Metallic nanoparticles and its composites have emerged as valuable asset in all phases of material science and engineering including electronic, optics and electromagnetic domains. Silver nanoparticles (Ag NPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles due to its large surface ratio and outstanding properties with diverse field of potential applications. We demonstrated various synthesis techniques of nanocomposites, silver nanoparticles and composite based on these particles have shown great importance because of the remarkable properties (high electrical and thermal conductivity, good chemical stability and catalytic properties) of silver nanoparticles. This chapter provides various synthesis techniques for preparation of silver nanoparticles and their composites with dielectric and electrical properties in a lucid manner. The detail discussions of silver-polymer nanocomposites, emphasizing on each individual synthesis routes and properties have been carried out.
Part of the book: Silver Micro-Nanoparticles
Epoxy-based composites are of great interest among academic and industrial researchers owing to their low cost, superior mechanical properties, large specific strength, super adhesiveness with good thermal and solvent resistance in recent times. However, the effect of carbon-based nanofiller reinforced epoxy composites is of prime focus due to their significant mechanical, dielectric and electrical performances for technological applications in broad fields of nanoscience and technology. There is a greater influence on the properties of the nanofiller reinforced epoxy matrix composites depending on the concentration of various types of nanofillers. The processing techniques play a crucial role in the prediction of attractive and suitable properties of the various nanofiller reinforced epoxy composites. There are several processing methods that have been employed to accomplish a superior degree of dispersion of nanofillers in the epoxy matrix. This current chapter portrays the simultaneous focus on their preparation techniques and effect of the dielectric, electrical and mechanical properties of various carbon nanofillers (such as fullerene, carbon nanotubes (CNTs), carbon nanofibers (CNFs) & graphene) filled epoxy resin composites for a broad spectrum of technological applications. We hope this chapter will facilitate the concrete in-depth ideas to the readers on the progress of various synthesis techniques and properties of different nanofiller reinforced epoxy composite systems.
Part of the book: Epoxy-Based Composites