\n
\\n\\n
1.2. REMOVALS AND CANCELLATIONS
\\n\\n
\\n\\t
Additionally, a Chapter retracted on grounds of copyright infringement (e.g. double publication) may be Removed by the publisher should the original copyright owner request such action. A Chapter retracted on grounds of its potential to harm the scientific community, for example, when a Chapter is defamatory in nature, may also be subject to removal.
\\n\\t
No formal Removal Notice will be published but a notice citing the reason for removal will be prominently displayed in place of a retracted and subsequently removed Chapter.
\\n\\t
Chapters published due to inadvertent production mistakes shall be canceled and the cancellation notice will be published.
\\n
\\n\\n
2. STATEMENTS OF CONCERN
\\n\\n
A Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\n
\\n\\t
Authors refuse to approve a retraction proposed by the Academic Editor
\\n\\t
There is inconclusive evidence of scientific misconduct
\\n\\t
Authors and their respective institutions fail or refuse to provide adequate assistance in an investigation
\\n\\t
The publication of a Statement of Concern will adhere to the Retraction Notice guidelines outlined above
\\n\\t
An article PDF for which a Statement of Concern is published will remain available online without being edited or watermarked
\\n
\\n\\n
IntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n
3. CORRECTIONS
\\n\\n
A Correction will be issued by the Academic Editor when:
\\n\\n
\\n\\t
Only a small portion of a Chapter is flawed in a way that does not severely affect any findings.
\\n\\t
It is determined that the scientific community would be better served by a Correction rather than a Retraction.
\\n\\t
Corrections will be issued in one of two distinct forms -- ERRATUM or CORRIGENDUM, depending on the origin of a mistake.
\\n
\\n\\n
3.1. ERRATUM
\\n\\n
An Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\n
A published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n
3.2. CORRIGENDUM
\\n\\n
A Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n
4. FINAL REMARKS
\\n\\n
IntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\n
In the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\n
The general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n
1. RETRACTIONS
\n\n
A Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\n
A formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\n
\n\t
Data fabrication
\n\t
Data recycling in a purportedly original research article
\n\t
Severe plagiarism - whether or not the plagiarism is to be deemed severe will be determined by the Academic Editor and verified by plagiarism checking software
\n\t
Double publication
\n\t
Copyright infringement - for example, if a Chapter uses copyrighted figures without permission.
\n\t
Unreliable findings
\n\t
Unethical research practices
\n\t
Any other practice or act considered potentially harmful to the scientific community.
\n
\n\n
Publishing of a Retraction Notice will adhere to the following guidelines:
\n\n\n\t
All relevant bibliographic information about a retracted Chapter will be given in the title.
\n\t
A Retraction Notice will be published as a regular book Chapter and will be given its own Chapter number.
\n\n\n
\n\t
Authors shall be required to approve a proposed retraction of their Chapter. If Authors maintain that their Chapter should not be retracted, the Academic Editor may issue a Statement of Concern (see 2. below).
\n
\n\n
1.2. REMOVALS AND CANCELLATIONS
\n\n
\n\t
Additionally, a Chapter retracted on grounds of copyright infringement (e.g. double publication) may be Removed by the publisher should the original copyright owner request such action. A Chapter retracted on grounds of its potential to harm the scientific community, for example, when a Chapter is defamatory in nature, may also be subject to removal.
\n\t
No formal Removal Notice will be published but a notice citing the reason for removal will be prominently displayed in place of a retracted and subsequently removed Chapter.
\n\t
Chapters published due to inadvertent production mistakes shall be canceled and the cancellation notice will be published.
\n
\n\n
2. STATEMENTS OF CONCERN
\n\n
A Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\n
\n\t
Authors refuse to approve a retraction proposed by the Academic Editor
\n\t
There is inconclusive evidence of scientific misconduct
\n\t
Authors and their respective institutions fail or refuse to provide adequate assistance in an investigation
\n\t
The publication of a Statement of Concern will adhere to the Retraction Notice guidelines outlined above
\n\t
An article PDF for which a Statement of Concern is published will remain available online without being edited or watermarked
\n
\n\n
IntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n
3. CORRECTIONS
\n\n
A Correction will be issued by the Academic Editor when:
\n\n
\n\t
Only a small portion of a Chapter is flawed in a way that does not severely affect any findings.
