Estimatesa of global mercury emissions from natural and anthropogenic sources, and year(s) for which estimate is made. [Mg, megagrams; Data from Pirrone et al., 2010 and references therein]
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6598",leadTitle:null,fullTitle:"Wearable Technologies",title:"Wearable Technologies",subtitle:null,reviewType:"peer-reviewed",abstract:"This edited volume Wearable Technologies is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of computer engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the computer engineering research area. All chapters are complete in themselves but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts.",isbn:"978-1-78984-004-9",printIsbn:"978-1-78984-003-2",pdfIsbn:"978-1-83881-580-6",doi:"10.5772/intechopen.71472",price:119,priceEur:129,priceUsd:155,slug:"wearable-technologies",numberOfPages:268,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"90c456078d3c654876b0af2946804b7c",bookSignature:"Jesús Hamilton Ortiz",publishedDate:"October 3rd 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6598.jpg",numberOfDownloads:14599,numberOfWosCitations:18,numberOfCrossrefCitations:22,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:35,numberOfDimensionsCitationsByBook:2,hasAltmetrics:1,numberOfTotalCitations:75,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 13th 2017",dateEndSecondStepPublish:"November 3rd 2017",dateEndThirdStepPublish:"January 5th 2018",dateEndFourthStepPublish:"March 23rd 2018",dateEndFifthStepPublish:"May 22nd 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"97704",title:"Dr.",name:"Jesús Hamilton",middleName:null,surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesús Hamilton Ortiz",profilePictureURL:"https://mts.intechopen.com/storage/users/97704/images/3096_n.jpg",biography:"Jesus Hamilton Ortiz obtained his bachelor degree in mathematics at the Santiago de Cali University, DEA in Telecommunication engineering in Madrid Technical University, PhD in Computer Engineering in Castilla La Mancha University and PhD (c) in Telecommunication engineering from Madrid Autonomous University. He was previously assistant professor and full researcher at the Castilla La Mancha University, Jesus is CEO Close mobile R&D. In addition to this, Jesus is associate editor in IEEE, author, reviewer, editor in different topics about mobile ad hoc networks, telecommunication networks, wearables, etc. Currently, he is working on R&D projects on swarm of UAVs, swarm AUVs, RPAs, IoT an industry 4.0.",institutionString:"Close mobile R&D",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"5",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"758",title:"Sensor Technology",slug:"electrical-and-electronic-engineering-sensor-technology"}],chapters:[{id:"61315",title:"Advances in Wearable Sensing Technologies and Their Impact for Personalized and Preventive Medicine",doi:"10.5772/intechopen.76916",slug:"advances-in-wearable-sensing-technologies-and-their-impact-for-personalized-and-preventive-medicine",totalDownloads:1308,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:1,abstract:"Recent advances in miniaturized electronics, as well as mobile access to computational power, are fostering a rapid growth of wearable technologies. In particular, the application of such wearable technologies to health care enables to access more information from the patient than standard episodically testing conducted in health provider centres. Clinical, behavioural and self-monitored data collected by wearable devices provide a means for improving the early-stage detection and management of diseases as well as reducing the overall costs over more invasive standard diagnostics approaches. In this chapter, we will discuss some of the ongoing key innovations in materials science and micro/nano-fabrication technologies that are setting the basis for future personalized and preventive medicine devices and approaches. The design of wire- and power-less ultra-thin sensors fabricated on wearable biocompatible materials that can be placed in direct contact with the body tissues such as the skin will be reviewed, focusing on emerging solutions and bottlenecks. The application of nanotechnology for the fabrication of sophisticated miniaturized sensors will be presented. Exemplary sensor designs for the non-invasive measurement of ultra-low concentrations of important biomarkers will be discussed as case studies for the application of these emerging technologies.",signatures:"Noushin Nasiri and Antonio Tricoli",downloadPdfUrl:"/chapter/pdf-download/61315",previewPdfUrl:"/chapter/pdf-preview/61315",authors:[{id:"234150",title:"Dr.",name:"Noushin",surname:"Nasiri",slug:"noushin-nasiri",fullName:"Noushin Nasiri"},{id:"236706",title:"Prof.",name:"Antonio",surname:"Tricoli",slug:"antonio-tricoli",fullName:"Antonio Tricoli"}],corrections:null},{id:"60508",title:"A Proposal for New Algorithm that Defines Gait-Induced Acceleration and Gait Cycle in Daily Parkinsonian Gait Disorders",doi:"10.5772/intechopen.75483",slug:"a-proposal-for-new-algorithm-that-defines-gait-induced-acceleration-and-gait-cycle-in-daily-parkinso",totalDownloads:968,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"We developed a new device, the portable gait rhythmogram (PGR), to record up to 70 hrs of movement-induced accelerations. Acceleration values induced by various movements, averaged every 10 min, showed gamma distribution, and the mean value of this distribution was used as an index of the amount of overall movements. Furthermore, the PGR algorithm can specify gait-induced accelerations using the pattern-matching method. Analysis of the relationship between gait-induced accelerations and gait cycle duration makes it possible to quantify Parkinson’s disease (PD)-specific pathophysiological mechanisms underlying gait disorders. Patients with PD showed the following disease-specific patterns: (1) reduced amount of overall movements and (2) low amplitude of gait-induced accelerations in the early stages of the disease, which was compensated by fast stepping. Loss of compensation was associated with slow stepping gait, (3) narrow range of gait-induced acceleration amplitude and gait cycle duration, suggesting monotony, and (4) evident motor fluctuations during the day by tracing changes in the above two parameters. Prominent motor fluctuation was associated with frequent switching between slow stepping mode and active mode. These findings suggest that monitoring various movement- and gait-induced accelerations allows the detection of specific changes in PD. We conclude that continuous long-term monitoring of these parameters can provide accurate quantitative assessment of parkinsonian clinical motor signs.",signatures:"Masahiko Suzuki, Makiko Yogo, Masayo Morita, Hiroo Terashi,\nMutsumi Iijima, Mitsuru Yoneyama, Masato Takada, Hiroya Utsumi,\nYasuyuki Okuma, Akito Hayashi, Satoshi Orimo and Hiroshi Mitoma",downloadPdfUrl:"/chapter/pdf-download/60508",previewPdfUrl:"/chapter/pdf-preview/60508",authors:[{id:"210486",title:"Prof.",name:"Hiroshi",surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"},{id:"227967",title:"Dr.",name:"Masahiko",surname:"Suzuki",slug:"masahiko-suzuki",fullName:"Masahiko Suzuki"},{id:"229488",title:"Prof.",name:"Hiroo",surname:"Terashi",slug:"hiroo-terashi",fullName:"Hiroo Terashi"},{id:"240961",title:"Dr.",name:"Makiko",surname:"Yogo",slug:"makiko-yogo",fullName:"Makiko Yogo"},{id:"240962",title:"Dr.",name:"Masayo",surname:"Morita",slug:"masayo-morita",fullName:"Masayo Morita"},{id:"240964",title:"Prof.",name:"Mutsumi",surname:"Iijima",slug:"mutsumi-iijima",fullName:"Mutsumi Iijima"},{id:"240966",title:"Prof.",name:"Yasuyuki",surname:"Okuma",slug:"yasuyuki-okuma",fullName:"Yasuyuki Okuma"},{id:"240967",title:"Dr.",name:"Satoshi",surname:"Orimo",slug:"satoshi-orimo",fullName:"Satoshi Orimo"},{id:"240968",title:"Prof.",name:"Akito",surname:"Hayashi",slug:"akito-hayashi",fullName:"Akito Hayashi"},{id:"240969",title:"Prof.",name:"Hiroya",surname:"Utsumi",slug:"hiroya-utsumi",fullName:"Hiroya Utsumi"},{id:"240970",title:"BSc.",name:"Mitsuru",surname:"Yoneyama",slug:"mitsuru-yoneyama",fullName:"Mitsuru Yoneyama"},{id:"240971",title:"BSc.",name:"Masato",surname:"Takada",slug:"masato-takada",fullName:"Masato Takada"}],corrections:null},{id:"61336",title:"Wearable Technology as a Tool to Motivate Health Behaviour: A Case Study",doi:"10.5772/intechopen.77002",slug:"wearable-technology-as-a-tool-to-motivate-health-behaviour-a-case-study",totalDownloads:1030,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"According to the Scientific Committee on Occupational Exposure Limits, work-related exposures are estimated to account for about 15% of all adult respiratory diseases. Today, the use of personal protective equipment (PPE) is the only way for workers to prevent disease. Nevertheless, its use is highly sparse. Currently, products and systems embedded with wearable technologies are able to protect, motivate and educate users. The authors then suggested the development of a novel wearable system following the beliefs that wearable technology can be persuasive and elicit a conscious behaviour towards the use of the PPEs by consequently improving their health condition. The authors here describe the result of a Transnational Research Project named “P_O_D Plurisensorial Device to prevent Occupational Disease.” The chapter describes the findings achieved so far, the research phase and the new wearable system conceived as a possible example of how to use wearable technology as a useful tool to influence behavioural change.",signatures:"Venere Ferraro, Mila Stepanovic and Silvia Ferraris",downloadPdfUrl:"/chapter/pdf-download/61336",previewPdfUrl:"/chapter/pdf-preview/61336",authors:[{id:"227494",title:"Dr.",name:"Venere",surname:"Ferraro",slug:"venere-ferraro",fullName:"Venere Ferraro"},{id:"240690",title:"MSc.",name:"Mila",surname:"Stepanovic",slug:"mila-stepanovic",fullName:"Mila Stepanovic"},{id:"240691",title:"Dr.",name:"Silvia",surname:"Ferraris",slug:"silvia-ferraris",fullName:"Silvia Ferraris"}],corrections:null},{id:"60918",title:"Wearable Neuromodulators",doi:"10.5772/intechopen.76673",slug:"wearable-neuromodulators",totalDownloads:874,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In neuromodulation, by delivering a form of stimulus to neural tissue the response of an associated neural circuit may be changed, enhanced or inhibited (i.e., modulated) as desired. This powerful technique may be used to treat various medical conditions as outlined in this chapter. After a brief introduction to the human nervous system, key example applications of electrical neuromodulation such as cardiac pacemakers, devices for pain relief, deep brain stimulation, cochlear implant and visual prosthesis and their respective methods of deployment are discussed. Furthermore, key features of wearable neuromodulators with reference to some existing devices are briefly reviewed. This chapter is concluded by a case study on design and development of a wearable device with non-invasive electrodes for treating lower urinary tract dysfunctions after spinal cord injury.",signatures:"Arsam N. Shiraz, Brian Leaker and Andreas Demosthenous",downloadPdfUrl:"/chapter/pdf-download/60918",previewPdfUrl:"/chapter/pdf-preview/60918",authors:[{id:"231986",title:"Dr.",name:"Arsam",surname:"Shiraz",slug:"arsam-shiraz",fullName:"Arsam Shiraz"},{id:"231987",title:"Prof.",name:"Andreas",surname:"Demosthenous",slug:"andreas-demosthenous",fullName:"Andreas Demosthenous"},{id:"249146",title:"Dr.",name:"Brian",surname:"Leaker",slug:"brian-leaker",fullName:"Brian Leaker"}],corrections:null},{id:"60301",title:"Wearable Dialysis: Current State and Perspectives",doi:"10.5772/intechopen.75552",slug:"wearable-dialysis-current-state-and-perspectives",totalDownloads:1364,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"For more than four decades, scientists and engineers are trying to miniaturise dialysis machines to make them wearable. There are many reasons for that—from increased biocompatibility and cost-efficiency to longer life expectancy and higher quality of life. That can be achieved by continuous blood treatment like in natural kidneys, which softly filter blood for 168 h a week when hemodialysis does that quickly—for approximately 20 h a week, which affects the organism in a bad way. Along with that, during hemodialysis, the patient must be near the dialysis machine, in contrary to wearable apparatus that can be carried anywhere. To achieve these advantages, dialysis fluid regeneration system must be developed, and it is a problem to be solved in the next few years. In this chapter, we describe current prototypes of wearable artificial kidneys, their design principles and results of our investigations.",signatures:"Nikolai Bazaev, Nikita Zhilo, Viktor Grinval’d and Sergey Selishchev",downloadPdfUrl:"/chapter/pdf-download/60301",previewPdfUrl:"/chapter/pdf-preview/60301",authors:[{id:"194094",title:"Dr.",name:"Nikolay",surname:"Bazaev",slug:"nikolay-bazaev",fullName:"Nikolay Bazaev"},{id:"242734",title:"BSc.",name:"Nikita",surname:"Zhilo",slug:"nikita-zhilo",fullName:"Nikita Zhilo"},{id:"242735",title:"Prof.",name:"Viktor",surname:"Grinval’d",slug:"viktor-grinval'd",fullName:"Viktor Grinval’d"},{id:"242736",title:"Prof.",name:"Sergey",surname:"Selishchev",slug:"sergey-selishchev",fullName:"Sergey Selishchev"}],corrections:null},{id:"61246",title:"Smart Materials for Wearable Healthcare Devices",doi:"10.5772/intechopen.76604",slug:"smart-materials-for-wearable-healthcare-devices",totalDownloads:1690,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Wearable devices seem to have great potential that could result in a revolutionary non-clinical approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This chapter gives a concise review of some of the main concepts and approaches related to recent advances and developments in the scope of wearable devices from the perspective of emerging materials. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are clearly highlighted and criticized.",signatures:"Han Jin, Qinghui Jin and Jiawen Jian",downloadPdfUrl:"/chapter/pdf-download/61246",previewPdfUrl:"/chapter/pdf-preview/61246",authors:[{id:"230089",title:"Associate Prof.",name:"Han",surname:"Jin",slug:"han-jin",fullName:"Han Jin"}],corrections:null},{id:"61160",title:"Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoelectric Power Generator with UV Shielding",doi:"10.5772/intechopen.76672",slug:"recent-progress-in-nanostructured-zinc-oxide-grown-on-fabric-for-wearable-thermoelectric-power-gener",totalDownloads:1253,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Traditional materials for thermoelectric such as bismuth telluride have been studied and utilized commercially for the last half century, but recent advancements in materials selection are one of the principal function of the active thermoelectric device as it determines the reliability of the fabrication regarding technical and economic aspects. Recently, many researcher’s efforts have been made to utilize oxide nanomaterials for wearable thermoelectric power generator (WTPG) applications which may provide environmental stable, mechanical flexibility, and light weight with low cost of manufacturing. In precise, fabric containing oxide metals have shown great promise as P−/N-type materials with improved transport and UV shielding properties. On the other hand, we have focused on ZnO nanostructures as a high-efficiency WTPG material because they are non-toxic to skin, inexpensive and easy to obtain and possess attractive electronic properties, which means that they are available for clothing with low-cost fabrication. To our observation, we are chaptering about the thermoelectric properties of ZnO and their composite nanostructures coated cotton fabric via the solvothermal method for the first time.",signatures:"Pandiyarasan Veluswamy, Suhasini Sathiyamoorthy, Hiroya Ikeda,\nManikandan Elayaperumal and Malik Maaza",downloadPdfUrl:"/chapter/pdf-download/61160",previewPdfUrl:"/chapter/pdf-preview/61160",authors:[{id:"25875",title:"Dr.",name:"Malek",surname:"Maaza",slug:"malek-maaza",fullName:"Malek Maaza"},{id:"185864",title:"Prof.",name:"Manikandan",surname:"Elayaperumal",slug:"manikandan-elayaperumal",fullName:"Manikandan Elayaperumal"},{id:"215388",title:"Dr.",name:"Pandiyarasan",surname:"Veluswamy",slug:"pandiyarasan-veluswamy",fullName:"Pandiyarasan Veluswamy"},{id:"248532",title:"Ms.",name:"Suhasini",surname:"Sathiyamoorthy",slug:"suhasini-sathiyamoorthy",fullName:"Suhasini Sathiyamoorthy"},{id:"248533",title:"Prof.",name:"Ikeda",surname:"Hiroya",slug:"ikeda-hiroya",fullName:"Ikeda Hiroya"}],corrections:null},{id:"60834",title:"Conductive Yarn Embroidered Circuits for System on Textiles",doi:"10.5772/intechopen.76627",slug:"conductive-yarn-embroidered-circuits-for-system-on-textiles",totalDownloads:1406,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:1,abstract:"With the recent convergence of electronics and textile technology, various kinds of smart wearables are being developed, such as heating clothes, health monitoring clothes, and motion sensing clothes. In this study, the novel conductive embroidery yarns for touch sensing and signal transmission for system on textile (SoT) are introduced. The conductive yarn for touch sensing can be used as a user interface of smart clothes by constructing an embroidery circuit. The conductive yarn for signal transmission can be embroidered on smart clothing and used as a transmission line to transmit power and signal. The conductive yarns and their embroidered circuits were characterized and SoT prototypes using the embroidered circuit of these conductive yarns were presented. These e-textiles based on touch sensing and signal transmission can be comfortably applied for SoT and maintain electrical performance without being damaged by tensile force generated by the movement of the wearer.",signatures:"Jung-Sim Roh",downloadPdfUrl:"/chapter/pdf-download/60834",previewPdfUrl:"/chapter/pdf-preview/60834",authors:[{id:"232246",title:"Associate Prof.",name:"Jung-Sim",surname:"ROh",slug:"jung-sim-roh",fullName:"Jung-Sim ROh"}],corrections:null},{id:"60481",title:"A Wearable Heating System with a Controllable e-Textile- Based Thermal Panel",doi:"10.5772/intechopen.76192",slug:"a-wearable-heating-system-with-a-controllable-e-textile-based-thermal-panel",totalDownloads:1522,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Flexible textile heating systems present great advantage due to their ability to bend and hence could ensure uniform heating for irregular geometries. In cooler outer environment, the user requires his/her body to be kept warm for monitoring vital body functions within realistic thermal body balance constraints. In this chapter, heated vest with controllable e-textile-based thermal panel has been studied. Several e-textile-based thermal panels with different conductive yarns were produced using hot air welding technology under different manufacturing parameters. E-textile-based thermal panels were tested for their heating behaviors at varying direct current (DC) power levels. Based on the experimental results, the optimum e-textile-based thermal panel design was chosen considering its flexibility and uniform heating behavior. Moreover, a control algorithm with electrical circuit and electrical connection network was designed and assembled in an electronic control module. Finally, the electronic module consisting of power control and management system was integrated to attachable e-textile-based thermal panel in order to form a wearable heating vest.",signatures:"Senem Kurşun Bahadir and Umut Kivanc Sahin",downloadPdfUrl:"/chapter/pdf-download/60481",previewPdfUrl:"/chapter/pdf-preview/60481",authors:[{id:"48882",title:"Dr.",name:"Senem",surname:"Kurşun Bahadır",slug:"senem-kursun-bahadir",fullName:"Senem Kurşun Bahadır"},{id:"116271",title:"Dr.",name:"Umut Kivanc",surname:"Sahin",slug:"umut-kivanc-sahin",fullName:"Umut Kivanc Sahin"}],corrections:null},{id:"61357",title:"The Comparison of Wearable Fitness Devices",doi:"10.5772/intechopen.76967",slug:"the-comparison-of-wearable-fitness-devices",totalDownloads:1003,totalCrossrefCites:6,totalDimensionsCites:6,hasAltmetrics:0,abstract:"The wearable devices or wearable trackers help to motivate you during daily exercise or workouts. It gives you information about your daily routine or fitness by using wearable technology in combination with your smart phone to track your daily activities and fitness without the manual calculations or records that can be intrusive. Generally, companies display