Fundamental vibration frequencies of standard natural clays (I=illite, ISmML=illite-smectite mixed layer, Na-mont=Na-montmorillonite,C=chlorite, P=palygorskite).
\r\n\tLabVIEW is often erroneously considered as a simple tool to acquire, process and display data. On the contrary, it should be considered for what it really is: an extremely powerful and complete Programming Language. Despite its intuitive interface, LabVIEW needs to be carefully understood and its development techniques must be acquired and well known to develop professional applications, which are robust, readable, scalable and maintainable.
\r\n\r\n\tThe present book welcomes topics as: LabVIEW in the Industry, in Automotive and Motion, In Monitoring and Controls, In Modelling and in the Educational Domain. The use of LabVIEW in Automotive as for in the Motion domain in general, underwent a big growth during last years so it is worth to dedicate a special section to this topic. A particular section, furthermore, is devoted to the Monitoring and Control Applications, in which Real-time Applications and FPGA programming, or Applications using the Datalogging and Supervisory Control Module are considered.
",isbn:"978-1-83968-841-6",printIsbn:"978-1-83968-840-9",pdfIsbn:"978-1-83968-842-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"44082cb927f5a6fd83b9b071b84d4619",bookSignature:"Prof. Riccardo de Asmundis",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10397.jpg",keywords:"#LabVIEW Industry, #LabVIEW Automation, #LabVIEW Automotive, #LabVIEW Motion, #LabVIEW Monitoring, #LabVIEW Control, #LabVIEW Real-time, #LabVIEW Modeling, #LabVIEW Data Analysis, #LabVIEW Graphical Application, #LabVIEW Education, #LabVIEW University",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 21st 2020",dateEndSecondStepPublish:"October 19th 2020",dateEndThirdStepPublish:"December 18th 2020",dateEndFourthStepPublish:"March 8th 2021",dateEndFifthStepPublish:"May 7th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. de Asmundis is a Certified LabVIEW Developer (CLD) and a Certified Professional Instructor (CPI) for the National Instruments Company (Austin, Texas). He is a member of International collaborations in high-energy physics and a member of the Km3NET collaboration. His outstanding H-index 100, numerous technical reviews, and authorship of over 1060 publications are strong indicators of his high merit as a prominent researcher working on the field of particle physics.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"43508",title:"Prof.",name:"Riccardo",middleName:null,surname:"de Asmundis",slug:"riccardo-de-asmundis",fullName:"Riccardo de Asmundis",profilePictureURL:"https://mts.intechopen.com/storage/users/43508/images/system/43508.jpg",biography:"Riccardo de Asmundis is a Physicist, graduated at the Napoli University “Federico II” in 1987, with a mark of 110/110 cum laude.\nDr. de Asmundis is currently a Senior Researcher in Napoli Section of the Istituto Nazionale di Fisica Nucleare (INFN, www.infn.it), and a contract Professor at Naples University “Federico II”, Department of Physics for teaching “Microprocessors and embedded systems” since 2015. In the past, he taught Computer Architecture, Automatic Measurements and Data Acquisition systems at the Information Technology Department of the University 'Federico II”.\nHe has been a Certified LabVIEW Developer (CLD) and a Certified Professional Instructor (CPI) for the National Instruments Company (Austin, Texas) since 2004, and he is in charge of teaching LabVIEW and Data Acquisition at the National Instruments Italy as a freelancer.\n\nDr. de Asmundis is a member of International collaborations in high-energy physics, previously for the L3 Experiment and currently in the ATLAS Experiment at CERN. He spent several years at CERN, in designing, testing and implementing particle detectors, data acquisition, and monitoring systems. He has been also an expert and responsible for technical infrastructures for detectors and big experimental installations (such as power supply systems for low and high voltage, gas supply systems, even as designer engineer).\n\nHe is currently a member of the Km3NET collaboration, where he carried on research relative to innovative photon detectors of astroparticle physics.\n\nDr. de Asmundis is an author of more than 1060 publications on international reviews in the high-energy physics and technical reviews (Physics Letters B, IEEE Transactions on Nuclear Science, Nuclear Instruments and Methods, Journal of Instrumentation, National Instruments conference proceedings, etc.). He has been an author of ten presentations in national and international Conferences. He has been the editor for scientific publications of the “Scientifica Acta” (Pavia, Italy) and IntechOpen (Croatia).\n\nWith a passion for music and electronic musical instruments, he is the owner of an electronic lab (Jurias, www.jurias.it) for resurrecting and restoration of any kind of electronic equipment related to music: keyboards, synthesizers, organs, HiFi and HiEnd systems and different audio equipment.\n\nHe is currently studying and playing classical piano.",institutionString:"INFN Sezione di Napoli",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"INFN Sezione di Napoli",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"31",title:"Modeling, Programming and Simulations Using LabVIEW™ Software",subtitle:null,isOpenForSubmission:!1,hash:"fe9f1976e184444d7672d51fe3ae2795",slug:"modeling-programming-and-simulations-using-labview-software",bookSignature:"Riccardo De Asmundis",coverURL:"https://cdn.intechopen.com/books/images_new/31.jpg",editedByType:"Edited by",editors:[{id:"43508",title:"Prof.",name:"Riccardo",surname:"de Asmundis",slug:"riccardo-de-asmundis",fullName:"Riccardo de Asmundis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"38851",title:"Kolsuz-Ulukisla-Nigde Clays, Central Anatolian Region - Turkey and Petroleum Exploration",doi:"10.5772/48286",slug:"clays-and-petroleum-exploration",body:'Clays are naturally occurring, fine-grained minerals under surface conditions mostly as alteration products with distinct crystal structures. They may show plastic behavior when mixed with sufficient water and become stiff when dried or cooked. They, having different physical properties, occur in three modes: (I) surface clays that may be old or very young sedimentary formations, as suggested by the name, they occur near surface, (II) shales that have been subjected to pressures to become rigid and layered due to various reasons (e.g., tectonic or subsidence-related), and (III) fire clays that are mined out from deeper sites comparing to the other two and they behave refractory and include less impurities thus they are physically and chemically more uniform.
