We examined the brain networks and oscillatory dynamics, inferred from EEG recordings during a word-reading task, of a group of children in grades 4 and 5 (ages 9–11), some of whom were dyslexic. We did this in order to characterize the differences in these dynamics between typical and dyslexic readers, and to begin to characterize the effect of a phonological intervention on those differences. Dyslexic readers were recorded both before and after they participated in a FastForWord (FFW) reading training program for approximately six months and typical readers were recorded once during this period. Before FFW dyslexic readers showed (i) a bottleneck in letter recognition areas, (ii) expansion in activity and connectivity into the right hemisphere not seen in typical readers, and (iii) greater engagement of higher-level language areas, even for consonant string stimuli. After FFW, dyslexic readers evinced a significant reduction in the engagement of language processing areas, and more activity and connectivity expanding to frontal areas, more resembling typical readers. Reduction of connectivity was negatively correlated with gains in reading performance, suggesting an increase in communication efficiency. Training appeared to improve the efficiency of the alternative (bilateral) pathways already used by the dyslexic readers, rather than inducing them to create new pathways more similar to those employed by typical readers.
Part of the book: Dyslexia