advertising for these kinds of products and depict them as good, user-friendly, and accurate. However, there are no subjective research results to prove the veracity of their words. Four popular wrist band-style wearable devices currently in the market were selected at the devices which are most popular (Withings Pulse, Misfit Shine, Jawbone Up24, and Fitbit Flex). The accuracy of tracking was one of the key components for fitness tracking, with some devices performing better than others. Accuracy in the tracking of daily activities such as walking, running, and sleeping is important. This research showed subjective and objective experiment results, which were used to compare the accuracy of four wearable devices in conjunction with user-friendliness. Satisfaction levels, the accuracy of tracking, and the opinion of each subject while using wearable device to track their daily activity were compared. The results determined that the cost-effectiveness was the Withings Pulse, followed by the Fitbit Flex, Jawbone Up24, and Misfit Shine.",signatures:"Kanitthika Kaewkannate and Soochan Kim",downloadPdfUrl:"/chapter/pdf-download/61357",previewPdfUrl:"/chapter/pdf-preview/61357",authors:[{id:"228941",title:"Prof.",name:"Soochan",surname:"Kim",slug:"soochan-kim",fullName:"Soochan Kim"},{id:"228943",title:"MSc.",name:"Kanitthika",surname:"Kaewkannate",slug:"kanitthika-kaewkannate",fullName:"Kanitthika Kaewkannate"}],corrections:null},{id:"60448",title:"Bio-Inspired Wearable Antennas",doi:"10.5772/intechopen.75912",slug:"bio-inspired-wearable-antennas",totalDownloads:1232,totalCrossrefCites:5,totalDimensionsCites:9,hasAltmetrics:0,abstract:"Due to the recent miniaturization of wireless devices, the use of wearable antennas is steadily increasing. A wearable antenna is intended to be a part of the clothing used for communication purposes. In this way, a lower visual cost may be achieved. Recently, biologically inspired design, a kind of design by cross-domain analogy is a promising paradigm for innovation as well as low visual cost. The shapes of the plants are structures optimized by nature with the primary goal of light energy capture, transforming it into chemical energy. In this case, they have similar behavior to that of parabolic reflectors; this enables microwave engineers design innovative antennas using bio-inspired concepts. One of the advantages of using bio-inspired plant shapes is the design of antennas with great perimeters in compact structures. Thus, we have small antennas operating in low frequencies. This chapter presents the recent development in bio-inspired wearable antennas, easily integrated to the clothes and accessories used by the body, built in denim, low-cost flexible dielectric, and polyamide flexible dielectric, that is flexible with high resistance to twists and temperatures, for wireless body area network (WBAN) applications, operating in cellular mobile (2G, 3G, and 4G) and wireless local area network (2.4 and 5 GHz) protocols.",signatures:"Paulo Fernandes da Silva Júnior, Alexandre Jean René Serres,\nRaimundo Carlos Silvério Freire, Georgina Karla de Freitas Serres,\nEdmar Candeia Gurjão, Joabson Nogueira de Carvalho and Ewaldo\nEder Carvalho Santana",downloadPdfUrl:"/chapter/pdf-download/60448",previewPdfUrl:"/chapter/pdf-preview/60448",authors:[{id:"199230",title:"Dr.",name:"Alexandre Jean René",surname:"Serres",slug:"alexandre-jean-rene-serres",fullName:"Alexandre Jean René Serres"},{id:"205094",title:"Dr.",name:"Georgina Karla",surname:"Freitas Serres",slug:"georgina-karla-freitas-serres",fullName:"Georgina Karla Freitas Serres"},{id:"205095",title:"Ph.D.",name:"Paulo",surname:"Silva Júnior",slug:"paulo-silva-junior",fullName:"Paulo Silva Júnior"},{id:"229216",title:"Dr.",name:"Edmar",surname:"Candeia",slug:"edmar-candeia",fullName:"Edmar Candeia"},{id:"229218",title:"Dr.",name:"Joabson",surname:"Nogueira",slug:"joabson-nogueira",fullName:"Joabson Nogueira"},{id:"229219",title:"Dr.",name:"Raimundo",surname:"Freire",slug:"raimundo-freire",fullName:"Raimundo Freire"},{id:"240706",title:"Dr.",name:"Ewaldo",surname:"Santana",slug:"ewaldo-santana",fullName:"Ewaldo Santana"}],corrections:null},{id:"61567",title:"Middleware-Driven Intelligent Glove for Industrial Applications",doi:"10.5772/intechopen.76382",slug:"middleware-driven-intelligent-glove-for-industrial-applications",totalDownloads:949,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"It is estimated that by the year 2020, 700 million wearable technology devices will be sold worldwide. One of the reasons is the industries’ need to increase their productivity. Some of the tools welcomed by industries are handheld devices such as tablets, PDAs and mobile phones. However, handheld devices are not ideal for industrial applications because they often subject users to fatigue during their long working hours. A viable solution to this problem is wearable devices. The advantage of wearable devices is that they become part of the user. Hence, they subject the user to less fatigue, thereby increasing their productivity. This chapter presents the development of an intelligent glove, which is designed to control actuators in an industrial environment. This system utilizes RTI connext data distributed service middleware to facilitate communication over WiFi. Our experiments show very promising results with maximum power consumption of 310 mW and latency as low as 23 ms. These results make the proposed system a perfect fit for most industrial applications.",signatures:"Farouq Muhammad Aliyu and Basem Almadani",downloadPdfUrl:"/chapter/pdf-download/61567",previewPdfUrl:"/chapter/pdf-preview/61567",authors:[{id:"227198",title:"Mr.",name:"Farouq",surname:"Aliyu",slug:"farouq-aliyu",fullName:"Farouq Aliyu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1636",title:"Telecommunications Networks",subtitle:"Current Status and Future Trends",isOpenForSubmission:!1,hash:"3cd52027cd1f450d5770cede2b712b46",slug:"telecommunications-networks-current-status-and-future-trends",bookSignature:"Jesus Hamilton Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/1636.jpg",editedByType:"Edited by",editors:[{id:"97704",title:"Dr.",name:"Jesús Hamilton",surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesús Hamilton Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5408",title:"Ad Hoc Networks",subtitle:null,isOpenForSubmission:!1,hash:"3d8f56e9f0b5b530cd132c040fdef6c5",slug:"ad-hoc-networks",bookSignature:"Jesus Hamilton Ortiz and Alvaro Pachon de la Cruz",coverURL:"https://cdn.intechopen.com/books/images_new/5408.jpg",editedByType:"Edited by",editors:[{id:"97704",title:"Dr.",name:"Jesús Hamilton",surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesús Hamilton Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1902",title:"Mobile Networks",subtitle:null,isOpenForSubmission:!1,hash:"5351aa9d45ae2f6c117f48979caa469a",slug:"mobile-networks",bookSignature:"Jesus Hamilton Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/1902.jpg",editedByType:"Edited by",editors:[{id:"97704",title:"Dr.",name:"Jesús Hamilton",surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesús Hamilton Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9426",title:"Industry 4.0",subtitle:"Current Status and Future Trends",isOpenForSubmission:!1,hash:"f9d1cc5119410371683c26acc0239d22",slug:"industry-4-0-current-status-and-future-trends",bookSignature:"Jesús Hamilton Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/9426.jpg",editedByType:"Edited by",editors:[{id:"97704",title:"Dr.",name:"Jesús Hamilton",surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesús Hamilton Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2405",title:"Smart Actuation and Sensing Systems",subtitle:"Recent Advances and Future Challenges",isOpenForSubmission:!1,hash:"e0ba43135d522bb9ad308c72f3fc932b",slug:"smart-actuation-and-sensing-systems-recent-advances-and-future-challenges",bookSignature:"Giovanni Berselli, Rocco Vertechy and Gabriele Vassura",coverURL:"https://cdn.intechopen.com/books/images_new/2405.jpg",editedByType:"Edited by",editors:[{id:"122191",title:"Prof.",name:"Giovanni",surname:"Berselli",slug:"giovanni-berselli",fullName:"Giovanni Berselli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3559",title:"Radar Technology",subtitle:null,isOpenForSubmission:!1,hash:"1672be706f8291d33463da05c27e82b3",slug:"radar-technology",bookSignature:"Guy Kouemou",coverURL:"https://cdn.intechopen.com/books/images_new/3559.jpg",editedByType:"Edited by",editors:[{id:"19952",title:"Dr.",name:"Guy",surname:"Kouemou",slug:"guy-kouemou",fullName:"Guy Kouemou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"147",title:"Biosensors",subtitle:"Emerging Materials and Applications",isOpenForSubmission:!1,hash:"506ba7fc7057db3f5a13c57a5ed4a460",slug:"biosensors-emerging-materials-and-applications",bookSignature:"Pier Andrea Serra",coverURL:"https://cdn.intechopen.com/books/images_new/147.jpg",editedByType:"Edited by",editors:[{id:"6091",title:"Prof.",name:"Pier Andrea",surname:"Serra",slug:"pier-andrea-serra",fullName:"Pier Andrea Serra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3608",title:"Development and Implementation of RFID Technology",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"development_and_implementation_of_rfid_technology",bookSignature:"Cristina Turcu",coverURL:"https://cdn.intechopen.com/books/images_new/3608.jpg",editedByType:"Edited by",editors:[{id:"9302",title:"Dr.",name:"Cristina",surname:"Turcu",slug:"cristina-turcu",fullName:"Cristina Turcu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"162",title:"Microsensors",subtitle:null,isOpenForSubmission:!1,hash:"3d48614c970df4eb00d2d1a4e1bb5cda",slug:"microsensors",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/162.jpg",editedByType:"Edited by",editors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3150",title:"Advances in Sonar Technology",subtitle:null,isOpenForSubmission:!1,hash:"6129b514b5260b24b59fba38ac402b9e",slug:"advances_in_sonar_technology",bookSignature:"Sergio Rui Silva",coverURL:"https://cdn.intechopen.com/books/images_new/3150.jpg",editedByType:"Edited by",editors:[{id:"252220",title:"Dr.",name:"Sergio",surname:"Silva",slug:"sergio-silva",fullName:"Sergio Silva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64554",slug:"erratum-treatment-of-resistant-hypertension-an-update-in-device-therapy",title:"Erratum - Treatment of Resistant Hypertension: An Update in Device Therapy",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64554.pdf",downloadPdfUrl:"/chapter/pdf-download/64554",previewPdfUrl:"/chapter/pdf-preview/64554",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64554",risUrl:"/chapter/ris/64554",chapter:{id:"59188",slug:"treatment-of-resistant-hypertension-an-update-in-device-therapy",signatures:"Ghazal Quinn, Phillip John Gary, Christopher Damiano and Geoffrey\nTeehan",dateSubmitted:"May 10th 2017",dateReviewed:"January 10th 2018",datePrePublished:"February 7th 2018",datePublished:"November 14th 2018",book:{id:"6311",title:"Blood Pressure",subtitle:"From Bench to Bed",fullTitle:"Blood Pressure - From Bench to Bed",slug:"blood-pressure-from-bench-to-bed",publishedDate:"November 14th 2018",bookSignature:"Aise Seda Artis",coverURL:"https://cdn.intechopen.com/books/images_new/6311.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"210880",title:"Dr.",name:"Geoffrey",middleName:null,surname:"Teehan",fullName:"Geoffrey Teehan",slug:"geoffrey-teehan",email:"gteehan@comcast.net",position:null,institution:{name:"Lankenau Medical Center",institutionURL:null,country:{name:"United States of America"}}},{id:"221168",title:"Dr.",name:"Ghazal",middleName:null,surname:"Quinn",fullName:"Ghazal Quinn",slug:"ghazal-quinn",email:"quinng@mlhs.org",position:null,institution:null},{id:"221169",title:"Dr.",name:"Phillip John",middleName:null,surname:"Gary",fullName:"Phillip John Gary",slug:"phillip-john-gary",email:"garyp@mlhs.org",position:null,institution:null},{id:"221170",title:"Dr.",name:"Christopher",middleName:null,surname:"Damiano",fullName:"Christopher Damiano",slug:"christopher-damiano",email:"damianoc@mlhs.org",position:null,institution:null}]}},chapter:{id:"59188",slug:"treatment-of-resistant-hypertension-an-update-in-device-therapy",signatures:"Ghazal Quinn, Phillip John Gary, Christopher Damiano and Geoffrey\nTeehan",dateSubmitted:"May 10th 2017",dateReviewed:"January 10th 2018",datePrePublished:"February 7th 2018",datePublished:"November 14th 2018",book:{id:"6311",title:"Blood Pressure",subtitle:"From Bench to Bed",fullTitle:"Blood Pressure - From Bench to Bed",slug:"blood-pressure-from-bench-to-bed",publishedDate:"November 14th 2018",bookSignature:"Aise Seda Artis",coverURL:"https://cdn.intechopen.com/books/images_new/6311.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"210880",title:"Dr.",name:"Geoffrey",middleName:null,surname:"Teehan",fullName:"Geoffrey Teehan",slug:"geoffrey-teehan",email:"gteehan@comcast.net",position:null,institution:{name:"Lankenau Medical Center",institutionURL:null,country:{name:"United States of America"}}},{id:"221168",title:"Dr.",name:"Ghazal",middleName:null,surname:"Quinn",fullName:"Ghazal Quinn",slug:"ghazal-quinn",email:"quinng@mlhs.org",position:null,institution:null},{id:"221169",title:"Dr.",name:"Phillip John",middleName:null,surname:"Gary",fullName:"Phillip John Gary",slug:"phillip-john-gary",email:"garyp@mlhs.org",position:null,institution:null},{id:"221170",title:"Dr.",name:"Christopher",middleName:null,surname:"Damiano",fullName:"Christopher Damiano",slug:"christopher-damiano",email:"damianoc@mlhs.org",position:null,institution:null}]},book:{id:"6311",title:"Blood Pressure",subtitle:"From Bench to Bed",fullTitle:"Blood Pressure - From Bench to Bed",slug:"blood-pressure-from-bench-to-bed",publishedDate:"November 14th 2018",bookSignature:"Aise Seda Artis",coverURL:"https://cdn.intechopen.com/books/images_new/6311.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10423",leadTitle:null,title:"The Wonders of Diptera",subtitle:"Characteristics, Diversity, and Significance for the World's Ecosystems",reviewType:"peer-reviewed",abstract:"This book provides comprehensive and concise knowledge about Diptera, an order of insects that has both useful and harmful aspects for humans, animals, plants, and the environment. Insects of this order act as agricultural pests as well as vectors of diseases and carriers of microorganisms. Chapters cover such topics as characteristics of different types of Dipteran insects including fruit flies, mosquitos, and midges, and strategies to control insect populations to combat the spread of human and animal diseases such as dengue, trypanosomosis, and others.",isbn:"978-1-83968-883-6",printIsbn:"978-1-83968-882-9",pdfIsbn:"978-1-83968-884-3",doi:"10.5772/intechopen.91609",price:119,priceEur:129,priceUsd:155,slug:"the-wonders-of-diptera-characteristics-diversity-and-significance-for-the-world-s-ecosystems",numberOfPages:188,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"2746b4288e78c8688d1be1bd9d99a127",bookSignature:"Farzana Khan Perveen",publishedDate:"September 8th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10423.jpg",keywords:null,numberOfDownloads:2502,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 18th 2020",dateEndSecondStepPublish:"October 16th 2020",dateEndThirdStepPublish:"December 15th 2020",dateEndFourthStepPublish:"March 5th 2021",dateEndFifthStepPublish:"May 4th 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"Dr. Farzana Khan Perveen (FLS; Gold-Medallist) is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University, and Kohat University of Science & Technology. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.jpg",biography:"Dr. Farzana Khan Perveen (FLS; Gold Medalist) obtained her BSc (Hons) and MSc in Entomology from the University of Karachi, Pakistan, and MAS (Monbusho Scholarship) in Agronomy from Nagoya University, Japan, and a Ph.D. in Toxicology from the University of Karachi. She is the founder of the Department of Zoology and former controller of examinations at Shaheed Benazir Bhutto University, Hazara University, and Kohat University of Science and Technology. She is the author of 150 high-impact research papers, 135 abstracts, 40 authored books, 9 chapters, and 9 edited books. She is also a student supervisor. Her fields of interest are entomology, toxicology, forensic entomology.",institutionString:"Classes et Events in Sciences (C.E.S.)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"7",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"35",title:"Entomology",slug:"entomology"}],chapters:[{id:"78012",title:"Introductory Chapter: Diptera",slug:"introductory-chapter-diptera",totalDownloads:179,totalCrossrefCites:0,authors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"},{id:"383356",title:"Dr.",name:"Anzela",surname:"Khan",slug:"anzela-khan",fullName:"Anzela Khan"}]},{id:"75438",title:"Characteristics of Dipteran Insects",slug:"characteristics-of-dipteran-insects",totalDownloads:486,totalCrossrefCites:0,authors:[{id:"301984",title:"Ph.D.",name:"Murat",surname:"Helvaci",slug:"murat-helvaci",fullName:"Murat Helvaci"}]},{id:"75974",title:"Fruit Flies (Drosophila spp.) Collection, Handling, and Maintenance: Field to Laboratory",slug:"fruit-flies-em-drosophila-spp-em-collection-handling-and-maintenance-field-to-laboratory",totalDownloads:372,totalCrossrefCites:0,authors:[{id:"336156",title:"Assistant Prof.",name:"Rajendra S.",surname:"Fartyal",slug:"rajendra-s.-fartyal",fullName:"Rajendra S. Fartyal"},{id:"336657",title:"Ms.",name:"Pragya",surname:"Topal",slug:"pragya-topal",fullName:"Pragya Topal"},{id:"344407",title:"Ms.",name:"Divita",surname:"Garg",slug:"divita-garg",fullName:"Divita Garg"}]},{id:"75382",title:"Diversity of Tephritidae and Agromyzidae (Diptera: Brachycera) in Flower Heads of Asteraceae in the Chaco",slug:"diversity-of-tephritidae-and-agromyzidae-diptera-brachycera-in-flower-heads-of-asteraceae-in-the-cha",totalDownloads:125,totalCrossrefCites:0,authors:[{id:"87919",title:"Dr.",name:"Manoel",surname:"Uchoa",slug:"manoel-uchoa",fullName:"Manoel Uchoa"},{id:"346550",title:"Dr.",name:"Jimi N.",surname:"Nakajima",slug:"jimi-n.-nakajima",fullName:"Jimi N. Nakajima"},{id:"346551",title:"Dr.",name:"Anderson S.",surname:"Fernandes",slug:"anderson-s.-fernandes",fullName:"Anderson S. Fernandes"}]},{id:"75428",title:"Feeding by Florivorous Flies (Tephritidae and Agromyzidae) in Flower Heads of Neotropical Asteraceae (Asterales) from Central Brazil",slug:"feeding-by-florivorous-flies-tephritidae-and-agromyzidae-in-flower-heads-of-neotropical-asteraceae-a",totalDownloads:178,totalCrossrefCites:0,authors:[{id:"87919",title:"Dr.",name:"Manoel",surname:"Uchoa",slug:"manoel-uchoa",fullName:"Manoel Uchoa"},{id:"346548",title:"Dr.",name:"Nádia",surname:"Roque",slug:"nadia-roque",fullName:"Nádia Roque"},{id:"346549",title:"Dr.",name:"Morgana F.",surname:"Wachter-Serapião",slug:"morgana-f.