Some clay minerals having large surface area, high ion exchange capacity and molecular grid properties have been pioneered for the development of many new products (Falaras et al., 2000). Clay-organic complex structures have been a research subject particularly since 1930’s. Results of these researches made benefical contribution to the process of expanding their use in diverse areas (Smith, 1934). Besides, progresses in analytical techniques that made possible to determine mineralogical and chemical compositions of the clays appreciably expedited this process.
Clay minerals are formed as a result of changes in temperature, pressure, geochemical, and physical conditions (Murray, 1999). Although clay minerals could be resulted from weathering, sedimentation, burial, diagenesis and hydrothermal alteration processes in general, occurrence of monomineralic clay deposits is scant. Even in an ordinary clay sample, several clay species could occur together. Clay minerals can be categorized in 4 subgroups in natural environments: (I) kaolinite group, (II) smectite group, (III) illite group, and (IV) chlorite group (Murray, 1991).
The relationship between heat and pressure with the formation of clay minerals and its consequence on the formation of petroleum has been an imperative subject for research past 40 years (Perry and Hower, 1970; Dypvik, 1983). In the recent years one of the methods in the petroleum explorations is organic maturation and the other is clay mineral diagenesis. In both the clay mineral diagenesis and the organic maturation, clay minerals show structural changes with the changing temperature, which reveals the degree of metamorphism. The principal factors including pressure, temperature, depth and burial that are efficient during the conversion of the clay minerals and hydrocarbon formation and primary migration can be explained through clay mineral diagenesis and organic maturation (Dunoyer de Segonzag, 1970; Dypvik, 1983).
Clay mineral characterization could be carried out employing spectroscopic methods for various purposes in the geological sciences (Heroux et al., 1979). In the literature, there is a voluminous research on determination of clay mineral chemistry using diverse techniques. Today, one of the most preferred methods is the FTIR (Fourier Transform Infrared) Spectroscopy. There is a significant increase in number of studies using this method dealing with the clay characterization in Turkey (Akyuz and Akyuz, 2003; Davarcioglu et al., 2005; Davarcioglu and Kayali, 2007; Davarcioglu et al., 2007; Davarcioglu and Ciftci, 2009). One of such studies is on the quantitative and qualitative characterization of Central Anatolian clay deposits and diatomites by employing the spectroscopic methods (Kayali et al., 2005; Davarcioglu et al., 2008; Davarcioglu, 2009). The Central Anatolia is one of the richest in occurrence of clay deposits in the world. Therefore, investigation of these deposits, their quantitative and qualitative characterization is highly important.
In the XRD measurements, characteristic peak of glycol-saturated montmorillonite is 17 A˚ peak (Cradwick and Wilson, 1972). As it disappears, mineralogical conversion of montmorillonite to illite becomes evident. As a consequence of chemical reactions depending on increasing depth and temperature, increase of Al and decrease of Si in montmorillonite’s tetrahedral sheet results in changes in structure and by taking-up K ions available in the environment due to feldspar alteration, montmorillonite converts to illite (Weaver, 1960; Suchy et al., 2007). Expelled water as result of this change results in an increase in salinity of connate water already present in shale. Mg, Si and Ca ions, products of such conversion, could form minerals like calcite and dolomite facilitated by increasing temperature and these new minerals deposit within shale. This in turn results in a decrease in porosity and permeability and an increase in density (Bishop et al., 2002; Dunoyer de Segonzag, 1970).
Montmorillonite, being very sensitive clay mineral to temperature and depth, play an important role in both oil formation and its migration. As a result of reactions occurring in association with increasing temperature and depth, montmorillonite converts to illite losing its structural water (smectite converts to illite in alkaline environment). This conversion occurs at about 2500-4500 m burial depth and at 100 °C. In this process, K contents of pore waters show increase. Organic matter requires H ions to become hydrocarbon. H ions facilitate structural break-down (so-called cracking) of hydrocarbons with large organic molecules to smaller ones. During the loss of water from montmorillonite, H ion concentration of the environment raises. Water expulsion takes place at fairly steady and regular temperature. Some of the layers start losing water at 50-60 °C through 300 °C. About 70-80% of the water is expelled between 120-160 °C that corresponds to the formation of petroleum. This study suggests that results acquired from the organic maturation can be obtained through spectral analysis of structural changes occurring in clay minerals.
Generalized geological map of the Kolsuz-Ulukisla region and its around (adapted from Kayali et al., 2005).
One of the geological studies in the Kolsuz area (Ulukisla-Nigde, Central Anatolian) deals with the clay profiles. In this study, using columnar sections and local observations, distribution of clay horizons and their lithostratigraphic relations were investigated (Oktay, 1982). On the other hand, sedimentological, mineralogical and chemical properties of the clays of the same area were studied in depth later by Gurel (1999). The Kizilbayir Formation outcropping in the north of Ulukisla basin is the key formation due to its association with the clay occurrences. The formation starts with gravel-bearing red-green clays at the base, progressing upward, large-scale cross-bedded conglomerate, sandstone with clay intercalations occur and conglomerate with mudstone interbeds dominate towards the top (Demirtasli et al., 1986). Thickness of the formation in the area ranged from 10 to 250 m.