\n\t
It is determined that the scientific community would be better served by a Correction rather than a Retraction.
\n\t
Corrections will be issued in one of two distinct forms -- ERRATUM or CORRIGENDUM, depending on the origin of a mistake.
\n
\n\n
3.1. ERRATUM
\n\n
An Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\n
A published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n
3.2. CORRIGENDUM
\n\n
A Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n
4. FINAL REMARKS
\n\n
IntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\n
In the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\n
The general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:132968},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11649",title:"Carnivora",subtitle:null,isOpenForSubmission:!0,hash:"cfe96fa2ecf64b22057163f9896dc476",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11649.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:15},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:10},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:95},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:314},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:729,numberOfDimensionsCitations:1704,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5886,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2564,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9671,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7157,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1439,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192666,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4558,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3478,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3601,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1331,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81998",title:"Understanding the Neuropathophysiology of Psychiatry Disorder Using Transcranial Magnetic Stimulation",slug:"understanding-the-neuropathophysiology-of-psychiatry-disorder-using-transcranial-magnetic-stimulatio",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.103748",abstract:"Transcranial magnetic stimulation (TMS) is a safe and non-invasive tool that allows researchers to probe and modulate intracortical circuits. The most important aspect of TMS is its ability to directly stimulate the cortical neurons, generating action potentials, without much effect on intervening tissue. This property can be leveraged to provide insight into the pathophysiology of various neuropsychiatric disorders. Using multiple patterns of stimulations (single, paired, or repetitive), different neurophysiological parameters can be elicited. Various TMS protocol helps in understanding the neurobiological basis of disorder and specific behaviors by allowing direct probing of the cortical areas and their interconnected networks. While single-pulse TMS can provide insight into the excitability and integrity of the corticospinal tract, paired-pulse TMS (ppTMS) can provide further insight into cortico-cortical connections and repetitive TMS (rTMS) into cortical mapping and modulating plasticity.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Jitender Jakhar, Manish Sarkar and Nand Kumar"},{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:15,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81488",title:"Aggression and Sexual Behavior: Overlapping or Distinct Roles of 5-HT1A and 5-HT1B Receptors",slug:"aggression-and-sexual-behavior-overlapping-or-distinct-roles-of-5-ht1a-and-5-ht1b-receptors",totalDownloads:20,totalDimensionsCites:0,doi:"10.5772/intechopen.104872",abstract:"Distinct brain mechanisms for male aggressive and sexual behavior are present in mammalian species, including man. However, recent evidence suggests a strong connection and even overlap in the central nervous system (CNS) circuitry involved in aggressive and sexual behavior. The serotonergic system in the CNS is strongly involved in male aggressive and sexual behavior. In particular, 5-HT1A and 5-HT1B receptors seem to play a critical role in the modulation of these behaviors. The present chapter focuses on the effects of 5-HT1A- and 5-HT1B-receptor ligands in male rodent aggression and sexual behavior. Results indicate that 5-HT1B-heteroreceptors play a critical role in the modulation of male offensive behavior, although a definite role of 5-HT1A-auto- or heteroreceptors cannot be ruled out. 5-HT1A receptors are clearly involved in male sexual behavior, although it has to be yet unraveled whether 5-HT1A-auto- or heteroreceptors are important. Although several key nodes in the complex circuitry of aggression and sexual behavior are known, in particular in the medial hypothalamus, a clear link or connection to these critical