-wachter-serapiao",fullName:"Morgana F. Wachter-Serapião"}]},{id:"74836",title:"Chironomidae: Biology, Ecology and Systematics",slug:"chironomidae-biology-ecology-and-systematics",totalDownloads:430,totalCrossrefCites:0,authors:[{id:"334825",title:"Dr.",name:"Karima",surname:"Zerguine",slug:"karima-zerguine",fullName:"Karima Zerguine"}]},{id:"74320",title:"Ecological Aspects of Tabanids (Diptera: Tabanidae) in a Gabonese Cattle Ranch",slug:"ecological-aspects-of-tabanids-diptera-tabanidae-in-a-gabonese-cattle-ranch",totalDownloads:146,totalCrossrefCites:0,authors:[{id:"243979",title:"Ph.D. Student",name:"Sevidzem",surname:"Lendzele",slug:"sevidzem-lendzele",fullName:"Sevidzem Lendzele"},{id:"340184",title:"Dr.",name:"Ovono Mélodie",surname:"Audrey Prisca",slug:"ovono-melodie-audrey-prisca",fullName:"Ovono Mélodie Audrey Prisca"},{id:"340185",title:"Dr.",name:"Mounioko",surname:"Franck",slug:"mounioko-franck",fullName:"Mounioko Franck"},{id:"340186",title:"Dr.",name:"Zinga Koumba Christophe",surname:"Roland",slug:"zinga-koumba-christophe-roland",fullName:"Zinga Koumba Christophe Roland"},{id:"340187",title:"Dr.",name:"Maroundou Audrey",surname:"Pamela",slug:"maroundou-audrey-pamela",fullName:"Maroundou Audrey Pamela"},{id:"340188",title:"Dr.",name:"Acapovi-Yao Géneviève",surname:"Lydie",slug:"acapovi-yao-genevieve-lydie",fullName:"Acapovi-Yao Géneviève Lydie"},{id:"340190",title:"Dr.",name:"Tamesse Joseph",surname:"Lebel",slug:"tamesse-joseph-lebel",fullName:"Tamesse Joseph Lebel"},{id:"340191",title:"Dr.",name:"Simo",surname:"Gustave",slug:"simo-gustave",fullName:"Simo Gustave"},{id:"340192",title:"Dr.",name:"M’batchi",surname:"Bertrand",slug:"m'batchi-bertrand",fullName:"M’batchi Bertrand"},{id:"340193",title:"Dr.",name:"Mavoungou Jacques",surname:"François",slug:"mavoungou-jacques-francois",fullName:"Mavoungou Jacques François"}]},{id:"75790",title:"Morphological Keys for the Identification of Tunisian Culicoides Biting Midges (Diptera: Ceratopogonidae)",slug:"morphological-keys-for-the-identification-of-tunisian-em-culicoides-em-biting-midges-diptera-ceratop",totalDownloads:134,totalCrossrefCites:0,authors:[{id:"192246",title:"Ph.D.",name:"Darine",surname:"Slama",slug:"darine-slama",fullName:"Darine Slama"},{id:"195408",title:"Prof.",name:"Hamouda",surname:"Babba",slug:"hamouda-babba",fullName:"Hamouda Babba"},{id:"195409",title:"Prof.",name:"Emna",surname:"Chaker",slug:"emna-chaker",fullName:"Emna Chaker"}]},{id:"75244",title:"Control Strategy for Aedes aegypti (Linnaeus, 1762) Population",slug:"control-strategy-for-em-aedes-aegypti-em-linnaeus-1762-population",totalDownloads:213,totalCrossrefCites:0,authors:[{id:"301356",title:"Dr.",name:"Eduardo",surname:"Arruda",slug:"eduardo-arruda",fullName:"Eduardo Arruda"},{id:"308803",title:"Dr.",name:"António",surname:"Souza",slug:"antonio-souza",fullName:"António Souza"},{id:"343503",title:"Dr.",name:"Alex",surname:"Martins Machado",slug:"alex-martins-machado",fullName:"Alex Martins Machado"},{id:"343509",title:"BSc.",name:"Taiana",surname:"Gabriela Barbosa De Souza",slug:"taiana-gabriela-barbosa-de-souza",fullName:"Taiana Gabriela Barbosa De Souza"},{id:"346904",title:"Dr.",name:"Raphael Antônio",surname:"Borges Gomes",slug:"raphael-antonio-borges-gomes",fullName:"Raphael Antônio Borges Gomes"}]},{id:"76977",title:"Environmental Manipulation: A Potential Tool for Mosquito Vector Control",slug:"environmental-manipulation-a-potential-tool-for-mosquito-vector-control",totalDownloads:240,totalCrossrefCites:0,authors:[{id:"335962",title:"Dr.",name:"Azubuike",surname:"Ukubuiwe",slug:"azubuike-ukubuiwe",fullName:"Azubuike Ukubuiwe"},{id:"344891",title:"Prof.",name:"Israel Kayode",surname:"Olayemi",slug:"israel-kayode-olayemi",fullName:"Israel Kayode Olayemi"},{id:"344892",title:"Mrs.",name:"Chinenye Catherine",surname:"Ukubuiwe",slug:"chinenye-catherine-ukubuiwe",fullName:"Chinenye Catherine Ukubuiwe"},{id:"345712",title:"Mr.",name:"Bright Ugbede",surname:"Sule",slug:"bright-ugbede-sule",fullName:"Bright Ugbede Sule"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2036",title:"Insecticides",subtitle:"Advances in Integrated Pest Management",isOpenForSubmission:!1,hash:"42dc69ce20386f76845e38275b0e54e8",slug:"insecticides-advances-in-integrated-pest-management",bookSignature:"Farzana Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/2036.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"843",title:"Insecticides",subtitle:"Pest Engineering",isOpenForSubmission:!1,hash:"88f3cc3c937f853057f544c152ef7491",slug:"insecticides-pest-engineering",bookSignature:"Farzana Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/843.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5089",title:"Recent Advances in Biopolymers",subtitle:null,isOpenForSubmission:!1,hash:"49b676f9ac3f7097cd3d01b379cde9b4",slug:"recent-advances-in-biopolymers",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/5089.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5976",title:"Drosophila melanogaster",subtitle:"Model for Recent Advances in Genetics and Therapeutics",isOpenForSubmission:!1,hash:"46ff086c2ae55b49970a648d604634cc",slug:"drosophila-melanogaster-model-for-recent-advances-in-genetics-and-therapeutics",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/5976.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6156",title:"Lepidoptera",subtitle:null,isOpenForSubmission:!1,hash:"b5d586ee7920aa6388b521b833916453",slug:"lepidoptera",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/6156.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6895",title:"Moths",subtitle:"Pests of Potato, Maize and Sugar Beet",isOpenForSubmission:!1,hash:"53f66556fd9bcdc455a639838d45c2d8",slug:"moths-pests-of-potato-maize-and-sugar-beet",bookSignature:"Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/6895.jpg",editedByType:"Edited by",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6619",title:"Insect Science",subtitle:"Diversity, Conservation and Nutrition",isOpenForSubmission:!1,hash:"08241b041b2072a88452041f8fdebe7e",slug:"insect-science-diversity-conservation-and-nutrition",bookSignature:"Mohammad Manjur Shah and Umar Sharif",coverURL:"https://cdn.intechopen.com/books/images_new/6619.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43180",title:"Occurrence and Mobility of Mercury in Groundwater",doi:"10.5772/55487",slug:"occurrence-and-mobility-of-mercury-in-groundwater",body:'
Mercury (Hg) has long been identified as an element that is injurious, even lethal, to living organisms. Exposure to its inorganic form, mainly from elemental Hg (Hg(0)) vapor (Fitzgerald & Lamborg, 2007) can cause damage to respiratory, neural, and renal systems (Hutton, 1987; USEPA, 2012; WHO, 2012). The organic form, methylmercury (CH3Hg+; MeHg), is substantially more toxic than the inorganic form (Fitzgerald & Lamborg, 2007). Methylmercury attacks the nervous system and exposure can prove lethal, as demonstrated by well-known incidents such as those in 1956 in Minimata, Japan (Harada, 1995), and 1971 in rural Iraq (Bakir et al., 1973), where, in the former, industrial release of MeHg into coastal waters severely tainted the fish caught and eaten by the local population, and in the latter, grain seed treated with an organic mercurial fungicide was not planted, but eaten in bread instead. Resultant deaths are not known with certainty but have been estimated at about 100 and 500, respectively (Hutton, 1987). Absent such lethal accidents, human exposure to MeHg comes mainly from ingestion of piscivorous fish in which MeHg has accumulated, with potential fetal damage ascribed to high fish diets during their mothers’ pregnancies (USEPA, 2001). Lesser human exposure occurs through ingestion of drinking water (USEPA, 2001), where concentrations of total Hg (THg; inorganic plus organic forms) typically are in the low nanograms-per-liter range Because many studies report Hg concentrations in units of nanograms per liter, results reported for aqueous samples in other units herein will be converted to nanograms per liter. Contents of solid materials will be reported in megagrams, kilograms and (or) milligrams per kilogram.
For drinking water the World Health Organization (WHO) guideline for THg is 1,000 ng/L, a level (in some instances given as 0.001 mg/L or 1.0 µg/L) adopted by the European Union countries, the United Kingdom, Canada, and India (WHO, 1993; NIEA, 2011; Environment Canada, 2010; Srivastava, 2003). These standards are lower than the maximum contaminant level (MCL) adopted by the U.S. Environmental Protection Agency (USEPA), which is 2,000 ng/L (USEPA, 2001a). The USEPA has also adopted a reference dose (RfD) for MeHg in drinking water of 0.1 µg/kg bw/day (or 100 ng/kg bw/day, where bw = body weight) (USEPA 2001b).
Measures, such as regulations to restrict commerce in Hg, have been taken to reduce the amount of elemental Hg available globally. The amount mined in 2010, for example, was estimated at 2042 megagrams (Mg; or 2250 tons)(Brooks, 2010). In 2007, the European Union passed a ban on the export of Hg(0) and in 2008 this was expanded to include various Hg compounds. The USEPA, in 2008, passed a ban on the export of elemental Hg from the United States (USA), to take effect in 2013 (USEPA 2009). Because the USA is ranked as one of the world\'s top exporters of Hg (~417 Mg in 2010 (Brooks, 2010)), implementation of the act will remove a substantial amount from the global market, as it is exported to foreign countries where, among other uses it is employed in small-scale gold (artisanal) mining (USEPA, 2012). China, the world leader in Hg production in 2010, plans to lower production of some metals, including Hg, by 2015 (Brooks, 2010).
Given the potentially severe health effects of MeHg, the need to understand the production of MeHg and its bioaccumulation in the food web, as well as the role of atmospheric deposition in supplying Hg to soils and surface water, has led to numerous investigations of Hg inputs and transformations. Hence, the majority of studies and reviews of Hg in the environment focus on atmospheric inputs (e.g., Engstrom et al., 2007; Glass et al., 1991; Pacyna et al., 2006; Schuster et al., 2002) and the fate and transport of Hg in soils, sediments and surface-water settings (e.g., Bradley et al., 2011; Driscoll et al., 1994; Grigal., 2002; Porvari et al., 2003; Rudd, 1995; Shanley et al., 2002; Schuster et al., 2008; Selvendiran et al., 2008; Skyllberg, 2008; Ullrich et al., 2001; Yu et al., 2012). Many of these studies have their emphasis on the production, mobility, and bioaccumulation of MeHg. Far fewer studies have been performed and published on Hg in groundwater. Some of those have shown that Hg concentrations are low, in the nanograms-per-liter range (e.g. Krabbenhoft & Babiarz, 1992). However, other studies have shown that regional levels of Hg in groundwater can be high, in the micrograms-per-liter range (e.g. Barringer & Szabo, 2006), and some show that microgram-per-liter levels of Hg are being found in groundwaters previously not tested (e.g. Khatiwada et al., 2002).
As discussed below, not all contamination with Hg at the land surface causes contamination of groundwater. It is critical to know the complex biogeochemistry of Hg in order to understand how existing important research applies to Hg fate and transport in groundwater systems.
Mercury is one of the least abundant elements in crustal rocks. Concentrations in rocks of the upper continental crust typically range from 0.01 to about 2 mg/kg, although concentrations higher by more than two orders of magnitude are reported from igneous and sedimentary rocks of Crimea and the Donets Basin of Russia (Fleischer, 1970). A reasonable estimate of the average concentration of THg is 0.08 mg/kg (Fairbridge, 1972). The most abundant Hg mineral is cinnabar (HgS), which can be found in association with metacinnabar (β HgS—a metastable sulfide). Other Hg minerals, mainly sulfosalts that can also contain arsenic, are not common, and, when found, are generally associated with ore deposits.
Volcanic emissions have been estimated by some researchers to constitute the main natural source of Hg to the atmosphere where Hg is primarily present as gaseous elemental Hg (Martin et al., 2012). Kilauea, in Hawaii, was estimated to produce about 260,000 kg/yr (Siegel & Siegel, 1987). In contrast, Ferrara et al. (2000) suggest that volcanic emissions are not the main natural source of THg to the atmosphere, based on reported estimates of emissions from Mediterranean volcanoes: Vulcano, about 1 to 6 kg/yr; Stromboli, about 7 to 80 kg/yr; and Etna, about 60 to 500 kg/yr.
Volcanic emissions can cause local contamination of soils and surface waters, but, as shown at Mt. Etna in Sicily, concentrations of Hg in local groundwater were typically < 10 ng/L (Martin et al., 2012), indicating that Hg had not been easily mobilized from the land surface. Nevertheless, some of the Hg deposited to soils by volcanic emissions volatilizes and can be re-emitted to the atmosphere (Fig. 1). Further, evasion of Hg(0) from the ocean surface adds substantially to atmospheric Hg (Mason et al., 1994). Characterization of atmospheric THg along the central USA Gulf Coast has shown inputs from sea spray increases atmospheric deposition of THg in coastal regions (Engle et al., 2008).
Sources and biogeochemical cycling of mercury between land surface, surface water, and the atmosphere (from
Mineralization associated with igneous activity has produced volcanic-hosted massive sulfide deposits, in which the ore mineral cinnabar forms (some mined since the third century B.C. (Navarro, 2008)). Such major geologic sources of Hg are found in Spain, Slovenia, China, and the western USA, in California. Volcanically derived sedimentary deposits containing other sulfides also can contain substantial Hg (Navarro 2008).
Associated with igneous activity, circulating geothermal fluids can contribute Hg to groundwater, surface water, and to solids that precipitate around mineral springs, geysers and fumaroles. In Russia, Yudovich and Ketris (2005) report that Hg contents in condensate from fumarole gases ranged up to 0.11 mg/kg at the Kamchatka Peninsula, and even higher (up to 0.40 mg/kg) at fumaroles in Japan and Guatemala. In Yellowstone National Park in the western USA, Hg is present at concentrations of 12 to 640 ng/L in waters of hot springs and geysers (Ball et al., 2006), although Hg minerals were not recognized in precipitates there (White et al., 1970). Saline waters at Sulfur Bank and Wilbur Springs in the California Coast Range contained about 1,500 ng/L of Hg, and cinnabar and metacinnabar precipitate at Sulfur Bank (White et al., 1970).
Fleischer (1970) compiled literature values for Hg in crustal rocks, worldwide. Average values for mafic igneous rocks ranged from 0.001 to 0.240 mg/kg, whereas for silicic igneous rock, averages ranged from 0.005 to 0.190 mg/kg, except for igneous rocks from the Crimea and Donets Basin, where the average Hg contents ranged from 0.250 to 17.6 mg/kg. Average Hg contents of sandstones and limestones ranged from 0.018 to 5.70 mg/kg, and in shales from 0.05 to 2.3 mg/kg, with the higher contents typically found in the Russian shales. In metamorphic rocks, contents ranged from 0.060 to 2.50 mg/kg.
Many of the widely used sources of coal contain high concentrations of Hg; these include from China (Pirrone et al., 2010), Ukraine (Kolker et al., 2009), and Texas, USA (Tewalt et al., 2001). Coal burning is a major source of Hg release into the atmosphere (Wang et al., 2004); but potential effects on groundwater are mostly unknown. The Hg content of coals ranges from 0.01 to 1.85 mg/kg, with the highest content found in some Chinese coals (Pirrone et al., 2010 and references therein). Much of the Hg in coals is in associated pyrites, with contents that can be 10 mg/kg or greater (Yudovich & Ketris, 2005). Direct effects from coal seams on groundwater may not be obvious, however. Cravotta (2008) did not find detectable Hg concentrations in samples of waters discharging from abandoned coal mines in Pennsylvania, USA.
Emissions of Hg to the atmosphere have increased greatly since the beginning of the industrial era, although estimates of the increase in atmospheric levels vary widely—from about 3 to 24 times that of the pre-industrial period (Wang et al., 2004, and references therein). Recently, it has been estimated that total global emissions account for about 6500 megagrams (Mg) of Hg released annually to the environment. The uncertainty for current estimates is about a factor of two, according to Lohman et al., (2008). Nevertheless, as Gustin et al. (2008) point out, estimates of natural emissions vary widely (volcanic emissions are not constant, for example). Gustin et al. (2008) also note that the range in estimates of anthropogenic releases is small, relative to the range of estimates for natural sources. Coal burning and combustion of other fossil fuels were estimated to constitute about 60 % of the annual amount contributed to the atmosphere from anthropogenic sources (Swain et al., 2007). Total Hg contents of ice-core samples from the Upper Fremont Glacier in Wyoming, USA, when integrated over the past 270 years indicated that anthropogenic emissions accounted for 52%, volcanic events contributed 6%, and background sources supplied 42% (Schuster et al., 2002), and most of the anthropogenic contributions have occurred since about 1850. A current estimate of total annual emissions, both natural and anthropogenic, is about 7,300 Mg (Pirrone et al., 2010) (Table 1), higher than earlier estimates, and also with a higher uncertainty. In terms of regional emissions, those from Asia have increased from 38% to 64% of global emissions over the period of 1990-2007 (Pirrone et al., 2010).
\n\t\t\t | \n\t\t | |
Oceans | \n\t\t\t2,680 | \n\t\t\t2008 | \n\t\t
Lakes | \n\t\t\t96 | \n\t\t\t2008 | \n\t\t
Forests | \n\t\t\t342 | \n\t\t\t2008 | \n\t\t
Tundra/grasslandsb\n\t\t\t | \n\t\t\t448 | \n\t\t\t2008 | \n\t\t
Desert/non vegetated areasc\n\t\t\t | \n\t\t\t546 | \n\t\t\t2008 | \n\t\t
Volcanoes and geothermal areas | \n\t\t\t90 | \n\t\t\t2008 | \n\t\t
\n\t\t\t | \n\t\t | |
Non-ferrous metal production | \n\t\t\t310 | \n\t\t\t2003-06 | \n\t\t
Pig iron and steel production | \n\t\t\t43 | \n\t\t\t2003-06 | \n\t\t
Cement production | \n\t\t\t236 | \n\t\t\t2003-06 | \n\t\t
Caustic soda production (chlor alkali process) | \n\t\t\t163 | \n\t\t\t2003-06 | \n\t\t
Mercury production | \n\t\t\t50 | \n\t\t\t2003-06 | \n\t\t
Gold production | \n\t\t\t400 | \n\t\t\t2003-06 | \n\t\t
Waste disposal | \n\t\t\t187 | \n\t\t\t2003-06 | \n\t\t
Stationary (fossil fuel) combustion | \n\t\t\t810 | \n\t\t\t2003-06 | \n\t\t
Coal-bed fires | \n\t\t\t32 | \n\t\t\t2003-06 | \n\t\t
Vinyl chloride monomer production | \n\t\t\t24 | \n\t\t\t2003-06 | \n\t\t
Other | \n\t\t\t65 | \n\t\t\t2003-06 | \n\t\t
Biomass burningd\n\t\t\t | \n\t\t\t675 | \n\t\t\t2008 | \n\t\t
Agricultural areasd\n\t\t\t | \n\t\t\t128 | \n\t\t\t2008 | \n\t\t
Estimatesa of global mercury emissions from natural and anthropogenic sources, and year(s) for which estimate is made. [Mg, megagrams; Data from Pirrone et al., 2010 and references therein]
a the mean uncertainty associated with these estimates is + 25% (Pirrone et al., 2010)
b Includes savannah, prairie, chaparral.
c Includes metalliferrous areas.
d Amounts may need reconfiguring from Pirrone et al.(2010) category of natural sources, p. 5953, because some burning is caused by humans, agricultural inputs of Hg are anthropogenic, and evasion is amplified by soil disturbance.
e Values have been rounded to the nearest whole number.
Global production (mining and processing) of Hg has been reduced since the mid 20th century, although present-day production may still contribute about one third of emitted Hg from anthropogenic sources (Hylander & Meili, 2003). Amounts of Hg in atmospheric deposition are declining in some parts of the USA as there have been efforts to curb industrial and power-plant emissions. For example, in a study of Hg loading to Minnesota (USA) lakes, Engstrom et al. (2007) found that inputs, mainly from atmospheric deposition and subsequent soil erosion, peaked in the 1970s, and have declined substantially in recent years. Additionally, in the upper Great Lakes (Superior & Huron) in the USA and Canada, a decline in Hg in fish tissue is noted, although not in the lower Great Lakes (Erie & Ontario) (Bhavsar et al., 2010).
Atmospherically deposited Hg has affected mainly surface water and the organisms that live in water bodies. Hg deposited as Hg(0) may be oxidized to Hg(II), then transformed to MeHg by bacterial activity at and below the sediment/water interface or in algal mats. Low-trophic-level organisms (invertebrates) take up both THg and MeHg (Fig. 1). The concentration of MeHg in organisms increases with each step up the food chain—a process known as biomagnification (Alpers & Hunerlach, 2000; USGS, 2000). During the late 20th century, emissions from coal-fired plants in the Midwest of the USA, which are mainly in vapor (Hg(0)) form (Lindberg, 1987), deposited Hg on surface-water bodies. These emissions and other industrial emanations have resulted in fish consumption advisories because of high levels in the tissues of edible fish (Brooks, 2002). Advisories for non-commercial fish, as of 2006, now extend to freshwaters in 48 USA States, of which 23 are statewide advisories. In addition, 13 States have coastal and estuarine advisories (USEPA, 2010).
Results of two studies suggest that Hg from atmospheric deposition contributes to elevated Hg concentrations in groundwater. Bradley et al. (2012, p. 7507) found that strong hydraulic gradients toward a stream indicated deep groundwater discharge was the primary source of filtered Hg (FTHg) to a Coastal Plain stream, USA. Additionally, higher concentrations of FTHg in deeper wells near the stream (compared to shallower wells) and a lack of geologic Hg deposits in soils and sediments were “consistent with atmospheric Hg deposition on the terrestrial landscape as the distal source of FTHg to groundwater.” Barringer and Szabo (2006) contend that Hg deposited from the atmosphere to soils of the Coastal Plain of southern New Jersey, USA, may be mobilized, along with pesticide residues, to groundwater where Hg concentrations in domestic well water are found to exceed the State and USEPA MCL of 2,000 ng/L.