However, no comprehensive study on the qualitative and the quantitative characteristics of the clays occurring in this area was available to date. Thus, this study aims to investigate clays of the area using the spectroscopic method and observed structural changes in the clay structures were interpreted in terms of petroleum formation and their possible use in petroleum exploration in the area.
A combined profile representing the constructed profiles chosen for this and nearby area was shown in Figure 1. The clay samples were taken from three different levels shown in the litostratigraphic columnar section of a selected locality in the Kolsuz-Ulukisla region (Figure 2). The samples taken from lower level, middle level and upper level labeled as (Kk1), (Kk2), and (Kk3), respectively.Initially about 1 kg of samples were collected, and 20-40 g splits were prepared for further analyses. Samples were heated at 110 °C for 24 hours and crushed to powder and screened using an 80 mesh sieve. Clay fractions were prepared following the procedure including removal of carbonates, sulfates and organic matter by dissolving, through washing to acquire stable suspension, and siphoning (to acquire the clay fraction - <2 micron) (Brown, 1961; Gundogdu, 1982).
In general, the clay minerals contain significant amount of water. Conversely, they contain less alkaline and alkaline earth elements. Absorption bands due to the water molecules occupy large spectral fields, the ones critical for identification of clay minerals. Thus in order to minimize this undesired overlap, samples for the FTIR measurements were prepared through clay concentration without employing a centrifuge. However for the chemical analyses, samples were analyzed as bulk sample without concentrating for clay fraction. Organic matter was removed through boiling in H2O2solution and then samples were dried in an oven at 110 °C for 24 hours.
Generalized litostratigraphic columnar section of the Kolsuz-Ulukisla region (adapted from Kayali et al., 2005).
Samples collected from the study area were prepared applying the disc technique (mixing ~1 mg clay sample with ~200 mg KBr) and put in molds. These intimate mixtures were then pressed at very high pressure (10 tons per cm2) to obtain the transparent discs, which were then placed in the sample compartment. Bruken Equinox 55 Fourier transform FTIR spectrophotometer (Department of Physics, METU, Ankara-Turkey) was used for the IR spectral measurements of these samples with standard natural clay and the spectra were recorded over the range of 5000-370 cm-1 (% transmission versus cm-1). Before taking the spectra measurements of the samples, spectrophotometer was calibrated with polystryrenesand silicate oxide of thickness 0.05 nm.
The infrared spectra of the illite (IMt-1; Silver Hill, Montana, USA), illite-smectite mixed layer (ISMt-1; Mancos Shale, Ord.), montmorillonite (SCa-3; Otay, San Diego Country California, USA),Ca-montmorillonite (STx; Gonzales Country, Texas, USA), Na-montmorillonite (SWy-1; Crook Country, Wyoming, USA),kaolinite (KGa-1; Washington Country, Georgia, USA), chlorite (ripidolite, CCa-1; Flagstaff Hill, El Dorato Country, California, USA), and palygorskite (PFI; Gadsden Country, Florida, USA) known as standard natural clay minerals (“The World Source Clay Minerals”) were taken(Table 1),and then the spectra of anhydrite, gypsum, and mixtures of the illite+quartz+feldspar, quartz+feldspar have been taken for the analyses of subject samples.
Along with XRD (X-ray powder diffraction) analysis, the functional groups in the clay minerals structures could only be determined through the FTIR spectra. Therefore, qualitative and quantitative analysis of the minerals by employing the FTIR spectroscopy is very important and promising.
Fundamental vibration frequencies of standard natural clays (I=illite, ISmML=illite-smectite mixed layer, Na-mont=Na-montmorillonite,C=chlorite, P=palygorskite).
A second treatment was employed only to the clay sample taken from the lower level (Kk1) to see whether there is a change in the structure of the samples or not due to FTIR spectrum measurements. For this procedure, HCl, bicarbonate (Na2CO3), and sodiumdithonit (Na2S2O4), and sodiumstrate (Na3C6H5O7) liquids were added to the sample to remove carbonates (mainly calcite and dolomite), amorphous materials and manganese oxides, which were expected to be present. This mixture was treated in an oven at 120 °C for 24 hours and washed using ethyl alcohol until complete removal of those unwanted components was achieved. The FTIR spectrum of the precipitate was then taken.
The chemical analyses of the Kolsuz-Ulukisla clay samples (dried in an oven at 110 °C for 24 hours) were carried out at the ACME-Canada laboratories by means of XRF-ICP (X-ray fluorescence spectrometry-Inductively Coupled Plasma) technique.Major oxide composition of the samples representing the lower, middle and upper parts of the profile was given in Table 2. These data suggest that the clays of the region are essentially rich in SiO2, Al2O3, and CaO.Main cause of these enrichments was due to ascending briny and carbonated waters through capillary actions and precipitation due to transpiration in arid and semi-arid regions. On the other hand, aluminum enrichment could be due to presence of either other aluminum silicates (such as K-feldspars) or Al3+ being in the clay structures.
Lower part (Kk1) | Middle part (Kk2) | Upper part (Kk3) | |
SiO2 | 46.50 | 48.57 | 49.12 |
TiO2 | 0.66 | 0.76 | 0.47 |
Al2O3 | 12.74 | 13.97 | 9.46 |
Fe2O3 | 7.28 | 8.10 | 4.24 |
MnO | 0.14 | 0.14 | 0.15 |
MgO | 4.68 | 5.09 | 2.90 |
CaO | 9.37 | 6.94 | 15.04 |
Na2O | 0.96 | 1.10 | 1.72 |
K2O | 2.31 | 2.64 | 1.65 |
Cr2O3 | 0.028 | 0.027 | 0.029 |
P2O5 | 0.06 | 0.15 | 0.10 |
Major oxide composition of the studied profile (in %).