structures and the serotonergic key receptors is yet to be determined. This information is urgently needed to detect and develop new selective anti-aggressive (serenic) and pro-sexual drugs for human applications.",book:{id:"10195",title:"Serotonin and the CNS - New Developments in Pharmacology and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg"},signatures:"Berend Olivier and Jocelien D.A. Olivier"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"}],onlineFirstChaptersTotal:18},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:2,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:2,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424836",title:"Dr.",name:"Orsolya",middleName:null,surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",country:{name:"Romania"}}},{id:"422262",title:"Ph.D.",name:"Paola Andrea",middleName:null,surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Guadalajara",country:{name:"Mexico"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81226",title:"Computational Methods for the Study of Peroxisomes in Health and Disease",doi:"10.5772/intechopen.103178",signatures:"Naomi van Wijk and Michal Linial",slug:"computational-methods-for-the-study-of-peroxisomes-in-health-and-disease",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80871",title:"Tumor-Derived Exosome and Immune Modulation",doi:"10.5772/intechopen.103718",signatures:"Deepak S. Chauhan, Priyanka Mudaliar, Soumya Basu, Jyotirmoi Aich and Manash K. Paul",slug:"tumor-derived-exosome-and-immune-modulation",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80326",title:"Anti-Senescence Therapy",doi:"10.5772/intechopen.101585",signatures:"Raghad Alshadidi",slug:"anti-senescence-therapy",totalDownloads:94,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79834",title:"Morphology and Formation Mechanisms of Cellular Vesicles Harvested from Blood",doi:"10.5772/intechopen.101639",signatures:"Veronika Kralj-Iglič, Gabriella Pocsfalvi and Aleš Iglič",slug:"morphology-and-formation-mechanisms-of-cellular-vesicles-harvested-from-blood",totalDownloads:53,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80195",title:"Diversity of Extracellular Vesicles (EV) in Plasma of Cancer Patients",doi:"10.5772/intechopen.101760",signatures:"Theresa L. Whiteside and Soldano Ferrone",slug:"diversity-of-extracellular-vesicles-ev-in-plasma-of-cancer-patients",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79955",title:"The Role of Extracellular Vesicles in Immunomodulation and Pathogenesis of Leishmania and Other Protozoan Infections",doi:"10.5772/intechopen.101682",signatures:"Zeynep Islek, Batuhan Turhan Bozkurt, Mehmet Hikmet Ucisik and Fikrettin Sahin",slug:"the-role-of-extracellular-vesicles-in-immunomodulation-and-pathogenesis-of-em-leishmania-em-and-othe",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80126",title:"Extracellular Vesicles as Biomarkers and Therapeutic Targets in Cancers",doi:"10.5772/intechopen.101783",signatures:"Prince Amoah Barnie, Justice Afrifa, Eric Ofori Gyamerah and Benjamin Amoani",slug:"extracellular-vesicles-as-biomarkers-and-therapeutic-targets-in-cancers",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80108",title:"Exosomes and HIV-1 Association in AIDS-Defining Patients",doi:"10.5772/intechopen.101919",signatures:"Sushanta Kumar Barik, Sanghamitra Pati, Keshar Kunja Mohanty, Sashi Bhusan Mohapatra, Srikanta Jena and Srikanth Prasad Tripathy",slug:"exosomes-and-hiv-1-association-in-aids-defining-patients",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79850",title:"Retracted: The Role of Extracellular Vesicles in the Progression of Tumors towards Metastasis",doi:"10.5772/intechopen.101635",signatures:"Bhaskar Basu and Subhajit Karmakar",slug:"retracted-the-role-of-extracellular-vesicles-in-the-progression-of-tumors-towards-metastasis",totalDownloads:155,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79828",title:"Cellular Senescence in Bone",doi:"10.5772/intechopen.101803",signatures:"Danielle Wang and Haitao Wang",slug:"cellular-senescence-in-bone",totalDownloads:93,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79775",title:"Extracellular Vesicles as Intercellular Communication Vehicles in Regenerative Medicine",doi:"10.5772/intechopen.101530",signatures:"Gaspar Bogdan Severus, Ionescu Ruxandra Florentina, Enache Robert Mihai, Dobrică Elena Codruța, Crețoiu Sanda Maria, Crețoiu Dragoș and Voinea Silviu Cristian",slug:"extracellular-vesicles-as-intercellular-communication-vehicles-in-regenerative-medicine",totalDownloads:95,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:289,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/345758",hash:"",query:{},params:{id:"345758"},fullPath:"/profiles/345758",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()