Mercury in consumer products and their manufacture constitutes a source of Hg to aquatic systems. Mercury is used in dry-cell batteries, fluorescent light bulbs and thermostats, and, in the mid-to late 20th century, as a fungicide in paints and in wood preservatives; Hg is also used in dental amalgams (Barringer et al., 1997; Brooks, 2000, 2002; USEPA, 2006). Use of Hg in dentistry has consumed large amounts of the metal (about 63,500 kg in Europe), resulting in emissions as well as constituting a substantial portion of the Hg in municipal waste streams (Hylander et al., 2006; Metro, 1991). Several studies, summarized by Morrison (1981), indicated that subsurface disposal of municipal sewage sludge in the USA resulted in several metals, including Hg, leaching to groundwater. Since the mid 20th century, industrial use of Hg has declined in the USA and elsewhere, however. There are now ongoing attempts in some countries, such as the USA and the United Kingdom, to reduce the amount of Hg used in products; particularly those that are then discarded (Bradley & Journey, 2012).
Groundwater contamination with THg from both inactive and active industrial sources is found in many countries where, in general, the contamination is relatively local. Chlor-alkali plants that once produced chlorine gas and sodium hydroxide using Hg-cell technology have been shown to contribute Hg to surface water, soils and groundwater—up to 22,900,000 ng/L in groundwater at a facility in Sydney, Australia (Orica, 2012). There are numerous such facilities; other examples are chlor-alkali plants in New York State, USA, and in Kazakhstan, which have also produced Hg contamination of surrounding soils and waters (Gbondo-Tugbawa & Driscoll, 1998; Ullrich et al., 2007). The use of Hg-cell technology is being voluntarily phased out in most countries; however, wastes from chlor alkali plants still remain at some locations (Hylander & Meili, 2003).
In some instances, Hg contamination of groundwater is more diffuse, perhaps coming from multiple (potentially small) point sources. Suspected industrial and wastewater discharges have introduced Hg contamination to the surficial alluvial aquifer in urban Madras, India (Somasundaram et al., 1993), where, along with other metals, Hg concentrations are reported to range from 1,000 to 18,000 ng/L in water from wells near the River Cooum in the Madras urban area, mainly exceeding the Indian drinking-water standard of 1,000 ng/L.
In some instances, Hg released from industrial operations results in contamination of soils at the site, but the soil characteristics are such that the Hg is sequestered or attenuated, and does not leach to groundwater, as found, for example, at a site in Trondheim, Norway (Saether et al., 1997). In other instances, Hg contamination of groundwater is noted locally near industrial sites. At a site in southern Germany where “kyanizing” (mercuric chloride (HgCl2) used to preserve wood from decay) was performed, groundwater in a 1.3-km-long plume was found to be contaminated with Hg at concentrations that reached 230,000 ng/L (Bollen et al., 2008). HgCl2 is extremely soluble in water, (7.4 x 1010 ng/L; O’Neil, 2006), and thus easily mobilized from inputs at the land surface to the water table.
Mercury has been used in munitions and for other purposes on military bases. This use has, in some cases, led to contamination of soils at the bases (Bricka et al., 1994); with the potential for further contamination of surface and groundwaters. Mercury contamination of soils, surface water and groundwater is found at a former military base in southern New Jersey, USA. The Hg content of soils ranged up to 555 mg/kg, and concentrations in some streamwater and groundwater samples exceeded 2,000 ng/L; determining whether the Hg derives solely from military activities is a part of ongoing investigations there (Barringer et al., 2012).
From the early-to-late 20th century, Hg was used in agricultural pesticides, but use of Hg compounds decreased substantially after 1970 in the USA (Murphy & Aucott, 1999). Mercurial compounds also were once used on golf courses in the USA, being most heavily applied in northern States to control snow mold. On a golf course in New Hampshire, USA, Estes et al. (1973) estimated that annual fungicide applications contributed 2.1 kg of Hg per hectare. In Australia, sugar-cane setts were treated with a fungicide containing methoxymethylmercury chloride before planting; concentrations of Hg from 30 to 670 ng/L were found in groundwater underlying cane cropland, but were interpreted as being within the range of naturally occurring Hg concentrations in area groundwater (Brodie et al., 1984). It is apparent that not all applications of Hg to soils result in groundwater contamination, but there are instances where Hg can be mobilized from soils to groundwater.
In the early to mid-20th century, phenylmercuric acetate was used in orchards; calomel and HgCl2 were used on row crops; these are known to be used on sandy agricultural soils of the Coastal Plain of southern New Jersey, USA (Murphy & Aucott, 1999). Inputs of Hg would have been high if the federally recommended application rates of 3.4 kg/hectare for highly soluble HgCl2 were followed (Barringer et al., 1997 and references therein). Mobilization of Hg from applications of mercurial compounds, enhanced by subsequent disturbance from residential development of the land, may be the cause of elevated Hg concentrations on groundwater downgradient from such sources. Water from wells completed in the quartz sand aquifer beneath the former agricultural land contains Hg at concentrations exceeding 2,000 ng/L (Barringer et al., 2005; Barringer & Szabo, 2006).
In addition to pesticides, Hg also could be introduced to soils via fertilizers. A commercial 20-20-20 fertilizer solution prepared according to manufacturer’s directions contained 280,000 ng/L of Hg (Barringer & MacLeod, 2001). Mercury was measured in several common fertilizers, with the highest concentration (5.1 mg/kg) found in calcium superphosphate, and a lower concentration (1.2 mg/kg) in 15-5-5 Nitrogen-Phosphorus-Potassium (NPK) fertilizer (Zhao & Wang, 2010). Some States in the USA are acting to regulate the amount of metals permissible in fertilizers and other agricultural chemicals (e.g. ODA, 2002).
Seawater intrusion along coasts typically occurs because withdrawals of freshwater resources reduce the freshwater hydraulic head, allowing seawater to enter aquifers on land. In southern Tuscany, Italy, the high chloride concentrations brought in by seawater intrusion may have been responsible for mobilizing Hg in the geologic materials to groundwater, perhaps as a chloride complex (Grassi & Netti, 2000; Protano et al., 2000). In Sardinia, dewatering of a lead-zinc (Pb-Zn) mine resulted in intrusion of deeper saline water that may have been responsible for increased Hg concentrations in shallow groundwater (Cidu et al., 2001). Experiments support these interpretations; Behra (1986) showed that elevated chloride (Cl-) concentrations mobilized Hg(II) in columns packed with quartz sand.
Contamination of soils, surface water and groundwater also arises from mining of cinnabar deposits. Mining of other metal ores has also resulted in Hg contamination, such as at the McLaughlin gold-mercury deposit in California (Sherlock, 2005), because of trace amounts of cinnabar or occurrence of Hg with other sulfide minerals. As a result of early 20th century copper mining activities along the Alaskan coast, USA, dissolved concentrations of Hg up to 4,100 ng/L were found in pore waters of sediments affected by mining waste (Koski et al., 2008). In a Canadian gold and silver mine, accessory cinnabar in waste piles oxidized and leached to groundwater, resulting in concentrations that ranged up to 150,000 ng/L (Foucher et al., 2012). Not all mining activities and mining waste disposal procedures result in extremely high levels of Hg in groundwaters, however; concentrations in adit water samples from an abandoned mercury mine in Turkey were still high relative to most waters, but ranged from 250 to 274 ng/L (Gemici, 2008).
The process of amalgamation of silver and gold with Hg was developed in the 16th century and used on an industrial scale into the 19th century in Central and South Americas, primarily to extract silver, and into the 20th century in North America for gold extraction (Nriagu, 1994). Elemental Hg was lost to the environment during the process; Hg losses during gold and silver extraction in the Americas are estimated to be about 240,000 Mg (Nriagu, 1994). Similar extraction activities have taken place in the Philippines, Indonesia, Thailand, Vietnam, Tanzania, and China (Lacerda, 1997), though the scale is not as great as in the Americas. Although some of this mining-activity-related Hg has volatilized, adding to the atmospheric Hg burden, much of it apparently still remains in the areas where metal processing took place. A few of these mining/extraction sites have been studied. In Tanzania and Zimbabwe, Hg sorption to iron-rich lateritic soils appears to have prevented groundwater contamination from Hg in tailings (van Straaten, 2000). Extreme surface-water loads have been documented from many of these mines including the Sierra Nevada gold mines in the USA (Domagalski, 1998), the Idrija Hg mine in Slovenia (Covelli et al., 2007), as well as Hg mining in Spain (Navarro, 2008) among others, with Hg sorption to iron-hydroxide-rich stream deposits a likely mechanism for Hg attenuation in some cases (Rytuba, 2000). Use of Hg in small-scale (artisanal) gold mining operations remains a substantial concern even today (Bradley & Journey, 2012).
Oxidation-reduction, precipitation-dissolution, aqueous complexation, and adsorption-desorption reactions will strongly influence the fate and transport of Hg in groundwater, and in the environment, generally. At the land surface, Hg participates in photochemical reactions (see the review of Zhang, 2006), but these reactions are not relevant to groundwater. Biogeochemical reactions in soils are of great importance to the fate and transport of Hg, however. Characteristics of soils, which include pH, carbon content, mineralogy, drainage properties, slope, and texture, all play a role in Hg retention or mobility and whether THg inputs to the land surface reach the water table. Concentrations of THg typically are higher in organic soil horizons than in the deeper mineral horizons because Hg typically is closely associated with organic matter (Amirbahman & Fernandez, 2012), and Andersson (1979) reports sorption to iron oxides (typical of some temperate-climate subsoils, and also tropical soils) at pH > 5.5. The reactions described below can occur in soils, in the surface-water environment, and, apparently, in groundwater as well.
The three stable oxidations states of Hg in low-temperature aquatic systems are Hg(II), Hg(I) and Hg(0). The mercurous (Hg(I)) species is stable over a more limited range of conditions in sulfidic aqueous systems than it is when sulfur is absent (Hem, 1970). The Hg species vary in their solubility, complexation, adsorption (Stumm and Morgan, 1995) and their availability for microbial processes. Therefore, oxidation-reduction (redox) reactions will have a profound influence on Hg concentrations and mobility in groundwater. Both abiotic and biotic (primarily microbial) processes can drive Hg redox transformations.
Iron geochemistry is intimately associated with that of Hg. Anaerobic column experiments showed transport of Hg(II) retarded by sorption (as a Hg-Cl complex) to pyrite (FeS2) (Bower, et al., 2008), and Hg(II)) has been shown to sorb to iron oxides at pH > 5.5 (Andersson, 1979). Given a positive association of Hg with iron (Fe) in iron-hydroxide-rich sub-soils in the New Jersey Coastal Plain, USA, sorption of Hg to Fe hydroxides appears to be a mechanism for attenuating Hg (Barringer & Szabo, 2006). The same mechanism appears present at some mining sites (Rytuba, 2000; van Staaten, 2000), although formation of aqueous and solid-phase sulfides controls Hg(II) concentrations in tailings-contaminated sediments from California, USA, mines (Rytuba et al., 2005). Fe(II) hydroxides can be reductively dissolved by sulfide, resulting in the release of sorbed Hg. Experiments showed that, in the presence of sulfide (S2-), Fe (III) was reduced and concentrations of dissolved Hg increased (Slowey & Brown, 2007). It appears that these and the experiments of Bower et al. (2008) were not done in the dark, however. Consequently, applicability of results to a groundwater setting is not clear.
Field examples also demonstrate that oxygen-depleted conditions caused by septic-system-effluent releases led to reductive dissolution of Fe hydroxides, resulting in release of sorbed Hg(II) (Barringer & MacLeod, 2001). Further, the Fe(II) generated in such a reaction may adsorb to minerals where it can then reduce Hg(II) to Hg(0) (Charlet et al., 2002). Recent experiments show that Fe(II) in minerals also can reduce Hg(II) to Hg(0). For example, in sealed, dark bottles, magnetite was found to reduce Hg(II) to Hg(0) within minutes (Wiatrowski et al., 2009; Yee et al., 2010). Mercury (Hg(II)) was also rapidly reduced in anoxic solutions by Fe(II) under varying pH conditions, with aqueous Fe(OH)+ being the species that best described the electron transfer that occurred in the experiments (Amirbahman et al., 2012). Metals other than iron, such as tin, are also known to reduce Hg(II) to Hg(0) (e.g., Biester et al., 2000).
Natural organic matter has been shown to abiotically reduce Hg(II) to Hg(0) (Allard & Arsenie, 1991). Experiments under dark anoxic conditions by Gu et al. (2011) showed that dissolved organic matter (DOM) reduced Hg(II) to Hg(0) when low concentrations of DOM were present. At higher DOM concentrations, however, complexation with Hg inhibited Hg reduction reactions.
Microbially mediated redox reactions involving Hg also have been demonstrated. Hg(II) was reduced to gaseous Hg(0) by a
Mercury (Hg(II)) can be present not only as Hg2+, but as Hg(OH)2, HgCl2 and other minor OH- and Cl- complexes, and in complexes with various organic anions, depending on pH, Eh, chloride concentrations and presence of DOM. Were DOM to be low or absent, then Hg could be present as hydroxide or chloride complexes in fresh waters (Reimers & Krenkel, 1974; Stumm & Morgan, 1995); at low to moderate pH and moderate to high chloride concentrations, chloride complexes would be most likely (Ravichandran, 2004). In the presence of dissolved sulfide, mercury-sulfide species may form (Benoit et al., 2001).
Mercury tends to form strong complexes with S2- and, in DOM, Hg(II) binds preferentially to sulfur-containing functional groups such as thiols (Gabriel and Williamson, 2004; Ravichandran, 2004; Reimers & Krenkel, 1974). In anoxic environments, Hg can form complexes such as dissolved HgS, HgS22-, Hg(SH)2, HgSH+, HgOHSH and HgClSH (Gabriel & Williamson, 2004). Although metals typically bind to acid sites (carboxyls, phenols, ammonium, alcohols, and thiols) in organic matter, Hg(II) binds preferentially with thiols and other reduced sulfur groups with which it forms strong covalent-like bonds. These sulfur-bearing groups are found in moderate abundance in organic matter in soils, in some surface water, and in wastewater (Hsu-Kim & Sedlack, 2003; Ravichandran, 2004). When the Hg/DOM ratio is high (> 10,000 ng Hg to 1 mg DOM), however, Hg also binds to the more abundant but less Hg-selective oxygen (ie., carboxyl) functional groups (Haitzer et al., 2002). Further, binding of DOM with Hg(II) is less strong at low pH than at high pH (Haitzer et al, 2003); this occurs because the extent of protonation of functional groups serving as Hg(II) ligands on DOM increases as pH decreases. Given the affinity of Hg(II) for thiol groups on DOM, it has been shown that DOM can dissolve cinnabar, inhibiting or preventing precipitation of metacinnabar and aggregation of HgS nanoparticles (Ravichandran et al., 1999; Reddy & Aiken, 2001; Slowey, 2010; Waples et al., 2005).
An important transformation of inorganic Hg involves its methylation to monomethyl- or dimethyl-mercury. Methylation of Hg(II) in soils and surface-water was found to be carried out under anoxic conditions by dissimilatory sulfate-reducing bacteria (DSRBs) (Gilmour et al., 1992). Dissimilatory iron-reducing bacteria (DIRBs) later were found to be able to methylate Hg(II) as well (e.g., Kerin et al., 2006). Populations of both DSRBs and DIRBs have been found to coexist in stream-bottom sediments where fine-grained sediments were “potential hot spots for both methylation and demethylation activities” (Yu et al., 2012).
Further, at low sulfate (SO42-) concentrations, the methylating activity of SRBs is stimulated, but at high concentrations the methylating activity is inhibited because precipitated sulfides incorporate the Hg (Ullrich et al., 2001). Concentrations of SO42- between 0.2 and 0.5 mM (about 19 to 48 mg/L) appeared to be optimum for promoting Hg methylation in freshwater (Gilmour and Henry, 1991). Barkay et al., (1997) discovered that high concentrations of DOM and salinity inhibited Hg(II) methylation because the Hg was complexed into forms that were not bioavailable to the methylating bacteria. The Hg in aqueous HgS complexes, which form in the presence of dissolved sulfide, was found to be bioavailable to the methylating bacteria, however (Benoit et al., 1999). Recent research shows that, although DOM can inhibit Hg bioavailability by complexing the Hg, DOM can also prevent HgS nanoparticles from aggregating, and thus the nanoparticles are bioavailable (Graham et al., 2012).
Mercury demethylation has also been studied in stream and lake sediments (e.g., Achá et al, 2011; Hintelmann et al., 2000; Pak & Bartha, 1998; Steffan et al., 1988). In experiments using sediments from southern New Jersey lakes, USA, Pak and Bartha (1998) showed that demethylation of MeHg is carried out by sulfidogenic and methanogenic bacteria, which are obligate anaerobes. Although the Hg methylation process was inhibited by low pH (4.4) conditions (which are common in southern New Jersey surface waters and groundwaters), demethylation of MeHg did not appear to be similarly affected for the pH range 4.4 to 8; inhibition occurred at pH < 4.4 (Steffan et al., 1988).
Extensive sorption of Hg(II) can limit concentration and mobility in groundwater unless the Hg(II) binds to colloidal solids under conditions where the colloids are stable and mobile. Colloids (particles < 1 µm in one dimension (Kretchmaar & Schafer, 2005)) in waters provide transport for various contaminants and generally are sufficiently small so as to pass the 0.45 µm pore-size filters used by most researchers in collected filtered water samples. Because of their large surface area relative to their volume, small particles and colloids can provide many sorption sites for strongly sorbing contaminants whose mobility would otherwise be minimal through soils and aquifers. Such movement can be triggered by chemical or physical disturbance of soils and sediments. For example, Hg sorbed to particles was released to runoff from boreal forest soils following clear cutting and scarification (Porvari et al., 2003).
Colloids can be formed by clay minerals; oxides and hydroxides of iron, aluminum, and manganese; silica; humic and fulvic acids; carbonates; phosphates (Ryan & Gschwend, 1994), also bacteria; and viruses (Kretchmaar & Schafer, 2005). Colloids are common in surface waters, soil and sediment porewaters. Colloids are found in groundwater as well. Changes in pH and redox reactions can cause dissolution or precipitation reactions that can form or release colloidal material. Examples are precipitation of colloid-sized minerals such as iron hydroxides when Fe(II) is oxidized, and oxides and carbonates that would precipitate at high pH.
In a southern New Jersey, USA, aquifer with Hg contamination, a study found colloids were more abundant in anoxic groundwater of an undeveloped area than in oxic groundwater (Ryan & Gschwend, 1990). The greater abundance likely occurred because iron hydroxide cements that bound clays to quartz-grain surfaces were being dissolved, liberating both Fe(II) and clay particles to solution (Ryan & Gschwend, 1994). With fluctuating water tables, some of the Fe(II) could be re-oxidized, forming colloidal precipitates.
In groundwater, colloids are subject to forces exerted by pumping. Sequential sampling of domestic wells in the unconfined aquifer system of southern New Jersey found that particulate Hg concentrations were commonly higher in first-draw water samples than in samples collected later during well purging (Szabo et al., 2010).
“Background” concentrations—that is—naturally occurring concentrations of THg (and MeHg) in groundwater probably depend upon ambient geochemical conditions, which would include pH that favors adsorption or desorption, presence and amount of Fe and DOM, and oxidizing or reducing conditions favorable to mineral precipitation or dissolution or microbial activities, including Hg(II) methylation. Absent known sources of contamination, background concentrations of THg in groundwater in several studies were found to be < 10 ng/L (Andren & Nriagu, 1979; Barringer & Szabo, 2006; Krabbenhoft & Babiarz, 1992; Kowalski et al., 2007). Total mercury concentrations in other groundwater studies, depending on filtration or lack thereof, ranged from <5 to 210 ng/L (Wiklander, 1969/1970; Reimann et al., 1999), with concentrations generally higher in unfiltered samples because of particulate material An issue with studies of low concentrations of Hg historically has been sample contamination. Studies since the early 1990s have used sampling protocols that typically obtain reliable samples; e.g. Krabbenhoft and Babiarz, (1992).
Relatively few studies have examined interactions between groundwater and surface water. In the Everglades swamp area in Florida, USA, groundwater pumping, dredging of canals, levee construction, and land subsidence have altered area hydrology (Harvey et al., 2002). In the surficial aquifer, THg, which is an element of concern because of severe MeHg impacts on Everglades biota, is recharged from surface water to groundwater, with higher concentrations (0.8 to 2.7 ng/L) tending to be in recharge from agricultural areas. Methylmercury (0.2 ng/L) was found only in groundwater recharged from agricultural areas and was not detected in groundwater elsewhere (Harvey et al. 2002). In a study of Hg inputs to Lake Superior, USA, however, groundwater was found to be an important source of MeHg to the lake, with concentrations as high as 12 ng/L in a hyporheic-zone sample (Stoor et al., 2006).
