Metal oxide nanowires have become the new building blocks for the next generation optoelectronic devices due to their specific features such as quantum confinement and high aspect ratio. Thus, they can be integrated as active components in diodes, field effect transistors, photodetectors, sensors, solar cells and so on. ZnO, a n-type semiconductor with a direct wide band gap (3.3 eV) and CuO, a p-type semiconductor with a narrow band gap (1.2–1.5 eV), are two metal oxides which were recently in the spotlight of the researchers for applications in the optoelectronic devices area. Therefore, in this chapter we focused on ZnO and CuO nanowires, the metal oxides nanowire arrays being prepared by straightforward wet and dry methods. Further, in order to emphasize their intrinsic transport properties, lithographic and thin films deposition techniques were used to integrate single ZnO and CuO nanowires into diodes and field effect transistors.
Part of the book: Nanowires