XRD measurements were employed to determine the mineral phases included in the same samples (Siemens D-5000 Diffract AT V 3.1 diffractometer, CuKα radiation λ=1.54056 A˚ and 0.03 steps; General Directorate of Mineral Research and Exploration laboratories-MTA, Ankara-Turkey). According to the XRD measurements (Figures 3 and 4), subject clays are found to be composed of abundant chlorite (45%), illite (32%), quartz (20%), smectite (3%), feldspar, calcite, and trace quantities of palygorskite and Fe-oxide minerals. In the Kk1 lower part of the clay profile (Figure 2), amount of quartz tend to decrease while smectite, illite and chlorite show significant increase. Whereas at the top of the Kk1, just opposite of this abundance trend was observed and palygorskite was totally absent.
XRD pattern of the clay samples belonging to the lower level (Kk1) of Kolsuz-Ulukisla clays (Q=quartz, F=feldspar, I=illite, ML=mixed layer clay, C=chlorite, S=smectite).
XRD patterns of the clay samples from the lower level (Kk2) and the upper level (Kk3) of Kolsuz-Ulukisla clays (Q=quartz, F=feldspar, I=illite, ML=mixed layer clay, C=chlorite, S=smectite).
DTA(Differantial Thermal Analysis) and TGA (Thermogravimetric Analysis)measurements have been carried out for the determinations of the thermal behaviour of the clay samples (Figure 5).Measurement were carried out in the MTA Labs (Ankara-Turkey) using a Rigaku Thermal Analyzer Ver. 2.22EZ (SN#39421). Here smectite peak falls in the same field with the one of chlorite. Minute endothermic peak of smectite occurs in between ~100-250 °C, and second endothermic peak appears at ~700 °C and shallow endothermic/exothermic peak is observed at ~800-900 °C. Best observed endothermic peak of chlorite in the DTA-grams is the one observed between 500-600 °C. This peak may shift toward ~700 °C due to the iron content. Subsequently this peak may fall in the same interval with smectite’s peak at ~700 °C. Chlorite’s exothermic peak occurs at 750 °C (Kok, 2006; Kok and Smykatz-Kloss, 2009; Yener et al., 2007).
DTA-TGA measurements of the Kolsuz-Ulukisla clays.
In the recent years, one of the methods used in petroleum explorations is organic maturation and the other diagenesis of clay minerals. Results acquired through the first approach could be attained using the second method. Fundamental nature of the second approach can be explained as follow: clays that immature or recently deposited may contain smectite (montmorillonite), illite and kaolinite depending on the source area. With subsidence, these minerals lose their water content and are subjected to mineralogical transformations. Smectite converts to illite within the range of oil formation temperature (60-150 °C) (Weaver, 1960; Dunoyer de Segonzag, 1970). When the upper limit of this range was approached, kaolinite and illite convert to mica, if ferromagnesian minerals are available in the environment; these minerals transform to chlorite instead (Figure 6). Consequently, clays can give an idea about be the degree of maturation of a sample of interest. For the fields where oil explorations are carried out, clays can be used to answer following questions: (I) which layers has source rock potential, their regional coverage and relationship with the paleogeography, (II) source rocks occurring what part and depth of the basin and which time interval have enough maturation, (III) when and how the oil migration occurred, (IV) the relationship with oil formation and oil migration (Hunt, 1995). However, time and duration plays an important role in this process accompanying the mineralogical transformations.
Diagenesis of clay minerals and oil formation zones in terms of temperature (adapted Weaver, 1960; Suchy et al., 2007).
Mineralogical changes of the clay minerals are closely related to the temperature and water chemistry of the environment. Thus, they reflect better and more precise transformation temperature (paleotemperature) of the clay minerals. Reflectance degree of vitrinite, a major organic component of coals, shows increase with increasing degree of metamorphism (Teichmuller, 1987). In diagenesis stage, reflectance degree of vitrinite is 5%. In this stage, organic matter is not mature enough to produce oil and the second stage is catagenesis (boundary is 2%). While oil formation takes place between 0.7% and 1.3%,wet gas occurs between 1.3% and 2%. Lower boundary of metagenesis is 4%, under which metamorphism starts (Bozkaya and Yalcin, 1996).
During diagenesis and metamorphism, mineralogical changes occurring in the clay structures give extent of such events of the sedimentary rocks. Structural characteristics and parameters of the clay minerals are not unique for all depositional environments. However, depositional environments are characteristic to formation of certain clay minerals. Major parameters of sedimentary environment including pressure, temperature, subsidence, time, proton-electron concentration and metal-ion concentration greatly affect the clay mineral structures(Bozkaya and Yalcin, 1996). Most of the petroleum source rocks contain various clay minerals. Source rock properties like porosity and permeability vary depending on variety, abundance and distribution of the clay minerals (Bayar et al., 1987).
In the study area, the Kolsuz clays are loosely cemented with calcite, silica and Fe-oxides. Gravels are of various origins including sandstone, greywacke, claystone, limestone, marl, volcanics, granodiorite, gabbro, quartzite, chert, and serpentinite(Kayali et al., 2005). Petrographic investigations on thin-sections of 12 samples from the Kizilbayir Formation indicated prevalent presence of feldspars, quartz, calcite, lithic fragments of volcanic, magmatic and metamorphic rocks, of carbonates (e.g., limestone and marl) and clastic sedimentary rocks (e.g., sandstone, claystone and greywacke) cemented chiefly by calcium carbonate(Gurel 1999; Kayali et al., 2005).