At a lake in glacial outwash (Wisconsin, USA), groundwater (sampled by piezometers and dug wells) both discharges to the lake and receives recharge from lake waters. Mercury enters from atmospheric deposition to the lake, and, apparently, through soils to groundwater. Mercury concentrations in groundwater discharge (mean 12 ng/L) to the lake was higher than that of water from nearby wells (mean 2.8 ng/L), showing the importance of reactions near and at the sediment/water interface (Krabbenhoft & Babiarz, 1992). In a New Jersey, USA, Coastal Plain watershed, groundwater discharging to a major river contained concentrations of THg in urban areas (some mainly in particulate form) that were higher than those in forested wetlands areas. Concentrations of THg in unfiltered water were 36 and 177 ng/L in discharge to the river at two sites in an urban area (Barringer et al., 2010a) and were not representative of background concentrations for that aquifer, which typically are < 10 ng/L (Barringer & Szabo, 2006). Bradley et al. (2012) also found Hg in groundwater discharge to be an important input to a southern USA Coastal Plain stream, although the THg concentrations in the groundwater were an order of magnitude lower than the concentrations in urban groundwater discharge in the study of Barringer et al. (2010a).
At more than 70 residential sites underlain by an areally extensive (7,770 km2) unconfined non-calcareous quartz sand aquifer system in the Coastal Plain of New Jersey, USA, water from domestic wells has been found to contain Hg at concentrations that exceed the State MCL of 2,000 ng/L. In the same aquifer system, background levels of THg in the groundwater in neighboring forested areas and unaffected residential areas are <10 ng/L (Barringer et al., 1997; Barringer & Szabo, 2006). This highly permeable system is vulnerable to contamination, with a water-table depth commonly less than 7 m below land surface. Past agricultural use of mercurial pesticides and atmospheric deposition are two likely sources of THg to the aquifer. Currently, about 700 wells are known to have withdrawn water containing THg at concentrations ranging as high as 80,000 ng/L (Dr. Judith Louis, New Jersey Department of Environmental Protection, 2010, oral commun.); the New Jersey Department of Environmental Protection supplies treatment systems or connections to public supplies for the affected households. A small number of public-supply wells have also been affected in urban/suburban areas (Fischer et al., 2010). Groundwater contaminated with THg was found in a similar Coastal Plain aquifer in the neighboring State of Delaware (Koterba et al., 2006).
Redox reactions were found to be important in explaining the mobility of Hg in the New Jersey Coastal Plain aquifer system. Septic-system effluent discharges, which were ubiquitous in the unsewered residential areas with Hg-contaminated well water, apparently drove redox reactions that influenced THg mobility in the aquifer. Discharges with elevated concentrations of electron donors promoted reductive dissolution of Fe hydroxide coatings on subsoil and aquifer sediment grains and sorbed Hg (presumably as Hg(II)), was released to groundwater (Barringer & MacLeod, 2001; Barringer et al., 2006; Barringer & Szabo, 2006). Septage and leach-field effluent contained THg concentrations in the range <20 to 60 ng/L. Therefore the effluent is seen, not as a prominent source of Hg, but as a source of electron donors (or reduced solutes) capable of driving redox reactions, such as dissolution of Fe hydroxides and reduction of Hg(II) to Hg(0), that favor increased concentrations and mobility of Hg.
The THg in New Jersey groundwater is hypothesized to be mobilized from soils. The mobility of Hg in soils was tested during U.S. Geological Survey (USGS) studies by pulsed leaching of samples of disturbed subsoils with de-ionized water, with artificial road-salt solution and with 20-20-20 fertilizer solution. In all cases the Hg removed was particulate, and was associated with removal of particulate Fe, indicating that the most likely mode of transport for the THg from the mineral soil horizons was in association with Fe hydroxide particles (Reilly et al., 2012; Barringer et al., (2012)). In the Fe hydroxide-rich subsoils, the introduction of septic systems, and onset of reducing conditions in some instances provided the conditions for reductive dissolution of hydroxides and release of sorbed Hg(II) to the water table. From the water table, gradients toward numerous pumping domestic wells brought mobile Hg to levels in the aquifer where drinking-water supplies were impacted. The question then arises—in what form is the Hg mobile?
Although well-water samples were not analyzed for Hg(0) in the USGS studies in the New Jersey Coastal Plain, geochemical modeling results indicated that Hg in the groundwater could be reduced and that Hg(0) would be a likely species in the groundwater (Barringer & Szabo, 2006). The presence of Hg(0) in water from the Coastal Plain aquifer system has been shown by sampling at the military base mentioned previously, where reducing conditions are present in DOM-rich wetland areas (Barringer et al., 2012). As mentioned earlier, experimental studies have shown that reduction of Hg(II) to Hg(0) by sorbed Fe(II) is sufficiently fast to promote mobilization as Hg(0) (Amirbahman et al, 2012; Charlet et al., 2002). Because Hg(0) is slightly soluble in water (56,000 ng/L at 25o (O’Neil, 2006)), it is likely that, in parts of the aquifer system affected by effluent discharges, Hg(0) could form and be mobile as dissolved Hg within the aquifer.
Mercury in the New Jersey Coastal Plain aquifer also appears to be mobile in particulate and colloidal form. The differences between unfiltered Hg concentrations and filtered concentrations (passing 0.45- µm pore-size filters) is large for some groundwater samples; the magnitude of this difference is interpreted as the concentration of particulates greater than 0.45 µm in diameter (Barringer et al., 2006; Barringer & Szabo, 2006). The finding of Hg on particulates/colloids indicates presence of THg, either as oxidized Hg(II) or as reduced Hg(0) (Bouffard & Amyot (2009) sorbed to the mobile particles. Currently (2012) in New Jersey, the composition of the particulates is not known at the various residential Hg contamination sites—they could be Fe hydroxides (Ryan & Gschwend, 1990), clay minerals (Ryan & Gschwend, 1994), organic material (Hurley et al., 1998), mixed organo-oxide colloids (Chadwick et al., 2006), or sulfide particles (Slowey et al., 2005), depending on the geochemical environment in which they form. The presence of particulates indicates that the dissolved THg concentrations measured in the New Jersey Coastal Plain groundwater represent only some fraction of the total pool of THg present in parts of the aquifer system
An incidence of Hg in groundwater in Nepal bears some resemblance to the New Jersey Coastal Plain contamination. In Nepal, public supply wells, deep private wells, and shallow dug wells, hand pumps and spouts completed in gravelly unconfined and confined aquifers were sampled. Twenty-three of the samples from 31 sampling sites contained Hg at concentrations that exceed the WHO Guideline of 1,000 ng/L; the highest concentration measured was about 300,000 ng/L in water from a dug well in an urban area. Concentrations of nitrogen species (NH3 and NO3-) and dissolved organic carbon (DOC) were particularly high in several of the well water samples (ammonia (NH3), up to 62 mg/L as N; nitrate (NO3-), 25 mg/L as N; and DOC, 63.6 mg/L), and reducing (anoxic) conditions were apparent in the confined aquifer (Khatiwada et al., 2002). No suggestions as to the source of the Hg were given, but the elevated nutrient and organic carbon levels are suggestive of anthropogenic inputs such as sewage that either include Hg, or that mobilize naturally occurring Hg, presumably under reducing conditions.
The importance of redox conditions in Hg release and mobility also is demonstrated in recent research at the USGS research site downgradient from the Massachusetts Military Reservation on Western Cape Cod. Land disposal of treated wastewater to the unconsolidated sands and gravels of the shallow aquifer from the 1930s to December 1995 resulted in development of a plume of contaminated groundwater that has been investigated since the early 1980s (LeBlanc, 1984). In addition to standard monitoring wells, the area affected by the plume has been instrumented with numerous multi-level samplers (MLS) (LeBlanc et al, 1991). These MLS allow collection of point samples from distinct biogeochemical zones, which would otherwise be difficult owing to steep vertical gradients in groundwater chemistry in the plume. An extensive suboxic zone with elevated nitrate concentrations and denitrification, and an anoxic zone with dissimilatory iron reduction (DIR) have persisted for more than 15 years following cessation of inputs from the source (Repert et al. 2006; Savoie et al., 2012). A recent study that examined Hg fate and transport within the plume found that Hg(0) constituted > 50% of the Hg present in the DIR zone near the source. About 1-2 km downgradient from the source, the anoxic zone had essentially no dissolved iron, but concentrations of both ammonium (NH4+) and NO3- were high. Methylmercury comprised nearly 100% of the dissolved THg present in some samples from this region of the plume. Under the original infiltration beds, THg concentrations ranged up to about 200 ng/L (1,000 pM), but concentrations were rapidly attenuated with distance downgradient from the beds. Concentrations of dissolved THg in the oxic, uncontaminated groundwater, where pH values ranged from 5.0 to 5.6, were about 0.2 ng/L. The study shows there are at least two distinct redox environments and two different microbial regimes operating within the plume. However, the distribution of dissolved THg suggests that downgradient from the source, dissolved THg has been mainly mobilized from the non-calcareous, quartzitic aquifer sediments rather than being transported long distances in the wastewater stream (Carl Lamborg, Woods Hole Oceanographic Institution & Douglas Kent, USGS, 2012, written commun.).
Crystalline rocks can contain Hg that may become mobile. Mercury in water from domestic wells completed in fractured rock aquifers of the Waldoboro pluton complex in Maine, USA, exceeded the USEPA drinking water standard of 2,000 ng/L (Sidle, 1993). Most high Hg concentrations were found in water from granitoid rock aquifers that contain several joint sets as well as cataclasite-fault breccias zones and shear-mylonite zones. Mineral-rich pegmatite dikes follow one of the joint sets in the Waldoboro pluton. A few anomalously high concentrations occurred in water from wells completed in associated metamorphic rock aquifers (gneisses and amphibolites) of the Bucksport Formation.
The Hg content of the rocks varied substantially, from 0.005 to about 500 mg/kg, with a median content of 78 mg/kg. Mercury concentrations in well-water samples ranged from 40 to 6200 ng/L. Mercury in surficial sediments, which contained glacially-derived deposits, ranged up to about 0.100 mg/kg. The presumption is that the Hg derived from the geologic materials, and that the fracturing aided in transporting Hg-rich water through the aquifers. There were no other chemical data reported for the domestic wells, and therefore it is not clear whether natural weathering of the Hg-enriched rocks was the cause of the high THg levels measured in well water, or whether inputs of anthropogenic chemicals could have mobilized Hg from the geologic substrate.
Largely within the last decade, researchers have turned to an examination of the impacts of fresh groundwater inputs on coastal waters. Groundwater that discharges to bays and estuaries has been found to contribute nutrients to coastal waters (e.g., Slomp & van Cappellen, 2004), and recent research has expanded to examine contributions of trace elements from this source. Within the past 5 years, at the volcanic island of Jeju, south of Korea, on the south coast of the English Channel at Caux, France, and along both east and west coasts of the USA, submarine groundwater discharge (SGD) of Hg and MeHg to estuaries and bays has been investigated (Black et al., 2009; Bone et al, 2007; Ganguli et al., 2012; Laurier et al., 2007; Lee et al., 2011).
Mass balance indicated that Hg in SGD at Jeju Island constituted 34 and 67% of the total Hg annually in waters of two bays, whereas atmospheric deposition contributed from 23 to 25% of the Hg. Methylmercury in SGD at the island also constituted the majority of MeHg in the coastal waters (Lee et al., 2011).
At Waquoit Bay in Massachusetts, USA, sampling of SGD showed that Hg concentrations in groundwater ranged from <0.64 ng/L to 52.4 ng/L, and that daily discharge of Hg was from 94 to 380 ng/m2 (Bone et al., 2007). Further, total dissolved Hg and DOC were not correlated, a lack of relation that was also observed in some of the New Jersey, USA, Coastal Plain studies, particularly at THg concentrations much higher than those found in waters discharging to Waquoit Bay.
At Caux, France, the Hg concentrations in tissues of blue mussels (
On the west coast of the USA, north of San Francisco, SGD contributed from 0.24 ng/L to 5.7 ng/L to California coastal waters; the Hg concentrations were significantly correlated with NH4+ and silica (SiO2) (Black et al., 2009). Farther south, at Malibu Lagoon, SGD also transported Hg and MeHg to coastal water. Mixing between groundwater and seawater was inferred. MeHg concentrations in seawater increased at low tide, as did filtered Hg concentrations; inputs from SGD were thought to change Hg partitioning and solubility in the seawater (Ganguli et al., 2012).
Overall, the studies of the Hg-contaminated groundwater in New Jersey and Cape Cod, in particular, have provided opportunities to investigate mechanisms for releasing Hg from the land surface to the water table, and to suggest further avenues to explore biogeochemical reactions that mobilize Hg from the subsurface and within aquifers. A conceptual model for Hg mobilization has been developed by New Jersey researchers (Reilly et al., 2011) and is shown in figure 2.
Mercury, either naturally occurring, of anthropogenic origin, or both, is released to the water table as Hg(II) from surface soils and subsoils by weathering or by inputs of anthropogenic chemicals such as road salt or fertilizers, or by subsurface inputs of septic-system effluent. Under oxidizing conditions, dissolved THg is mobile as a complex with DOM, and sorbed Hg(II) is mobile on Fe hydroxide particles. Effluent discharges provide electron donors and sorbed Hg(II) is released as Fe hydroxides reductively dissolve, and Hg(II) may be reduced either by DOM or by Fe(II). Where anoxic conditions are present, sulfate reduction is an important terminal electron accepting process, and methylation may take place. Additionally, sulfides may precipitate, removing Hg from the aqueous phase. Hg(0) may be re-oxidized to Hg(II) should groundwater become more enriched in oxygen farther down a flowpath.
Mobilization of mercury from land surface to groundwater and biogeochemical transformations along flow paths in an unconsolidated sandy, acidic aquifer.
Mercury is relatively rare compared to most other elements, but owing to its toxicity at low concentrations, Hg is an important potential contaminant. There is a large reservoir of inorganic Hg in the environment—much of it derived from human activities, most associated with industrialization. Some of that Hg enters freshwater supplies where conditions may be conducive to methylation and thus the production of MeHg that readily bioaccumulates. Relatively less Hg is mobilized to groundwater than to surface water, in part because Hg can be attenuated by sorption to clays, iron oxides, and residual soil organic matter. Studies of the fate and transport of Hg in the subsurface are beginning to reveal how transport from land surface to groundwater might occur and how Hg remains mobile within aquifers.
In none of the above studies of Hg discharge to coastal waters have the sources of the Hg in SGD been identified, nor have the mechanisms for maintaining Hg mobility in groundwater discharging to the coasts been discerned. Given the recent discoveries of Hg and MeHg inputs from SGD, there clearly are avenues for further investigations into this phenomenon. Uptake into estuarine biota in the biodiverse and biomass rich estuarine and coastal waters is of key concern for these sensitive ecosystems and for human health, given the great potential for biomagnification. The importance of groundwater inputs thus cannot be ignored.
Studies in New Jersey and Cape Cod, USA, have investigated processes leading to Hg mobility in groundwater in settings that involve inputs from sewage to the subsurface. Given that sewage effluent contains materials that can fundamentally alter biogeochemical environments, mobilization of metals such as Hg, whatever their origin, may be an ever increasing process as humans continue to develop their surroundings. It is hoped that the research, past and ongoing, that is discussed herein will be of use to readers who seek to understand, to prevent, or to mitigate Hg contamination of groundwater supplies.
(Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.)
The hole-drilling method is one of the most cost-effective and simple methods to evaluate the residual stresses present in typical industrial workpieces. Those stresses are induced in the material whenever it is subjected to mechanical or thermal treatments and their effect is often a requirement for the best working condition of the workpiece. Therefore, in most industrial applications, it is very important to have an accurate estimation of the magnitude of the residual stresses particularly where they could represent a critical aspect for the integrity of a component. Nowadays, different methods can be adopted in order to measure the residual stresses in a specimen, and they differ in many features, such as, the depth of investigation or the type of material.
\nThe hole-drilling method represents an interesting solution for the measurement of residual stress. Following the instructions reported in the ASTM E837-13a standard [1], a small hole is made in the center of a strain gage composed of a minimum of three grids. The method requires a sequence of drilling steps to be performed, at the end of which the relaxed strains are acquired from the rosette. The data are then used to calculate the magnitude and the direction of the residual stresses using the calibration coefficients supplied by the standard.
\nThe field of application of the method is wide-ranging and comprises typical mechanical engineering sectors, such as, metallurgy, automotive, aerospace and energy. Hole-drilling measurements can be performed in metal, composite and polymer materials [2]. The method also allows the test to be performed in different conditions, both in a laboratory and on field [3, 4].
\nAccording to the ASTM standard, the acquired strains are used for the calculation of residual stress applying the appropriate calibration coefficients depending on the thickness of the workpiece and the type of calculation (uniform or non-uniform). In the case of non-uniform distribution, the evaluation of residual stresses is based on the application of the integral method introduced by Schajer [5, 6].
\nStandard ASTM E837-13a reports the calibration coefficients for three types of standardized rosette (type A, type B and type C), specifying the related geometric dimensions. Unfortunately, the geometric dimensions of many commercial rosettes do not match those of standard rosettes, and in these cases, the calibration coefficients must be recalculated, taking into account the actual dimensions.
\nBeghini et al. [8, 9] introduced the influence function approach for a blind hole in a thick workpiece. The strain field was computed starting from a database of numerical solutions, implementing a specific geometric configuration in which the components of eccentricity are merely introduced as the geometry parameters rather than being considered as a source of error. This approach is more extensive with respect to the integral method and includes a parametric description of the strain gage rosette. Using the influence function approach, it is possible to include in the calculation different influence parameters such as the thickness of the specimen or a small bottom chamfer that could be present in the drilled hole.
\nThe eccentricity is the possible error that can be made by the operator during the hole-drilling test, due to misalignment between the drilled hole and the strain gage circle. The ASTM standard sets the limit of 0.004 D (where D is the diameter of the gage circle) as the maximum error of eccentricity. If the actual eccentricity value is measured after drilling, the correction of the eccentricity error will increase the accuracy of the measurements. With this correction, the measurements could be acceptable even in cases where the limit set by the standard is exceeded. Over the years, several approaches have been proposed for the correction of this effect [8, 9, 10, 11, 12, 13, 14].
\nRegarding the thickness of the workpiece under testing, the ASTM standard does not include any instructions for residual stress evaluation for intermediate thickness values ranging from 0.2D to D, where D is the diameter of the strain gage circle. Nevertheless, industrial reality presents a lot of cases where this condition exists, such as with metal sheets or automotive parts. To solve this problem, Abraham and Schajer [15] and Beghini et al. [16] presented correction methods with related calibration coefficients.
\nThe calibration coefficients provided by the ASTM E837-13a standard refer to a cylindrical hole with a flat bottom. Sometimes, end mills used in drilling have a small chamfer that produces a hole that is not perfectly cylindrical, with consequent errors in the measurement of relaxed deformations. To obtain measurements that are more accurate, it is therefore necessary to use calibration coefficients that consider the presence of the chamfer at the bottom of the hole. This source of error will be examined in greater detail, considering the proposed calibration coefficients to take this effect into account [17, 18, 19].
\nSometimes, the hole-drilling method is used on components that have high residual stress values, comparable with the yield stress of the material. Drilling a hole locally modifies the geometry of the specimen and the stresses around the hole increase by the concentration factor of the discontinuity. It is possible to adopt a stress correction methodology for a uniform stress field and the blind hole case [20, 21, 22].
\nEvaluation of measurement-related uncertainties is also analyzed. Although the ASTM E837 standard does not include a detailed method for the uncertainty evaluation, some scientific works define the main sources of uncertainty and propose some approaches for expressing uncertainty in the case of uniform and non-uniform residual stresses [23, 24, 25, 26, 27].
\nLastly, the paper shows an application of the hole-drilling method on a known-stress testing configuration obtained using a 4-point bending stress condition. The stresses are evaluated taking into account the effect of the correction of some of the errors described above, and then compared with the expected bending stress distribution. Finally, measurement uncertainty is evaluated with the same calculated stress distribution.
\nThe ASTM E837 standard provides several details about the testing procedure for strain-gage hole-drilling measurements, including the requirements for the entire measurement chain used for performing the test. A typical hole-drilling measurement chain is composed of two parts: the device used for drilling the hole and the strain gage amplifier used for the acquisition of strains.
\nThe drilling sequence is performed using a drilling technology that minimizes the machining-induced residual stresses at the hole boundary. For this reason, the standard requires that drilling speed remains in the range of 20,000–400,000 rpm: this drilling speed can be obtained using either a high-speed air turbine or an electric motor.
