Optimum conductivity is essential for hydraulic fracturing due to its significant role in maintaining productivity. Hydraulic fracture networks with required fracture conductivities are decisive for the cost-effective production from unconventional shale reservoirs. Fracture conductivity reduces significantly in shale formations due to the high embedment of proppants. In this research, the mechanical properties of shale samples from Sungai Perlis beds, Terengganu, Malaysia, have been used for computational contact analysis of proppant between fracture surfaces. The finite element code in ANSYS is used to simulate the formation/proppant contact-impact behavior in the fracture surface. In the numerical analysis, a material property of proppant and formation characteristics is introduced based on experimental investigation. The influences of formation load and resulted deformation of formation are calculated by total penetration of proppant. It has been found that the formation stresses on both sides of fractured result in high penetration of proppant in the fracture surfaces, although proppant remains un-deformed.
Part of the book: Emerging Technologies in Hydraulic Fracturing and Gas Flow Modelling