The clay samples were taken from three different levels shown in the litostratigraphic columnar section of a selected locality in the Kolsuz-Ulukisla region (Figure 2). The FTIR spectra of the samples taken from lower level (Kk1), middle level (Kk2), and upper level (Kk3) of Kolsuz-Ulukisla (Turkey) clay profile are given in Figures 7 through 9, respectively. Interpretation of the observed vibrational bands in these samples were carried out by comparing with those found in the world clay standards with known fundamental vibration frequencies for illite, illite-smectite mixed layer, Na-montmorillonite, chlorite (ripidolite), palygorskite (Table 1)and the other clay standards. Results are listed in Table 3.
FTIR spectrum of the clay sample taken from the lower level (Kk1) of Kolsuz-Ulukisla.
FTIR spectrum of the clay sample taken from the middle level (Kk2) of Kolsuz-Ulukisla.
As seen from Table 3, all of the samples belonging to the lower, middle, and upper levels of Kolsuz-Ulukisla (Turkey) clay profiles Kk1, Kk2, and Kk3, respectively, include illite, illite-smectite mixed layer, Na-montmorillonite, chlorite, palygorskite, calcite, feldspar and quartz minerals.
The FTIR spectrum of the sample representing (as summarized in FTIR measurements) lower level (Kk1) of Kolsuz-Ulukisla profile has been taken to see effects of the heat treatments on the structure of the subject samples (Figure 10).The assignments of the vibration frequencies of this spectrum were carried out following the same procedure applied to the spectra of the other samples and the results are given in Table 4. When results listed in Table 4 interpreted with the one in Table 3, it can be seen that the sample, Kk1, is composed of illite, calcite, chlorite, feldspar and quartz.Band assigned as vibrational frequencies for Na-montmorillonite and palygorskite were not observed after the thermal treatment. However, for illite at 916 and 833 cm-1(Al-Mg-OH) deformation and at 525 and 470 cm-1(O-Si-O) bending frequency bands were observed after the thermal treatment. This bands are resulted due to re-arrangement of Al and Mg atoms within the crystal structure during the thermal treatment (Bishop et al., 2002).
FTIR spectrum of the clay sample taken from the upper level (Kk3) of Kolsuz-Ulukisla.
FTIR spectrum analysis results of Kolsuz-Ulukisla clay samples Kk1, Kk2, and Kk3 belonging to lower, middle, and upper levels, respectively.
FTIR spectrum of the clay sample Kk1 after thermal treatment.
Results of the FTIR spectrum analyses of the clay sample (Kk1) from Kolsuz-Ulukisla (Turkey) after thermal treatment.
Only (Si-O) strecthing at 988 cm-1among the vibrational frequencies of chlorite at 3660, 988, 819, 543, and 441 cm-1was not observed after the thermal treatment. This is because that the organic molecules are forced into silicate layers during the thermal treatment. XRD data acquired from preheated sample (Kk1) between 350-550 °C, indicated that chlorite and illite peaks were not shifted but smectite peak was shifted towards 10 A˚. In the same sample, kaolinite should also be present, beacuse the 7 A˚ peak dissappears at 550 °C.Based on FTIR and XRD (even at slow scan) measurements, kaolinite was never observed. Thus we conclude that Kk1 does not include any kaolinite. The(OH) stretching vibrations of quartz at 798, 788 and 697 cm-1 and (OH) stretching vibration of calcite at 2515 cm-1 remain the same after the heat treatment. As a result from FTIR analysis, we can say that the framework of silicate (T-O-T) structures of Kolsuz-Ulukisla-Nigde (Turkey) clay minerals samples has not been destroyed.
Before the thermal treatment, in Kk1 and Kk3 samples, palygorskite’s only bands including (water-OH) scissoring vibrational bands at 1731 and 1673 cm-1 (Frost et al., 2001), OH deformation bands at 905 cm-1 and (O-Si-O) bending vibration band at 468 cm-1 were observed.While illite’s (OH) stretching vibrational band appears as shoulder at 3680 cm-1 in Kk3 clay samples, despite (O-Si-O) bending vibration band at 468 cm-1 observed in Kk1 and Kk3 samples was assigned as belonged to palygorskite, it could belong to Na-montmorillonite’s (O-Si-O) bending vibration band. Similarly, vibration band observed at 3680 cm-1 in Kk3 sample was assigned as (OH) stretching vibration band, it belongs to inner-layer OH, (Al-O...H) stretching band (Farmer and Russell, 1964). In samples Kk1 and Kk3, when bands assigned at 3622, 920, 805, 620, and 468 cm-1 were evaluated altogether; they appear well-matched with fundamental vibration bands of Na-montmorillonite standard. But vibration band at 920 cm-1 of the Na-montmorillonite standard clay was observed at 917 cm-1 in Kk3 sample.
Clay minerals of selected profiles in Nigde-Ulukisla area were determined both by the XRD and the FTIR.
Structural evaluation of these clay varieties was carried using the FTIR spectra.
Structural changes could be determined effeciently by the FTIR.
Findings are evaluated with the known data for depth-temperature-clay mineral transformations during burial processies in sedimentary basins.
Study area has potential to produce hydrocarbons as indicated by the presence of certain clay species.