\nThe hole can be made using center-hole drilling or the orbital drilling technique. The orbital method has the advantages of adjusting the diameter of the hole by choosing the offset, of determining a more regular flow of chips and of reducing the geometric dimensions of the small chamfer at the bottom edge of the hole (Figure 1b).
\n(a) LVDT sensor installed on the drilling device and (b) orbital drilling slide.
The ASTM standard defines some features of a hole-drilling device and the fundamental requirement that the drilling depth must be accurately controlled. The uncertainty of the depth increments, required by the standard, depends on the size of the strain gage rosette used during the measurement and needs to be lower than ±0.004D. The depth accuracy requirement is essential in the case of a non-uniform stress profile where the hole is made using a step-by-step drilling sequence. For example, when using a rosette with a diameter D of approximately 2.56 mm, the depth uncertainty must be lower than ±10 μm. This requirement can be difficult to obtain using a manual drilling device.
\nThe use of an automatic drilling system instead of a manual system significantly increases the accuracy of the measurements. The automatic systems use an electronic device and dedicated acquisition and control software; they allow accurate control of the positioning of the end mill, necessary to meet the accuracy requirements of the standard and reducing the total testing time (Figure 2).
\nHole drilling measurements: typical automatic measuring device (MTS3000-Restan system—SINT Technology).
When maximum accuracy is required in depth increments, it is advisable to use an LVDT sensor, connected to the mechanical body of the drilling unit, which allows an accuracy of few microns (Figure 1a). An automatic system allows a higher number of drilling steps, a uniform feed rate and a fixed stabilization time. Moreover, it can be controlled remotely, minimizing operator presence near the drilling unit [2]; this is particularly important in the case of hole-drilling measurements on polymeric or composite materials.
\nTo obtain accurate measurements, it is very important to establish the point that corresponds to the “zero” cutter depth. The standard identifies it as the point at which the end mill begins to lightly scratch the surface of the workpiece, during slow advance drilling. It is clear that the quality of the results of this process greatly depends on the skill of the operator who carries out the measurements and may not be very accurate.
\nIn the case of tests on conductive materials, it is possible to use the electrical contact technique that identifies the contact when the electrical connection occurs between the tip and the surface of the workpiece. Alternatively, it is advisable to automatically measure the strain variation during the detection of the zero depth surface; when the end mill slowly touches the material surface, the strain gages detect the strain variation and the system immediately stops the drilling operation.
\nAfter acquisition of the relaxed strain values, the residual stresses need to be evaluated. First of all, it is necessary to choose between blind-hole and through-hole calculation and between uniform or non-uniform stress distribution along the depth. When the residual stress value is uniform along the depth, the ASTM E837-13a standard specifies that the formulas described in Section 8 of the standard be used. The standard suggests assuming the stress to be uniform only when prior information about the expected stress field is available or if a representative size of the magnitude of the residual stress is required.
\nTypical applications generally exhibit a non-uniform state of residual stresses. In this case, it is necessary to follow the instructions reported in Section 9 of ASTM E837-13a for the calculation of residual stresses along the depth. The standard provides the calibration matrices, derived by the integral method, that must be multiplied with the acquired strains to derive the stress values. The matrix coefficients, corresponding to each calculation depth, are dimensionless and almost independent of the material [1].
\nFor the sake of simplicity, only the equation for the calculation of the combination stress P is shown below.
\nIt is important to point out that dependence of the stresses on the Poisson’s ratio, as shown in Eq. 1, is simplified [13].
\nAll the coefficients reported in the calibration matrices A and B, for a non-uniform stress field, are strictly related to the nominal hole diameter (DN) of 2 mm. If the diameter of the drilled hole (D0) differs from the nominal value, each matrix coefficient reported in the standard needs to be corrected using Eq. 2 reported below:
\nThe dependency of the coefficients of the calibration matrix on the drilled hole diameter, as expressed in Eq. 2, is approximated as explained by Alegre et al. [7]. For example, using a rosette with a strain gage circle diameter (D) of 5.13 mm, the nominal hole diameter (DN) is equal to 2 mm and the allowed diameter of the drilled hole (D0) can vary from 1.88 to 2.12 mm. The ratio \n
Recently, some developments have been carried out to overcome the limits of the ASTM E837 standard previously described and to take into account other parameters affecting the results that are not considered in the standard.
\nBeghini et al. [8, 9] of the University of Pisa introduced a generalized integral method based on the analytical definition of influence functions. The method is substantially an evolution of the Integral Method and it also overcomes the limitation of the ASTM E837 standard regarding the maximum allowable value of eccentricity. Using the Influence functions approach, it is also possible to include the real dependency of the Poisson’s ratio and the diameter of the drilled hole on the calculated stress. In detail, the proposed methodology is based on analytical influence functions relating the measured relieved strains to the residual stress by means of integral equations. By processing the results of accurate finite element simulations, continuous analytical influence functions are produced.
\nThe generalized integral method is more universal compared to the ASTM E837 standard and is currently the most suitable to include the influence parameters not considered in the standard and therefore to overcome its limitations. With this calculation method, it is possible to take into account other influence parameters, such as hole bottom chamfer and intermediate thickness.
\n\nTable 1 provides a comparison of the limitations of the ASTM E837 standard and of the generalized integral method based on the influence functions.
\nParameters | \nLimitations | \n|
---|---|---|
ASTM E837 for non-uniform stress field calculation [1] | \nGeneralized integral method, based on the influence functions [8, 9] | \n|
Hole diameter | \nApproximated correction if hole diameter differs from the nominal value used for the evaluation of the calibration coefficients | \nNo limitation | \n
Poisson’s ratio | \nApproximated correction if Poisson’s ratio differs from the value used for the evaluation of the calculation coefficients | \nNot applicable if outside the range 0.25–0.45 | \n
Rosette geometry | \nFixed only for the strain gage rosette (A, B and C) reported in the standard. | \nVariable. Strain gage circle diameter (D), grid length (GL) and width (GW) can be used as input parameters | \n
Hole eccentricity radius | \nEccentricity correction is not included. Is considered acceptable if lower than 0.004D | \nNo limitation | \n
Workpiece thickness | \n<0.2D thick (uniform stress) >1.0D thin (uniform/non-uniform stress) | \nNo limitation | \n
Hole-bottom chamfer | \nNot considered | \nConsidered (for a specific end mill geometry) | \n
Comparison between the limitations of the ASTM E837-13a method and those of the generalized integral method based on the influence functions.
The ASTM E837 standard (Section 9.3) uses the integral method, including the Tikhonov regularization, to calculate non-uniform residual stresses. The residual stresses for each hole depth
Eqs. (3)–(5) are applicable only in the case of concentric holes, where it is possible to decouple the strain components.
\nBeghini et al. [8, 9] and, more recently, Barsanti et al. [13] extended the Integral Method by including a correction for the eccentricity of the hole with respect to the strain-gage rosette.
\nFor this general problem, no symmetry can be used and no advantage is obtained by separating stress and relieved strain in equibiaxial and shear components. Therefore, the problem will be solved using the Cartesian reference system of the rosette.
\nThe relationship between the strain and the stress can be re-written as reported below:
\nwhere
The matrix \n
The equations reported above include also the Tikhonov regularization, as in the ASTM E837 standard.
\nAs for the strain and the stress components, also the new matrix of calibration coefficients is defined for blocks of 3 × 3 elements as reported below:
\n\nFigure 3 compares the visual interpretation of the calibration matrices of the ASTM standard and that of the new generalized calibration matrix.
\n(a) Two calibration matrices
The hole-drilling method has some typical sources of error that can influence the accuracy of the measurements. The ASTM E837 standard identifies the maximum values of these errors for the validity of the test (limits of applicability) without providing recommendations on how to correct them, as reported in Table 2.
\nTypical source of error | \nASTM E837 limits of applicability | \nSuggested correction | \n||
---|---|---|---|---|
Uniform | \nNon-uniform | \n|||
Thin | \nThick | \n/ | \n||
Hole eccentricity | \nEccentricity radius within 0.004D | \n[12] [10, 11] | \n[8, 9] [10, 11] | \n[8, 9, 13, 14] [10, 11] | \n
Intermediate thickness(s) | \nThickness s ≤ 0.2D or s ≥ 1.0D | \n[8, 9, 15, 16] | \n[8, 9, 16] | \n|
Hole-bottom chamfer | \nNot provided | \nNot applicable | \n[8, 9, 17] | \n[8, 9] | \n
Local plasticity | \nMagnitude of the stresses ≤50% of \n ≤80% of \n | \n/ | \n[20] | \n/ | \n
Typical sources of errors, ASTM E837 limit of applicability and current state-of-the-art of correction methodologies.
Some of these errors, for example, eccentricity and hole bottom chamfer, can be generated by external sources such as the operator, testing condition or the drilling process. In other cases, the limits of applicability are directly connected with the test method, as in the case of intermediate thickness of the specimen or the local plasticity effect.
\n\nTable 2 also shows the bibliographic sources dealing with possible methods of error correction. The cases of uniform and non-uniform stress distribution are analyzed. In the case of uniform stress distribution, both the thin workpiece and the thick workpiece are considered.
\nThe following sections examine the errors mentioned above in more detail and consider possible corrections.
\nThe eccentricity between the drilled hole and the strain gage circle greatly influences the strain measurements. The ASTM standard requires a near perfect concentricity between the drilled hole and the rosette and prescribes an allowable eccentricity value that depends on the dimension of the strain gage rosette (0.004D). Using a standard rosette with a gage circle diameter D = 5.13 mm, the maximum allowable eccentricity is 0.02 mm. This limit increases (0.04 mm) or decreases (0.01 mm) using bigger (approx. D = 10.26 mm) or smaller types of rosette (approx. D = 2.56 mm).
\nAs shown in Figure 4, the eccentricity error is influenced by the eccentricity coordinates ex and ey and by the parameters of the strain gage rosette (D, GL and GW). The type B rosette generally shows a higher sensitivity to eccentricity errors compared to type A rosettes; this can be explained by the orientation of the gage grids, which are concentrated only in the first quadrant (0°, 45°, 90°), instead of in the first and third quadrant (0°, 90°, 225°).
\nEccentricity in hole-drilling measurements.
For these reasons, the correction of eccentricity errors requires accurate determination of the position of the drilled hole in the reference system of the strain gage rosette; eccentricity can be measured by a special procedure using the drilling system microscope. Using a digital microscope, the eccentricity coordinates can be easily obtained by image analysis techniques.
\nAs shown in Figure 5, the sensitivity of the grids is directly influenced by the hole eccentricity. When the eccentricity has the same direction as the grid, if the hole is closer to the grid the absolute value of the relaxed strain is greater. On the contrary, if the eccentricity has a transverse direction with respect to the grid, then a portion of the grid has a greater sensitivity, while the other portion has a lower sensitivity; this implies, by symmetry, that the error is almost compensated [13].
\nGrid sensitivity to longitudinal and transversal eccentricity and first-order eccentricity error compensation using a 6-grid rosette.
The eccentricity correction can be done using strain gage rosettes with special configurations or using correction algorithms.
\nThe studies of Beghini et al. [10] and of Nau et al. [11] introduced the correction of eccentricity using a special six-grid rosette and an eight-grid rosette respectively. Both the rosettes are produced by HBM and make it possible to compensate the first-order of eccentricity error. However, the corrections based on special strain gage geometries do not correct the higher order eccentricity errors (higher than 0.2 mm), for which rosettes are required with bigger dimensions, a higher number of grids and higher costs.
\nRegarding the correction algorithms, the first solution was provided analytically by Ajovalasit et al. [12] for uniform stress in thin workpieces.
\nBeghini et al. [8, 9] provided a complete solution for blind holes using a generalized integral method based on the influence functions for non-uniform calculations (Section 4). According to this approach, the strain field is computed starting from a database of numerical solutions in which the eccentricity is simply introduced as a geometry parameter; this has the advantage of taking into account the whole effect of eccentricity. Recently, Barsanti et al. [13] proposed a simplified approach for the analytical correction of the first-order eccentricity errors in calculated stresses.
\nPeral et al. [14] has also proposed a correction approach applied to acquire strains.
\nThe ASTM E837 method defines the application ranges concerning the thickness of the workpiece under testing. The measurements can be carried out on “thin” or “thick” workpieces, the thickness of which depends on the size of rosette. For a “thin” workpiece, the thickness should be less than 0.20D (for type A and type B rosettes) and the stresses are evaluated according to the “uniform stress calculation”. For a “thick” workpiece the thickness should be greater than 1.0D (for type A and type B rosettes) and the standard provides the calculation methods for uniform and non-uniform stress distributions.
\nThe range of thicknesses between 0.2D and 1.0D, defined as intermediate thickness, is outside the scope of the ASTM standard. Using a strain gage rosette with a gage circle diameter D = 5.13 mm, the intermediate thickness is identified in the range between 1 and 5.13 mm. Clearly, on varying the diameter of the strain gage circle, also the range of the intermediate thickness varies.
\nUnfortunately, intermediate thickness is common in several types of engineering applications, as in aerospace, motor sports and energy production.
\nThis limitation in the ASTM standard can be explained by analysis of the behavior of stress response if a hole is made in an intermediate thickness specimen.
\nIn the case of thick workpieces (s > 1.0D) the influence coefficients are independent of the thickness and they can be obtained by an FE model in which the hole is produced in a virtually semi-infinite body. In the case of thin workpieces (s ≤ 0.2D) the plane stress solution holds, the in-depth residual stress gradient is neglected and the through-hole method is applied; the influence coefficients for the thin plates can be directly deduced by Kirsch’s solution of a membrane with a circular hole.
\nFor the intermediate thickness case (0.2D < s ≤ 1.0D), out-of-plane bending occurs (Figure 6) and this affects the calibration coefficients
Localized bending caused by hole-drilling in an “intermediate” thickness specimen.
A preliminary solution to this effect for the case of a uniform stress field was proposed by Abraham and Schajer [15]. They provide an analytical model of the calibration coefficients \n
Recently, Beghini et al. [16] described a procedure for the evaluation of non-uniform residual stress for the intermediate thickness range. The authors define two equations (one for the coefficients \n
Calibration coefficients as a function of plate thickness: for aij (left) and for bij, (right) coefficients in the matrices (from Beghini et al. [
As reported in Figure 7, the dependency of the thickness is greater in the first part of the intermediate area (from 0.1D to 0.5D) and is less if the thickness is higher.
\nMoreover, a recent development of the generalized integral method based on the Influence Functions [8, 9] has introduced a new database of numerical solutions that takes thickness into account as an input parameter. The numerical database is based on 5 different thicknesses (2.7 D, 1.0 D, 0.6 D, 0.3 D, 0.2 D); once the thickness is defined, the displacements are interpolated between the two closest available thickness values.
\nThe hole-drilling method is based on the theoretical assumption that the drilled hole is perfectly cylindrical at any drilling increment. Perfect cylindrical holes are used in finite element models, by various authors, for the determination of the calibration coefficients.
\nThe ASTM standard makes some recommendations regarding the geometry of the end mill in relation to both the radial clearance angles of the cutting edges on the end face of the cutting tool (<1°) and the taper angle (<5°). These requirements were introduced by the standard in order to avoid any ambiguity in determination of the depth and measurement of the hole diameter.
\nUnfortunately, the carbide inverted-cone end mills used for performing the hole-drilling measurements could have a small chamfer at their cutting extremities that generates a small chamfer in the bottom of the hole (Figure 8). This small chamfered extremity of the end mill reduces wear and facilitates chip ejection during drilling.
\n(a) Section of a drilled hole with a hole-bottom chamfer, (b) Typical carbide inverted-cone end mill used for the hole drilling method.
This chamfer influences the strain signals and consequently the calculation of residual stresses. The effect of the hole bottom chamfer has a higher impact on the first depth increments where the chamfer of the end mill generates a hole with a smaller diameter than the nominal diameter. Furthermore, in the case of non-uniform stress distribution, the geometric variation in the hole shape in the first depth increments determines errors not only in the first calculation depths but also in successive calculation depths.
\nIn order to reduce the effect of the hole-bottom chamfer, it is advisable to use a type of cutter with the smallest chamfer available or use the high-speed orbital drilling technique. The method is based on the orbital movement of the end mill as it advances. While producing the same diameter as a center-drilled hole, this technique employs an end mill with a smaller diameter and consequently creates a smaller bottom chamfer.
\nIf the above is not possible, it is necessary to correct the errors generated by the presence of the chamfer.
\nA first solution for this correction was proposed by Scafidi et al. [17] carrying out an analysis based on the Boundary Element Method. By introducing the gage circle diameter, the drilled hole diameter and the bottom-hole fillet radius, the authors developed a method based on the correction of acquired strains. Subsequently, Blödorn et al. [19] recalculated the ASTM E837 coefficient for blind uniform stress using an FEM model with a hole bottom chamfer.
\nMore recently, the generalized integral method based on the influence functions [8, 9] has been enriched with a new database of displacements, which considers the chamfer as a new geometrical parameter of the finite element model.
\nFor a certain value of the ratio between the height of the hole chamfer and the radius of the drilled hole, this methodology allows the correction of calculated stress for blind holes and non-uniform stress distributions.
\n\nFigure 9 shows the finite element model in which the hole bottom chamfer was simulated to evaluate its influence.
\nFinite Element Model used for the evaluation of the calibration coefficients considering the presence of the hole-bottom chamfer.
The presence of the hole-bottom chamfer influences the calculation of the stresses.
\n\nFigure 10 gives an example of the influence of a hole bottom chamfer on the reconstruction of a pure shear stress distribution. In the first part of the depth of the analysis, it is clearly seen that the chamfer determines an under-estimation of the actual stress, especially in the first depth increments. On the contrary, in the second part of the depth of the analysis, the results show an over-estimation of the calculated stresses.
\nResidual stresses in the case of pure shear stress, with (dashed line) and without (solid line) the hole-bottom chamfer.
The ASTM E837 standard reports that satisfactory results can be achieved when measured residual stresses do not exceed about 80% of the yield stress in the case of “thick” workpieces and 50% in the case of “thin” workpieces.
\nThe need for these stress limits is explained by the stress concentration generated by the drilled hole. When a hole is drilled on a loaded workpiece, it generates a stress concentration in the area around the hole. The magnitude of the stress concentration depends on several parameters including the diameter of the drilled hole, the load orientation and the distance of the strain gage grids from the hole. If the stress level is high, localized plastic deformation occurs around the hole, which generates larger overall surface strains (Figure 11).
\nLocal plasticity areas with low applied loads (left side) or high loads (right side).
The hole-drilling method requires that the strain gage grids be placed really close to the hole. For this reason, if local plasticity occurs, it may be that the strain measured by the gage is the arithmetical sum of the linear elastic strains and the plastic strains.
\nIn any case, “thick” workpieces are less sensitive to the plasticity effect. This is due to the presence of material in the lower part of the blind hole determining a local reinforcement and reducing the stress concentration factor [3]. This explains the higher measurement limit in the case of a blind hole (80% of \n
Few research studies have been published on this topic to provide possible corrections for this error.
\nThe work of Beghini et al. [20] provides a numerical procedure for correcting the effect of local plasticity in the case of a blind hole for uniform stress calculation. To carry out the stress correction, it is necessary that both the yield stress and the stress–strain curve in the plastic region are defined.
\nThe equivalent stress, corrected to take into account the presence of plasticity \n
The correction algorithm obviously considers the geometry of the strain gage rosette and therefore the authors provide the calculation coefficients for several strain gage rosettes available on the market.
\nThe previous parameters and FE results are used for the evaluation of the elastically evaluated plasticity factor
Nobre et al. [21] provide a similar approach for the estimation of the plasticity factor f. The material characteristics are taken into account by measuring the variation of Vickers hardness, which estimates the material strain hardening due to the increase of plastic deformation.
\nPlasticity generates a non-linearity on strain measurements.
\nBeghini et al. [22] propose a special 4-grid strain gage rosette for the correction of the plasticity effect, which is available on the market (HBM). The correction is valid for the standard 3-grid rosettes only if the perpendicular grids are oriented in the directions of the principal strains.
\nThe evaluation of uncertainties associated with measurement of residual stresses by the hole-drilling method is a topic that has been little investigated. The evaluation, mainly in the case of non-uniform stress fields, involves a large number of parameters from different sources, including the properties of the materials under testing, the strain readings and the hole execution methods.
\nStandard ASTM E837-13a [1] contains only some basic information about precision and bias associated with the hole-drilling measurement method, mainly in the case of uniform stress calculation. In fact, the standard states that the bias associated with a residual stress measurement by the hole-drilling method is less than ±10% when dealing with uniform residual stresses. Based on the results of round-robin test programs, the precision (random error) is such as to give a standard deviation of ±14 MPa for AISI 1018 carbon steels and a standard deviation of ±12 MPa for type AISI 304 stainless steels. The standard also reports that the uncertainties in the case of non-uniform stress measurements are expected to be much larger than for uniform stress measurements.
