New drugs targeting single mutations have been recently approved for Acute Myeloid Leukemia (AML) treatment, but allogeneic transplant still remains the only curative option in intermediate and unfavorable risk settings, because of the high incidence of relapse. Molecular analysis repertoire permits the identification of the target mutations and drives the choice of target drugs, but the etherogeneity of the disease reduces the curative potential of these agents. Primary and secondary AML resistance to new target agents is actually an intriguing issue and some of these mechanisms have already been explored and identified. Changes in mutations, release of microenvironment factors competing for the same therapeutic target or promoting the survival of blasts or of the leukemic stem cell, the upregulation of the target-downstream pathways and of proteins inhibiting the apoptosis, the inhibition of the cytochrome drug metabolism by other concomitant treatments are some of the recognized patterns of tumor escape. The knowledge of these topics might implement the model of the ‘AML umbrella trial’ study through the combinations or sequences of new target drugs, preemptively targeting known mechanisms of resistance, with the aim to improve the potential curative rates, expecially in elderly patients not eligible to transplant.
Part of the book: Acute Leukemias