We would like to thank Turkish Scientific and Technological Research Council (TUBITAK-Turkey) for the financial support (project code: CAYDAG 2005-101Y067). Professor Dr. Cigdem Ercelebi (Department of Physics, Middle East Technical University, Turkey) is also gratefully appreciated for the FTIR.
This chapter ‘Analyzing the Cyber Risk in Critical Infrastructures’ discusses the concepts of critical infrastructure (CI) and critical information infrastructure (CII), highlights the need for addressing the cyber risk to CI/CII, discusses methods and challenges in assessing the cybersecurity risk for CI/CII, and highlights upcoming cyber risk. This chapter brings together views on what comprises CII in the light of technological and societal developments, and how to analyze the cyber risk of CI and CII given the complexity of CI sector structures, dependencies, and service chains.
Following this introduction section, Section 2 introduces the concept of CII, its relation to the classical CI, and discusses the importance of analyzing the cyber risk to CI/CII. Section 3 discusses methods and challenges in analyzing the cyber risk to CI/CII both from the perspective of a single organization and across organizations e.g. across a CI sector or along a CI/CII service chain. Section 4 analyses the vulnerabilities and cyber risk of operational technology (OT) in CI. Section 5 discusses methods to analyze the cyber security risk across multiple organizations including supply chains. Section 6 provides an outlook at new technological and regulatory developments and their possible impact on the cybersecurity risk for CI and CII. This chapter concludes with the conclusions in Section 7.
The Council of the European Union has defined a CI as: “an asset, system or part thereof located in Member States which is essential for the maintenance of vital societal functions, health, safety, security, economic or social well-being of people, and the disruption or destruction of which would have a significant impact in a Member State as a result of the failure to maintain those functions” [1]. Currently, many states on the globe have defined a subset of their infrastructure services as CI using similar definitions for CI. Their aim is to guarantee the wellbeing of their population and economy by safeguarding the undisturbed functioning of the society under all hazards. A list of national definitions for CI can be found at [2].
To determine their set of national CI sectors, states use methodologies such as a national risk assessment (NRA) method [3, 4] or a risk-based approach in combination with a set of criteria [5]. CI are deemed critical at the national level if e.g. the number of casualties or the economic loss caused by disruptions exceed certain thresholds [6]. Most states recognize energy, telecommunications and internet, drinking water, food and health as CI sectors [7]. Within these CI sectors, states identified critical processes, products, and services at the national level. Depending on its economic structure, historic developments, cultural, and other factors, states may recognize other sectors as CI, e.g. social services, monuments and icons as shown by the webpage ‘critical infrastructure sector’ on [2].
In line with CI, CIIs comprise those ICT-based elements for which the disruption or destruction may – according to defined criticality criteria - have a serious impact on a state’s society and its economy. CII is therefore defined by [8] as “those interconnected information and communication infrastructures, the disruption or destruction of which would have serious impact on the health, safety, security, or economic well-being of citizens, or on the effective functioning of government or the economy”. Nevertheless, many states, which have defined their CI sectors, struggle in defining and accepting the concept of CII although the cyber risk to society extends beyond the classical set of CI sectors. Section 2.2 outlines the identification of CII and highlights why CIIs may extend beyond the currently identified national ‘classical’ sets of CI sectors.
Alike the protection and resilience of CI, the protection and resilience of CII also starts with identifying CII. Many critical and essential services of our societies largely depend on the undisturbed functioning of underlying ICT and OT. According to [9], OT is “the technology commonly found in cyber-physical systems that is used to manage physical processes and actuation through the direct sensing, monitoring and or control of physical devices”. The overarching term OT replaces many earlier notions for process control technologies to monitor and control cyber-physical processes (CPS): industrial control systems (ICS), distributed control systems (DCS), energy management systems (EMS), supervisory control and data acquisition (SCADA) systems, industrial automation and control systems (IACS), and process automation (PA) [10]. To mention a few applications of OT: the generation, transport and distribution of various modes of energy, refinery processes, building automation systems (air-conditioning, elevators, fire alarm system), physical security access (locks, gates, cameras), laboratory analysis systems, tunnel safety systems, harbor cranes, and automatic guided vehicles (AGV).
Identifying the ICT- and OT-based services that are critical for a state proves to be complex. Most states struggle in clearly understanding and defining the information infrastructure components of critical processes to the state and its population. CII elements and services are notoriously more difficult and complex to demarcate and define than CI, both technically, organizationally, and from a governance point of view.
CII elements tend to be more interwoven and tend to hide within a CI, in cyber-physical processes, and in stacks of information-based services. The speed of innovation and uptake of new digital technologies in processes that evolve into critical processes to the society is high. Obviously this is complex as the critical ICT- and OT-based functions and services hide themselves (1) in the IT-sector (telecommunication and internet), (2) classical sector-specific CIs (Figure 1), and (3) even beyond these established domains.
Critical information infrastructure (source: [11]).
According to [11], CII comprise:
Critical elements and services of the ICT sector, for example mobile telecommunication data services, internet exchange points, domain name services, certificate infrastructures, and Global Navigation Satellite Systems such as Galileo, BeiDou, and GPS for Position, Navigation and Timing (PNT) services.
Critical information, communication, and operational infrastructure elements- ICT and OT- in each of the CI. This may include e.g. critical financial transaction systems in the financial sector, critical logistic information systems, and OT which monitor and control critical cyber-physical systems such as in gas transport, harbors, railways, healthcare, and refineries.
The products and services of manufacturers, vendors and system integrators which are used across multiple CI sectors, nationally and internationally, whose vulnerability or common cause failure may negatively impact the proper functioning of CII and the CI that they are a critical element of.