\nOne of the first papers on the subject of evaluation of uncertainty was published by Oettel [25] (UNCERT Code of Practice 15). The work proposes an approach for the evaluation of hole-drilling uncertainty in the case of uniform stress fields and takes into account typical errors in the determination of material properties, errors in the measurement of acquired strains, the hole diameter and the influence of calculation coefficients. The code of practice can be applied only to uniform residual stress calculation equations based on ASTM E837-95 and cannot be used with the current version of the ASTM standard [1].
\nScafidi et al. [26] further developed this methodology by applying it to the recent version of the average uniform stress calculation and considering additional parameters, such as the step-by-step drilling depth.
\nRegarding evaluation of uncertainty in the case of non-uniform stresses, the first approach was provided by Schajer et al. [24] based on the Integral method. They consider a number of input estimates including the properties of materials (i.e. Young’s modulus), strain readings, hole diameter and hole depths. The uncertainty components have statistical normal distributions with zero mean and are independent of each other and each one is linearly combined.
\nThe uncertainties of the measured strains are considered as an input, but fixed for each step.
\nMore recently a new approach was proposed by Peral et al. [27], based on a Monte Carlo analysis of the influence of the main parameters affecting the measurements. The methodology takes into account a higher number of parameters compared to the approach proposed by Schajer. In particular, the uncertainty components due to Poisson’s ratio and identification of the zero-depth are also considered. The authors demonstrated that their method is comparable with the approach of Schajer et al. [24], showing generally more conservative results although in good agreement.
\nSINT Technology recently developed another approach to evaluation of uncertainty, based on the GUM methodology [23], and it is implemented in the calculation software EVAL 7.
\nBefore calculation of uncertainties, all possible systematic errors are corrected, in particular those determined by eccentricity (Section 6), intermediate thickness (Section 7), hole bottom chamfer (Section 8) or local plasticity in the case of uniform stress calculation (Section 9).
\nThe uncertainties determined by the following input parameters are considered: Young’s modulus, Poisson’s ratio, hole diameter, accuracy of the strain measurement system, zero depth offset error, depth of drilling increments.
\nThis approach can be applied to all available calculation methods including the ASTM standard: clearly, the generalized integral method approach (Section 4) is preferable as it allows several systematic errors to be corrected (Sections 6–8).
\nThe functional relationship
where \n
The reading of the strain gage grids, for each calculation step
where \n
The uncertainty on the electrical output \n
Also the uncertainty on the measurement of the drilled hole \n
The uncertainty component due to the temperature variation during testing is considered negligible as the strain gages are self-compensated and a three-wire half-bridge connection is adopted to minimize the effect of temperature on the cables. Also the uncertainties due to the Influence Functions are considered negligible. Table 3 shows the typical input parameters taken into account for the evaluation of the uncertainty, along with the type of statistical distribution.
\nInput estimates | \nDescription | \nSub-input estimates | \nDistribution | \nOrigin | \n
---|---|---|---|---|
\n\n | \nYoung’s Modulus of the materials under testing | \n/ | \nRectangular | \nMaterial datasheet | \n
\n\n | \nPoisson’s ratio of the materials under testing | \n/ | \nRectangular | \nMaterial datasheet | \n
\n\n | \nDiameter of the drilled hole | \n/ | \nNormal | \nResolution of the dial gages | \n
Max. error of the dial gages | \n||||
Repeatability of the dial gages | \n||||
\n\n | \nGage factor of the strain gage grids | \n\n\n | \nNormal | \nUncertainty declared on the strain gage datasheet | \n
Electrical output of each strain gage grid | \n\n\n | \nNormal | \nClass of accuracy of the strain gage amplifier | \n|
Linearity of the strain gage amplifier | \n||||
Resolution of the strain gage amplifier | \n||||
Noise of the strain gage amplifier | \n||||
\n\n | \nDepth increment | \n/ | \nNormal | \nResolution of the hole-drilling mechanical device | \n
Max. error between two consecutive steps of the hole-drilling mechanical device | \n||||
\n\n | \nZero-depth error | \n/ | \nRectangular | \nDatasheet of the hole-drilling mechanical device | \n
Parameters used for the uncertainty evaluation and distribution of probability.
Assuming that all the input quantities are independent, the combined standard uncertainty, for each calculation step
where \n
Finally, the expanded uncertainty \n
The result of a measurement is then conveniently expressed as:
\nThe advantage of this method is the capability to numerically evaluate, for each parameter and for each calculation depth, the first derivatives of the functional relation
This calculation procedure, which is implemented in the EVAL 7 software, requires the execution of a high number of stress calculations for the uncertainty evaluation related to hole drilling measurements.
\nIn particular, considering a measurement carried out according to the ASTM standard using 20 calculation depths, the uncertainty evaluation requires the repetition and therefore the combination of the results obtained with 206 different stress calculations.
\nThe entire measurement chain and the testing parameters (rotational speed, type of end mill, feed rate and delay time) were verified using a special apparatus, developed by SINT Technology, which applies a known bending stress on a specially designed specimen.
\nThe specimen is a flat rectangular cross section cantilever beam, fixed at one end, and loaded at the other end by means of a pneumatic actuator (Figure 12).
\n(a) Bending test bench to simulate a known reference residual stress and (b) shows the linear distribution of the bending stress and orientation of the strain gage rosette grids and hole eccentricity definition.
The material used for the specimen is aluminum alloy AW7075 T651. The maximum applied bending stress was approximately 25 MPa.
\nAn approximately 1.90 mm hole diameter was drilled with 130 incremental drilling depths of 10 μm up to a 1.30 mm total depth. The rotational speed was approx. 400,000 rpm and the feed rate 0.2 mm/min. To prevent any interaction between the tip and the specimen, the cutter was fully raised for each drilling step. The diameter was accurately measured after drilling, for each test, with the microscope installed on the system and two dial gages, also to determine the residual eccentricity.
\nThe (uniaxial) stress due to bending was easily obtained from the beam theory, Figure 12b, Eq. 15:
\nwhere
A known load was used for determining the properties of the material. In fact, the elasticity parameters (Young’s modulus E and Poisson’s ratio ν) of the material were measured before drilling by applying a preliminary bending load before drilling.
\nGrid 1 of each strain gage should be aligned with the beam axis. The manual strain gage installation unavoidably introduces a misalignment. However, the angle between grid 1 and the beam axis can be found from Eq. 16 (accurate approximation for small values of γ):
\nThe measured strains need to be decoupled in order to deduce the relaxed strain due to the bending stress. The relaxed strains due to the residual stresses and the relaxed strains due to the bending stresses are obtained as:
\nStrain \n
The following testing conditions were adopted during the measurements.
Surface bending stress (
Strain gage rosette: CEA-062UM-120
Measured eccentricity radius: 0.02 mm
Measured eccentricity angle: 135°
The following parameters were then used for the stress calculation and for the uncertainty evaluation:
Young’s modulus (
Poisson’s ratio (
Hole diameter (
Gage factor uncertainty (
Uncertainty on the maximum electrical output (
Zero-depth uncertainty (
Depth measurement uncertainty (
After performing the drilling tests, the relaxed strains were imported into the EVAL 7 calculation software developed by SINT Technology. The calculation of non-uniform stresses was carried out according to the following two methods: the original ASTM 837-13a standard and the generalized integral method, based on the Influence Functions, by applying the algorithms described in the previous sections and correcting some systematic errors.
\nThe extended features are shown in Table 4.
\nFeatures | \nComparison | \n|
---|---|---|
ASTM E837-13a | \nGeneralized integral method, based on the influence functions | \n|
Eccentricity correction | \nNot available | \nAvailable | \n
Applicability to strain gage rosettes | \nOnly to rosettes listed in the standard | \nTo any rosette available in the market | \n
Poisson’s ratio correction | \nApproximate | \nComplete | \n
Hole diameter correction | \nApproximate | \nComplete | \n
Hole-bottom chamfer correction | \nNot available | \nAvailable | \n
Intermediate thickness extension | \nNot available | \nAvailable | \n
Tikhonov regularization | \nAvailable | \nAvailable | \n
Comparison between the ASTM E837 & generalized integral method, based on the influence functions.
The stresses were calculated considering a distribution of 20 constant steps within 1 mm of depth.
\nNext, the bending stress distribution was calculated by the generalized integral method and then compared with the expected bending stress distribution.
\nFinally, based on the calculated stress curves, the uncertainty of measurement was evaluated considering the input quantities reported above (Section 12). The measurement uncertainties are expressed as standard uncertainties multiplied by a coverage factor equal to 2 (which in the case of normal distribution corresponds to a confidence level of about 95%).
\n\nFigure 13 compares the expected bending stresses with the stress components σx, σy and τxy, calculated from the interpolated relaxed strains with their associated uncertainty.
\nComparison between expected bending stresses and the calculated stress components.
The purpose of the authors is to highlight the importance of the correction of each source of error, which is not contemplated in the ASTM E837 calculation. This has been achieved by showing the effects on the calculated stresses in the event that those corrections are not considered. For this reason, one by one, all the corrections have been deselected from the generalized integral method with all the active corrections.
\n\nFigure 14 shows the percentage error on σBe when the generalized integral method is not applied, due to the hole eccentricity, the combination of Poisson’s ratio and the hole diameter, and the geometry of the strain gage rosette.
\nPercentage error on σBe when the generalized integral method is not applied.
Regarding eccentricity, a maximum error of approximately 1.5% is committed, in the area closest to the surface. It is necessary to highlight that the eccentricity radius error, that affects this data, is similar to the maximum value tolerated by the ASTM 837-13a standard. In some real cases, due to the inexperience of the operator or to non-standard test conditions, the eccentricity radius can be higher than the limitation reported by the standard and, therefore, correction of eccentricity is essential for an accurate evaluation of residual stresses.
\nRegarding the influence of Poisson’s ratio and the hole diameter, the maximum deviation is around 8%. Indeed, the calibration constants are not expressed as a function of Poisson’s ratio and the diameter of the measured hole: only the approximate correction is provided. In this case, both the measured diameter (D = 1.88 mm) and the Poisson’s ratio considered (n = 0.33 mm) are far from those used to generate the calibration matrices reported in the standard.
\nFinally, regarding the influence of the geometry of the strain gage rosette, the maximum deviation is approximately 2%. It represents the error due to use of a rosette that is different from the geometry envisaged in the standard. In this case, the rosette that was used is very similar to type B of the standard. In other cases, the errors may be higher.
\nThe paper describes some improvements in the hole-drilling test method for the analysis of residual stresses, developed to increase accuracy. These improvements have been introduced to overcome some limitations and correct some errors that can derive from the direct application of the ASTM E837-13a standard.
\nTo make calculation of the distribution of non-uniform stresses more accurate, the evaluation of residual stresses was carried out by applying the general method, based on the influence functions, proposed by Beghini et al. [8, 9]. This approach is more extensive with respect to the integral method proposed by Schajer [13, 14] and can include a dependency on a higher number of parameters. This more general approach avoids some errors and removes some limitations in the evaluation of non-uniform residual stresses deriving from the application of the ASTM E837-13a standard, which is based on the Integral method. Ultimately, the Integral method can be considered as a special case of the influence function method in which piecewise constant functions are used as the basis.
\nWith this approach, some limitations of the standard can be overcome and, in particular, applicability of the hole-drilling test method is extended:
For all strain gage rosettes available on the market, instead of just the A, B and C type rosettes [1],
When eccentricity of the hole is greater than 0.004 D
When the thickness s of the workpiece is between 0.2D < s ≤ 1.0D.
Furthermore, with this approach it will be possible to correct errors due to:
hole eccentricity
hole bottom chamfer
approximate correction if the hole diameter and Poisson’s ratio differ from the nominal value used for the evaluation of the calibration coefficients in ASTM
local plasticity, only in the case of blind holes and uniform stress
The paper also describes developments in measurement instrumentation with the use of automatic systems instead of manual systems and a procedure for evaluating measurement uncertainties in the case of non-uniform distribution, based on the GUM method.
\nAll the features reported above have been introduced in dedicated software for the evaluation of residual stresses and related uncertainty. Finally an experimental test, performed on a 4-point bending test rig, is described.
\n\n residual stress normal component in the x direction [MPa] residual stress normal component in the y direction [MPa] residual stress shear component in the xy plane [MPa] minimum principal residual stress [MPa] maximum principal residual stress [MPa] principal angle [rad] yield stress of the testing material [MPa] diameter of the strain gage circle [mm] diameter of the drilled hole [mm] ASTM E837 nominal hole diameter [mm] grid length [mm] grid width [mm] strains acquired from the strain gage rosette [μm/m] combination strain [μm/m] combination stress [MPa] Young’s modulus [MPa] Poisson’s ratio calibration constants used in the calculation of uniform stress workpiece thickness [mm] number of acquisition steps number of hole depth steps sequence number for hole depth steps calibration matrix constants used in the calculation of non-uniform stress Tikhonov regularization matrix Tikhonov regularization factors calibration matrix for isotropic and shear stresses vector of the stress components vector of the strain components generalized matrix of calibration coefficients generalized Tikhonov regularization matrix eccentricity component of the x and y directions equivalent stress [MPa] corrected for plasticity effect equivalent residual stress producing the onset of plasticity in the 2D case plasticity factor calculated in plastic and elastic field coefficients for the plasticity correction depth increment j depth error during the zero-depth determination gage factors of the strain gage for each grid x (x = 1,2,3) electrical output reading for each grid x (x = 1,2,3) and for each depth increment j measurement result (output estimate) combined standard uncertainty for measurement result input quantity measurement (input estimate) standard uncertainty for each input quantity number of input quantities
Authors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11168",title:"Sulfur Industry",subtitle:null,isOpenForSubmission:!0,hash:"39d4f4522a9f465bfe15ec2d85ef8861",slug:null,bookSignature:"Dr. Enos Wamalwa Wambu and Dr. Esther Nthiga",coverURL:"https://cdn.intechopen.com/books/images_new/11168.jpg",editedByType:null,editors:[{id:"187655",title:"Dr.",name:"Enos",surname:"Wambu",slug:"enos-wambu",fullName:"Enos Wambu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty - Evolutionary, Social and Cultural Perspectives on Attractiveness",subtitle:null,isOpenForSubmission:!0,hash:"8f2773e5d4ffe767f38dd15712258e8c",slug:null,bookSignature:"Dr. Farid Pazhoohi",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:[{id:"470837",title:"Dr.",name:"Farid",surname:"Pazhoohi",slug:"farid-pazhoohi",fullName:"Farid Pazhoohi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Associate Prof.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:659},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"29",title:"Agronomy",slug:"agronomy",parent:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:54,numberOfSeries:0,numberOfAuthorsAndEditors:1493,numberOfWosCitations:1638,numberOfCrossrefCitations:1242,numberOfDimensionsCitations:2718,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"29",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10896",title:"Integrative Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"47659401ffe512c28313440110c0a903",slug:"integrative-advances-in-rice-research",bookSignature:"Min Huang",coverURL:"https://cdn.intechopen.com/books/images_new/10896.jpg",editedByType:"Edited by",editors:[{id:"189829",title:"Dr.",name:"Min",middleName:null,surname:"Huang",slug:"min-huang",fullName:"Min Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11571",title:"Cereal Grains",subtitle:"Volume 2",isOpenForSubmission:!1,hash:"2c4003ff225208126f1e2386eefa4d5a",slug:"cereal-grains-volume-2",bookSignature:"Aakash Kumar Goyal",coverURL:"https://cdn.intechopen.com/books/images_new/11571.jpg",editedByType:"Edited by",editors:[{id:"97604",title:"Dr.",name:"Aakash K.",middleName:null,surname:"Goyal",slug:"aakash-k.-goyal",fullName:"Aakash K. Goyal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10499",title:"Next-Generation Greenhouses for Food Security",subtitle:null,isOpenForSubmission:!1,hash:"456f82c97eafad5734cd36c48e167781",slug:"next-generation-greenhouses-for-food-security",bookSignature:"Redmond R. Shamshiri",coverURL:"https://cdn.intechopen.com/books/images_new/10499.jpg",editedByType:"Edited by",editors:[{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9643",title:"Agrometeorology",subtitle:null,isOpenForSubmission:!1,hash:"492510d45d202e73a8a7d6eb6cc60be8",slug:"agrometeorology",bookSignature:"Ram Swaroop Meena",coverURL:"https://cdn.intechopen.com/books/images_new/9643.jpg",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editedByType:"Edited by",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10134",title:"Organic Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"a9866f9df52191cc505b27fb2abdc687",slug:"organic-agriculture",bookSignature:"Shaon Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/10134.jpg",editedByType:"Edited by",editors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",middleName:null,surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9712",title:"Genetic Transformation in Crops",subtitle:null,isOpenForSubmission:!1,hash:"c111fe32d4d7e3988e4ef2fd6775a265",slug:"genetic-transformation-in-crops",bookSignature:"Kin-Ying To",coverURL:"https://cdn.intechopen.com/books/images_new/9712.jpg",editedByType:"Edited by",editors:[{id:"310646",title:"Dr.",name:"Kin-Ying",middleName:null,surname:"To",slug:"kin-ying-to",fullName:"Kin-Ying To"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8153",title:"Agronomy",subtitle:"Climate Change & Food Security",isOpenForSubmission:!1,hash:"2c01368bbeacbbedeb3681ea0c037dbe",slug:"agronomy-climate-change-food-security",bookSignature:"Amanullah",coverURL:"https://cdn.intechopen.com/books/images_new/8153.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",middleName:null,surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:54,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"40178",doi:"10.5772/52583",title:"Molecular Markers and Marker-Assisted Breeding in Plants",slug:"molecular-markers-and-marker-assisted-breeding-in-plants",totalDownloads:23030,totalCrossrefCites:81,totalDimensionsCites:146,abstract:null,book:{id:"3060",slug:"plant-breeding-from-laboratories-to-fields",title:"Plant Breeding from Laboratories to Fields",fullTitle:"Plant Breeding from Laboratories to Fields"},signatures:"Guo-Liang Jiang",authors:[{id:"158810",title:"Dr.",name:"Guo-Liang",middleName:null,surname:"Jiang",slug:"guo-liang-jiang",fullName:"Guo-Liang Jiang"}]},{id:"33765",doi:"10.5772/37578",title:"Nutrient Solutions for Hydroponic Systems",slug:"nutrient-solutions-for-hydroponic-systems",totalDownloads:71704,totalCrossrefCites:11,totalDimensionsCites:66,abstract:null,book:{id:"1781",slug:"hydroponics-a-standard-methodology-for-plant-biological-researches",title:"Hydroponics",fullTitle:"Hydroponics - A Standard Methodology for Plant Biological Researches"},signatures:"Libia I. Trejo-Téllez and Fernando C. Gómez-Merino",authors:[{id:"113365",title:"Dr.",name:"Libia I.",middleName:null,surname:"Trejo-Téllez",slug:"libia-i.-trejo-tellez",fullName:"Libia I. Trejo-Téllez"},{id:"113414",title:"Dr.",name:"Fernando C.",middleName:null,surname:"Gómez-Merino",slug:"fernando-c.