Critical ICT- and OT-elements and services beyond the established CI domains mentioned under (1) to (3) above. Such elements are often operated by organizations outside the classical ministerial supervision and/or regulation, may be physically located outside a state and or operated by foreign operators.
The extent of the nationally identified CII largely depends on the maturity and critical use of digital technologies by and in states (Figure 2). As a basis, essential CII elements include the ICT-based elements of the classical CI services such as electricity generation or drinking water. Digitally more advanced states have defined CIIs which have major elements outside the classical set of CIs. Due to the international nature of CII, the governance of CII protection and resilience extends beyond national borders and relies on international collaboration. Due to the increased role of ICT and OT in almost all other CI (e.g. cloud services, smart cities, smart grids), defining the CII requires cyclic updates to capture the dynamics inherently linked to ICT- and OT-based systems and networks. This process is complex due to the dynamics of the dependencies, and also to the sometimes-hidden nature of these dependencies, think e.g. on the dependency of electricity networks on the availability of precise timing and communication networks [12].
Critical information infrastructure protection (CIIP): All activities aimed at ensuring the functionality, continuity, and integrity of CII to deter, mitigate and neutralize a threat, risk or vulnerability or minimize the impact of an incident. (source: [11]).
The EU, for instance, recognizes the need to secure both CI and CII in its European directive on security of network and information systems (NIS) [13]. The directive requires a higher level of cyber security by the operators of specific CI services in the energy (electricity, oil, and gas), transport (air, rail, over water, and road), banking, financial markets, health, drinking water supply and distribution, and digital infrastructure sectors. The non-classical CI ‘digital infrastructure’ comprises internet exchange points (IXs), domain name service providers (DNS), and top-level domain (TLD) name registries. EU Member States require by law that other national CI operators adhere to the same security requirements as well. Moreover, the NIS directive recognizes another set of CII operators: the digital service providers (DSPs). DSPs operate online marketplaces, online search engines, and cloud computing services when their operations exceed a certain size.
Moreover, the EU implicitly recognizes electronic identification and trust services for electronic transactions as CII in [14]. However, it should be noted that most EU states do not recognize their key registers on population, land, addresses and buildings, commercial companies, topology, and vehicles as CII [7].
The USA recognizes as life critical embedded systems as CII beyond the classical CI sectors: medical devices, internet-connected cars, and OT [15]. Other states, alike Australia, are in the process of identifying their CII.
The high dynamics of technological developments and subsequent societal use of ICT- and OT-based services, makes the identification of CII complex. What seems to be a new toy may become embedded in critical societal processes shortly. On the other hand, earlier critical services such as text messaging phase out while being replaced by newer mechanisms such as Whatsapp. Risk analysis and mitigation may be complex given (1) the ICT- and OT-technological dynamics, (2) the continuous shifts in the threat spectrum, and (3) new CII services often operated by new, non-traditional operators (e.g. cloud services) which do not fit automatically in the governance structures of states.
The most feared phenomenon by states is the cascading effect due to dependencies between CIs and CIIs. When one CI or CII is disrupted or destroyed, cascading disruption(s) may occur through the dependency of other (critical) infrastructure(s). Another important risk factor to CI and CII is a common cause failure: “a failure where the function of multiple infrastructures is disrupted or destroyed by the same cause or hazard affecting these infrastructures at the same location or area in the same time frame” [2]. Common cause failures may for instance be triggered by extreme weather, flooding, wildfires, and common use of the same vulnerable ICT or OT application, software, or equipment.
In modern societies, the (cyber) risk to society and the economy due to inadvertent and deliberate CI/CII disruptions and cascading and common cause phenomena increases due to:
The diminishing governmental control over classical CIs and CIIs due to liberalization and privatization of their operations.
A more economic-based risk approach by CI and CII operators aiming for improved efficiency, productivity, and organization performance, as compared to a more societal risk-based approach by the earlier public CI/CII operators.
The fast appearance of new ICT-based services that are perceived essential or even critical by society even before government considers them as being CII.
The perceived critical use by citizens of new stacked services which make the underlying ICT-infrastructure critical, e.g. the mobile e-payment infrastructure.
Urbanization which stresses the, often aging, CIs to the limits of their design capability and capacity.
The increased dependence of CI on ICT and the hidden nature on some dependencies, see for instance [12] for possible cascading effects of disruptions of time synchronization services in electrical power networks.
The increased use of vulnerable ICT and OT for the monitoring and control of CI operations.
Complex dependencies of CI/CII services and the risk of cascading failures.
The increased dependence of industries and the population on undisturbed CI and CII services. They expect and require a high level of CI/CII resilience, basically an undisturbed service 24 hours per day, all year around. Modern societies and its population cannot cope anymore with CI/CII service disruptions that affect a large area and have a long duration, citizens and businesses have no plan ‘B’.
The increased level of cyber-attacks by state actors [16] and other types of actors [17] deliberately performing (cyber) attacks on CIs and CIIs in support of their political and financial objectives. See e.g. the warning in [18].
Vulnerabilities in commonly used ICT- or OT-applications and systems being the source of a common cause failure, e.g. a common vulnerability in a popular application may lead to vulnerabilities in many organizations simultaneously, see e.g. the Dutch national cyber security centre (NCSC) warning for a Citrix vulnerability [19].
The high dynamics in vulnerabilities of ICT- and OT-applications and -systems.
Therefore, the analysis and mitigation of the cyber risk in CIs and CIIs pose major challenges to states and their operators of essential services.