-gomez-merino",fullName:"Fernando C. Gómez-Merino"}]},{id:"45745",doi:"10.5772/56824",title:"Current Advances on Genetic Resistance to Rice Blast Disease",slug:"current-advances-on-genetic-resistance-to-rice-blast-disease",totalDownloads:4528,totalCrossrefCites:27,totalDimensionsCites:58,abstract:null,book:{id:"3554",slug:"rice-germplasm-genetics-and-improvement",title:"Rice",fullTitle:"Rice - Germplasm, Genetics and Improvement"},signatures:"Xueyan Wang, Seonghee Lee, Jichun Wang, Jianbing Ma, Tracy\nBianco and Yulin Jia",authors:[{id:"168971",title:"Dr.",name:"Yulin",middleName:null,surname:"Jia",slug:"yulin-jia",fullName:"Yulin Jia"}]},{id:"68945",doi:"10.5772/intechopen.88434",title:"Effect of Abiotic Stress on Crops",slug:"effect-of-abiotic-stress-on-crops",totalDownloads:1494,totalCrossrefCites:28,totalDimensionsCites:46,abstract:"Crop yield is mainly influenced by climatic factors, agronomic factors, pests and nutrient availability in the soil. Stress is any adverse environmental condition that hampers proper growth of plant. Abiotic stress creates adverse effect on multiple procedures of morphology, biochemistry and physiology that are directly connected with growth and yield of plant. Abiotic stress are quantitative trait hence genes linked to these traits can be identified and used to select desirable alleles responsible for tolerance in plant. Plants can initiate a number of molecular, cellular and physiological modifications to react to and adapt to abiotic stress. Crop productivity is significantly affected by drought, salinity and cold. Abiotic stress reduce water availability to plant roots by increasing water soluble salts in soil and plants suffer from increased osmotic pressure outside the root. Physiological changes include lowering of leaf osmotic potential, water potential and relative water content, creation of nutritional imbalance, enhancing relative stress injury or one or more combination of these factors. Morphological and biochemical changes include changes in root and shoot length, number of leaves, secondary metabolite (glycine betaine, proline, MDA, abscisic acid) accumulation in plant, source and sink ratio. Proposed chapter will concentrate on enhancing plant response to abiotic stress and contemporary breeding application to increasing stress tolerance.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Summy Yadav, Payal Modi, Akanksha Dave, Akdasbanu Vijapura, Disha Patel and Mohini Patel",authors:[{id:"186963",title:"Dr.",name:"Summy",middleName:null,surname:"Yadav",slug:"summy-yadav",fullName:"Summy Yadav"},{id:"308004",title:"Ms.",name:"Payal",middleName:null,surname:"Modi",slug:"payal-modi",fullName:"Payal Modi"},{id:"308005",title:"Ms.",name:"Akanksha",middleName:null,surname:"Dave",slug:"akanksha-dave",fullName:"Akanksha Dave"},{id:"308006",title:"Ms.",name:"Akdasbanu",middleName:null,surname:"Vijapara",slug:"akdasbanu-vijapara",fullName:"Akdasbanu Vijapara"},{id:"308007",title:"Ms.",name:"Disha",middleName:null,surname:"Patel",slug:"disha-patel",fullName:"Disha Patel"},{id:"308008",title:"Ms.",name:"Mohini",middleName:null,surname:"Patel",slug:"mohini-patel",fullName:"Mohini Patel"}]},{id:"45540",doi:"10.5772/56621",title:"Genes and QTLs for Rice Grain Quality Improvement",slug:"genes-and-qtls-for-rice-grain-quality-improvement",totalDownloads:3737,totalCrossrefCites:21,totalDimensionsCites:46,abstract:null,book:{id:"3554",slug:"rice-germplasm-genetics-and-improvement",title:"Rice",fullTitle:"Rice - Germplasm, Genetics and Improvement"},signatures:"Jinsong Bao",authors:[{id:"52135",title:"Dr.",name:"Jinsong",middleName:null,surname:"Bao",slug:"jinsong-bao",fullName:"Jinsong Bao"}]}],mostDownloadedChaptersLast30Days:[{id:"70658",title:"Factors Affecting Yield of Crops",slug:"factors-affecting-yield-of-crops",totalDownloads:4044,totalCrossrefCites:25,totalDimensionsCites:40,abstract:"A good understanding of dynamics involved in food production is critical for the improvement of food security. It has been demonstrated that an increase in crop yields significantly reduces poverty. Yield, the mass of harvest crop product in a specific area, is influenced by several factors. These factors are grouped in three basic categories known as technological (agricultural practices, managerial decision, etc.), biological (diseases, insects, pests, weeds) and environmental (climatic condition, soil fertility, topography, water quality, etc.). These factors account for yield differences from one region to another worldwide. The current chapter will discuss each of these three basic factors as well as providing some recommendations for overcoming them. In addition, it will provide the importance of climate-smart agriculture in the increase of crop yields while facilitating the achievement of crop production in safe environment. This goes in line with the second goal of 2030 Agenda for Sustainable Development of United Nations in transforming our world formulated as end hunger, achieve food security, improve nutrition and promote sustainable agriculture.",book:{id:"8153",slug:"agronomy-climate-change-food-security",title:"Agronomy",fullTitle:"Agronomy - Climate Change & Food Security"},signatures:"Tandzi Ngoune Liliane and Mutengwa Shelton Charles",authors:[{id:"313819",title:"Dr.",name:"Liliane",middleName:null,surname:"Tandzi",slug:"liliane-tandzi",fullName:"Liliane Tandzi"},{id:"314316",title:"Prof.",name:"Charles Shelton",middleName:null,surname:"Mutengwa",slug:"charles-shelton-mutengwa",fullName:"Charles Shelton Mutengwa"}]},{id:"40178",title:"Molecular Markers and Marker-Assisted Breeding in Plants",slug:"molecular-markers-and-marker-assisted-breeding-in-plants",totalDownloads:23030,totalCrossrefCites:81,totalDimensionsCites:146,abstract:null,book:{id:"3060",slug:"plant-breeding-from-laboratories-to-fields",title:"Plant Breeding from Laboratories to Fields",fullTitle:"Plant Breeding from Laboratories to Fields"},signatures:"Guo-Liang Jiang",authors:[{id:"158810",title:"Dr.",name:"Guo-Liang",middleName:null,surname:"Jiang",slug:"guo-liang-jiang",fullName:"Guo-Liang Jiang"}]},{id:"60074",title:"Pollen Germination in vitro",slug:"pollen-germination-in-vitro",totalDownloads:2759,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Pollen germination in vitro is a reliable method to test the pollen viability. It also addresses many basic questions in sexual reproduction and particularly useful in wide hybridization. Many pollen germination medium ranging from simple sugars to complex one having vitamins, growth regulators, etc. in addition to various minerals have been standardized to germinate pollen artificially. The different media, successful pollen germination methods, procedures from pollen germination studies with wheat, rye, brinjal, pigeonpea and its wild relatives are discussed.",book:{id:"6659",slug:"pollination-in-plants",title:"Pollination in Plants",fullTitle:"Pollination in Plants"},signatures:"Jayaprakash P",authors:[{id:"235465",title:"Dr.",name:"Jayaprakash",middleName:null,surname:"P",slug:"jayaprakash-p",fullName:"Jayaprakash P"}]},{id:"62376",title:"Genotype × Environment Interaction: A Prerequisite for Tomato Variety Development",slug:"genotype-environment-interaction-a-prerequisite-for-tomato-variety-development",totalDownloads:2297,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"Tomato (Solanum lycopersicum L.) is the second most important vegetable crop in the world due to its high level of nutrition particularly in vitamins and antioxidants. It is grown in several ecologies of the world due to its adaptability and ease of cultivation. Besides field conditions, tomatoes are grown in controlled environments which range from hydroponics and simple high tunnel structures to highly automated screen houses in advanced countries. However, the yield and quality of the fruits are highly influenced by the environment. This results in unpredictable performances in different growing environments in terms of quality, a phenomenon known as genotype by environment (G × E) interaction which confounds selection efficiency. Various approaches are employed by plant breeders to evaluate and address the challenges posed by genotype by environment interaction. This chapter discusses various field and controlled environments for growing tomatoes and the effect of these environments on the performance of the crop. The various types of genotype × environment interactions and their effect of the tomato plant are discussed. Finally, efforts are made to suggest ways and methods of mitigating the confounding effects of genotype × environment interaction including statistical approaches.",book:{id:"6422",slug:"recent-advances-in-tomato-breeding-and-production",title:"Recent Advances in Tomato Breeding and Production",fullTitle:"Recent Advances in Tomato Breeding and Production"},signatures:"Michael Kwabena Osei, Benjamin Annor, Joseph Adjebeng-\nDanquah, Agyemang Danquah, Eric Danquah, Essie Blay and Hans\nAdu-Dapaah",authors:[{id:"204223",title:"Dr.",name:"Agyemang",middleName:null,surname:"Danquah",slug:"agyemang-danquah",fullName:"Agyemang Danquah"},{id:"217531",title:"M.Sc.",name:"Michael Kwabena",middleName:null,surname:"Osei",slug:"michael-kwabena-osei",fullName:"Michael Kwabena Osei"},{id:"217760",title:"Dr.",name:"Joseph",middleName:null,surname:"Adjebeng-Danquah",slug:"joseph-adjebeng-danquah",fullName:"Joseph Adjebeng-Danquah"},{id:"217768",title:"MSc.",name:"Benjamin",middleName:null,surname:"Annor",slug:"benjamin-annor",fullName:"Benjamin Annor"},{id:"247378",title:"Dr.",name:"Eric Y.",middleName:null,surname:"Danquah",slug:"eric-y.-danquah",fullName:"Eric Y. Danquah"},{id:"248095",title:"Prof.",name:"Essie",middleName:null,surname:"Blay",slug:"essie-blay",fullName:"Essie Blay"},{id:"248096",title:"Prof.",name:"Hans",middleName:null,surname:"Adu-Dapaah",slug:"hans-adu-dapaah",fullName:"Hans Adu-Dapaah"}]},{id:"45153",title:"Irrigation of Sandy Soils, Basics and Scheduling",slug:"irrigation-of-sandy-soils-basics-and-scheduling",totalDownloads:5600,totalCrossrefCites:4,totalDimensionsCites:10,abstract:null,book:{id:"3357",slug:"crop-production",title:"Crop Production",fullTitle:"Crop Production"},signatures:"Mohamed S. Alhammadi and Ali M. Al-Shrouf",authors:[{id:"78245",title:"Dr.",name:"Mohamed",middleName:"Salman",surname:"Alhammadi",slug:"mohamed-alhammadi",fullName:"Mohamed Alhammadi"},{id:"159904",title:"Mr.",name:"Ali",middleName:null,surname:"Al-Shrouf",slug:"ali-al-shrouf",fullName:"Ali Al-Shrouf"}]}],onlineFirstChaptersFilter:{topicId:"29",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81888",title:"Reducing Soil Compaction from Equipment to Enhance Agricultural Sustainability",slug:"reducing-soil-compaction-from-equipment-to-enhance-agricultural-sustainability",totalDownloads:16,totalDimensionsCites:0,doi:"10.5772/intechopen.104489",abstract:"The compaction of agricultural soils cannot be solved, only managed. As a compressible media, soil travel without causing some collapse of the existing structure is impossible. If left uncorrected, farmers can see up to a 50% reduction in yield from long-term compaction. This chapter will describe the effects of soil compaction on the environment, crop quality, and economic sustainability. The base causes will be examined, along with the engineering designs for vehicles that minimize the problem. The tracks versus tires debate will be thoroughly discussed, and the advantages and disadvantages of each system will be detailed. It will be shown that although tires represent the likely current best economic option for vehicle support, the potential of tracks to reduce compaction has been fully exploited. The advantages of four-wheel drive vehicles in reducing soil compaction will be shown, along with the mitigation potential of independently driven wheels and active soil interaction feedback loops. The design of crop production tillage equipment and tillage tool working points will be explored, along with the concept of critical tillage depth. Equipment for compaction relief will also be discussed, as will the sustainable agricultural protocols of cover crops, crop rotation, and controlled traffic farming.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Michael M. Boland, Young U. Choi, Daniel G. Foley, Matthew S. Gobel, Nathan C. Sprague, Santiago Guevara-Ocana, Yury A. Kuleshov and Robert M. Stwalley III"},{id:"81378",title:"Sustainability-Based Review of Irrigation Schemes Performance for Sustainable Crop Production in Nigeria",slug:"sustainability-based-review-of-irrigation-schemes-performance-for-sustainable-crop-production-in-nig",totalDownloads:32,totalDimensionsCites:0,doi:"10.5772/intechopen.103980",abstract:"Irrigated agriculture has been identified as an important practice to achieving food security and socio-economic development in the face of rapid population growth and climatic uncertainties. In northern Nigeria, irrigation has long been identified as the key to achieving the much-desired increase in food production to meet the ever-increasing population. However, the existing irrigation schemes encountered several challenges coming from different dimensions including economic, social, environmental, institutional and technological. To attain sustainable crop production, this paper attempts to uncover the underline challenges confronting irrigation schemes in northern Nigeria that cut across sustainability pillars. The findings revealed that irrigation schemes contributed immensely toward achieving food security and improving the wellbeing of rural dwellers. However, the huge investment in large- and medium-scale irrigation schemes have resulted in massive economic losses. This could be attributed to their under-utilization, poor management and abandonment although few ones are performing remarkably well. The study recommends the need to adopt new water allocation and application methods that can improve water use efficiency, users-managers join approach (participatory), effective and competent institutions which include improved monitoring, evaluation and surveillance systems, frequent policy review to suit the situation, law enforcement, and timely sensitization and awareness campaigns.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Nura Jafar Shanono, Nura Yahaya Usman, Mu’azu Dantala Zakari, Habibu Ismail, Shehu Idris Umar, Sunusi Abubakar Amin and Nuraddeen Mukhtar Nasidi"},{id:"81274",title:"Toward the Recent Advances in Nutrient Use Efficiency (NUE): Strategies to Improve Phosphorus Availability to Plants",slug:"toward-the-recent-advances-in-nutrient-use-efficiency-nue-strategies-to-improve-phosphorus-availabil",totalDownloads:43,totalDimensionsCites:0,doi:"10.5772/intechopen.102595",abstract:"Achieving high nutrient use efficiency (NUE) and high crop productivity has become a challenge with increased global demand for food, depletion of natural resources, and deterioration of environmental conditions. Higher NUE by plants could reduce fertilizer input costs, decrease the rate of nutrient losses, and enhance crop yields. Nitrogen and Phosphorus are the most limiting nutrients for crop production in many of the world’s agricultural areas, and their efficient use is important for the economic sustainability of cropping systems. Furthermore, the dynamic nature of N and P in soil-plant systems creates a unique and challenging environment for its efficient management. Although numerous fertilizer recommendation methods have been proposed to improve NUE, technologies and innovative management practices are still lacking. Therefore, maximizing crop phosphorus (P) use efficiency (PUE) would be helpful in reducing the use of inorganic phosphorus fertilizers and their escape in the environment for sustainable agriculture. Improvement of PUE in cropping systems can be achieved through two main strategies: optimizing agronomic practice and breeding nutrient efficient crop cultivars that improves P-acquisition and -utilization efficiency. These strategies are needed for future food security and sustainable agriculture. The major revised points are the following: concept of NUE, application of nutrient stewardship, cereal-legume intercropping, regulating soil pH, etc., for enhancing phyto-availability of P and breeding P-efficient crop cultivars that can produce more biomass with lesser P costs and that acquire more P in P-stress condition. These approaches consider economic, social, and environmental dimensions essential to sustainable agricultural systems and afford a suitable context for specific NUE indicators.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Addisu Ebbisa"},{id:"81179",title:"Crop Diversification an Effective Strategy for Sustainable Agriculture Development",slug:"crop-diversification-an-effective-strategy-for-sustainable-agriculture-development",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.102635",abstract:"Sustainable agricultural practices involve a variety of approaches. The most important approached for sustainable agriculture development is crop diversification. It allowing the farmers to employ biological cycles to minimize inputs, conserve the resource base, maximize yields and also reduce the risk due to ecological and environmental factors. It serves as an important opportunity to augment income and employment generation for rural communities. Crop diversification promotes the interaction of beneficial soil bacteria, interrupts the disease cycle, and reduces the quantity of weeds. Crop diversification boosts land-use efficiency and crop output by improving the physical and chemical qualities of soil. Crop diversification shows a lot of scope to alleviating the problems such as resurgence of insects-pests and weeds, soil degradation, environmental pollution, soil salinity, decline farm profit and climate change. Crop diversification through crop intensification system enhanced the net returns, B:C ratio, and overall system productivity of a farm. In order to achieve the benefits of crop diversification farmers are shifting from low value low yielding crops to high value high yielding crops. Thus, crop diversification has the sound capacity for achieving the goal of nutritional security, income growth, food security, employment generation and sustainable agriculture development.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Anamika Barman, Priyanka Saha, Shashank Patel and Anurag Bera"},{id:"80867",title:"Potential Applications of Rhizobacteria as Eco-Friendly Biological Control, Plant Growth Promotion and Soil Metal Bioremediation",slug:"potential-applications-of-rhizobacteria-as-eco-friendly-biological-control-plant-growth-promotion-an",totalDownloads:67,totalDimensionsCites:0,doi:"10.5772/intechopen.102657",abstract:"Modern agriculture has an immense problem in the depletion of agricultural productivity owing to a variety of biotic and abiotic stresses. Agriculture’s sustainability and safety are dependent on ecologically friendly practices. Plant rhizobia have been proven to have an important role in disease control, as well as promoting plant growth, productivity, and biomass. Rhizobacteria are soil bacteria that live on the root surface and either directly or indirectly contribute to plant development. Rhizobia are used to induce mediated immune resistance through the manufacture of lytic enzymes, antibiotics, phytoalexins, phytohormone, metabolites. It supports the growth of plants through nitrogen fixation, nutrient enrichment, phosphate solubilization and phytohormone synthesis. In addition, it supports plants during different stresses such as temperature, osmotic, heavy metal and oxidative stress. Plant growth-promoting rhizobacteria have the ability to control heavy metal pollution of soils as well as enhancing plant growth in these soils. Efficient bioremediation is possible by using rhizobacterial inoculants, still, the distribution and functioning of microbes in the rhizosphere need to be fully explored. This review focuses on the effectiveness, biomonitoring processes and function in promoting plant development. Rhizobia application can be considered an alternative method for the improvement of biodiversity, agriculture, and the environment.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Nafeesa Farooq Khan, Aatifa Rasool, Sheikh Mansoor, Sana Saleem, Tawseef Rehman Baba, Sheikh Maurifatul Haq, Sheikh Aafreen Rehman, Charles Oluwaseun Adetunji and Simona Mariana Popescu"},{id:"80653",title:"Heavy Metal Contamination in Vegetables and Their Toxic Effects on Human Health",slug:"heavy-metal-contamination-in-vegetables-and-their-toxic-effects-on-human-health",totalDownloads:130,totalDimensionsCites:1,doi:"10.5772/intechopen.102651",abstract:"Vegetables are a prevalent nutrition for people all over the world because they are high in important nutrients, antioxidants, and metabolites that function as buffers for acidic compounds created during digestion. Vegetables, on the other hand, absorbed both vital and poisonous substances through the soil. Possible human health concerns, including as cancer and renal damage, have been linked to the consumption of heavy metal-contaminated vegetables (HMs). Heavy metals like Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, and Hg were found in high concentrations in popular vegetables such as Amaranthus tricolour L., Chenopodium album L., Spinacia oleracea, Coriandrum sativum, Solanum lycopersicum, and Solanum melongena. The toxicity, fortification, health hazard, and heavy metals sources grown in soil are detailed in this review study.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Seema Manwani, Vanisree C.R., Vibha Jaiman, Kumud Kant Awasthi, Chandra Shekhar Yadav, Mahipal Singh Sankhla, Pritam P. Pandit and Garima Awasthi"}],onlineFirstChaptersTotal:7},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:13,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:229,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",country:{name:"Spain"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}}]}},subseries:{item:{id:"38",type:"subseries",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:82,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:169,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-streptococcus-mutans-virulence-targets-a-proteomic-insig",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79515",title:"White Spot Lesions and Remineralization",doi:"10.5772/intechopen.101372",signatures:"Monisha Khatri, Shreya Kishore, S. Nagarathinam, Suvetha Siva and Vanita Barai",slug:"white-spot-lesions-and-remineralization",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79371",title:"The Contrasting Effects between Caffeine and Theobromine on Crystallization: How the Non-fluoride Dentifrice Was Developed",doi:"10.5772/intechopen.101116",signatures:"Tetsuo Nakamoto, Alexander U. Falster and William B. Simmons Jr",slug:"the-contrasting-effects-between-caffeine-and-theobromine-on-crystallization-how-the-non-fluoride-den",totalDownloads:130,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79409",title:"The Dental Implant Maintenance",doi:"10.5772/intechopen.101187",signatures:"Gayathri Krishnamoorthy, Aparna I. Narayana and Dhanasekar Balakrishnan",slug:"the-dental-implant-maintenance",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79387",title:"Ulcerative Lesions of the Oral Cavity",doi:"10.5772/intechopen.101215",signatures:"Nelli Yildirimyan",slug:"ulcerative-lesions-of-the-oral-cavity",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79319",title:"Empirical Study on Medical Information and Communication Technology System in Dentistry in Southeast Asia",doi:"10.5772/intechopen.101080",signatures:"Ichiro Nakajima, Ken-ichiro Ejima, Yoshinori Arai, Kunihito Matsumoto, Kazuya Honda, Hirofumi Aboshi, Marina Hamaguchi, Akao Lyvongsa, Bounnhong Sidaphone, Somphone Phanthavong, Chanthavisao Phanthanalay and Souksavanh Vongsa",slug:"empirical-study-on-medical-information-and-communication-technology-system-in-dentistry-in-southeast",totalDownloads:145,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/328994",hash:"",query:{},params:{id:"328994"},fullPath:"/profiles/328994",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()