Risk analysis is defined by the EU as the “consideration of relevant threat scenarios, in order to assess the vulnerability and the potential impact of disruption or destruction of critical infrastructure”. [1] The Council of Europe’s European Centre of Technological Safety (TESEC) defines risk analysis as: “the determination of the likelihood of an event (probability) and the consequences of its occurrence (impact) for the purpose of comparing possible risks and making risk management decisions” [20]. Identifying the cyber threat scenarios and vulnerabilities related to CIs and CIIs is an important element of the sectoral, national, and wider CI and CII protection and resilience policies and frameworks [13, 5, 6, 7]. Managing the characteristics requires thorough and regular assessments of the cyber risk for CIs and CIIs, both at the level of a single CI/CII operator, across a CI/CII sector, across CI/CII chains of services, and at the national level.
Risk assessment (RA) is “the combination of vulnerability analysis and risk analysis” leading to the “determination and presentation (usually in quantitative form) of the potential hazards, and the likelihood and the extent of harm that may result from these hazards” [20].
Risk analysis, vulnerability analysis, and, subsequently, RA are therefore important elements of the CI/CII protection and resilience efforts. Moreover, the risk management (RM) process for CI and CII should not only cover the business perspective of the risk but should also cover the societal impact of the risk: what risk does society faces when a large-scale disruption occurs? This requires RAs at multiple levels of aggregation, each with a different objective:
An operator of essential services (CI or CII) will primarily use RA to obtain an overview of possible risk factors that can harm its business objectives and profits. Legal requirements will be a mere boundary condition to this process. The cyber risk is just one aspect which is balanced with other risk aspects such as e.g. technical failure, lack of key personnel due to a pandemic, and adverse regulation.
A RA at the CI/CII sector level will primarily focus on the resilience and reputation of the whole sector considering the individual mitigation measures taken by the operators within the sector. E.g. what is the risk of diminished trust by the population in e-banking?
A RA for a specific CI or CII service which depends on a chain of intermediate services supplied by multiple service operators. The operator of the (end) service will primarily focus on the resilience of the whole service chain and the disruption risk due to failing or disruption of one or more of the intermediate services. The analysis will consider the individual resilience measures taken by the individual operators and the residual risk for the service chain.
A RA at the national or regional level will primarily focus on risk with societal impact and will take a wider range than just CI and CII. A national or regional RA will e.g. also consider the risk of a pandemic outbreak or a large-scale flooding and will balance the outcomes with the cyber risk to CIs and CIIs. To assess this risk, various states use a National Risk Assessment (NRA) method to establish a balanced national risk view including the cyber risk, see e.g. [3, 4, 21, 22, 23].
Due to the importance of CIs and CIIs for societies, CI and CII sectors increasingly must analyze and assess their (cyber) risk regularly and systematically based on sector-specific regulations either imposed by the national regulator, e.g. [24], or through sector initiatives, e.g. the Basel III regulatory framework for the bank sector. The implementation of the EU NIS directive as discussed above requires CI and some of the CII operators to regularly perform RAs as a basis for their cyber security measures. RM is also a key element in the NIST framework [25].
Moreover, these CI and CII operators should be prepared to perform a quick reassessment of the cyber risk, mitigations, and the residual cyber-related risk in case a new cyber vulnerability or cyber threat comes to the fore.
The basis for the protection of CI lies in a strong RA at the operator level. For RA at the company level, including CI and CII operators, many methods and standards exist. Most of these methods are in line with the ISO 31000 series of RM standards [26]. For the IT-environment, ISO/IEC 27005 [27] provides the RM and risk mitigation background as part of the ISO/IEC 27000 series that assist organizations to implement information security management based on a set of terms and definitions [28] and security controls [29, 30]. For the OT-environment, security control frameworks with similar security control sets exist, e.g. [31, 32]. Although these security control frameworks are often sector specific, they can be mapped on common structures or frameworks, see e.g. ENISA and NIST [25, 33].
One of the important factors to cover in a RA of CI/CII is the risk of ICT/OT as a vulnerability that may cause disruptions of CI/CII. This may involve the risk of technical failure or human mistakes, but also the cyber risk of malicious attacks. Given the criticality for states, even hybrid conflicts affecting CIs and CIIs are envisioned, see e.g. [34, 35]. An early example is the Crimea conflict. On December 23, 2015, Ukrainian power companies experienced unscheduled power outages impacting many customers in Ukraine. In addition, there have also been reports of malware found in Ukrainian companies in a variety of their CI sectors [36].
Section 4 below specifically focusses on the cyber risk factors related to OT.
A RA for a specific CI sector is feasible, as was shown by the EUropean Risk Assessment and COntingency planning Methodologies for interconnected energy networks (EURACOM) project [37]. This approach extended the EUropean Risk Assessment Methodology (EURAM) [38] with contingency planning. In particular, chapter 4 of the EURACOM report discusses the cyber threats to the energy CI sector. The methodology is based on a common and holistic approach (end-to-end energy supply chain) for RA, RM and contingency planning across the power, gas, and oil CI subsectors.
The seven steps of the EURAM RA methodology are shown in Figure 3. The methodology scales from the department level to the operator level, to the CI or CII sector, and national level. Moreover, the methodology may embed the results of other RA methodologies. Risk which cannot be dealt with at a certain level may be input to the next higher level of abstraction. For example, the risk implications of a pandemic or a state actor cyber-attack to a nation cannot be managed alone by a CI operator and must be off-loaded to and managed at the national or even supranational level.
The EUropean Risk Assessment Methodology (EURAM) approach (source: [38]).
Although methods and approaches exist to perform RA across organizations. (e.g. a CI/CII sector or a service chain) some practical challenges exist:
The risk attached to ICT and OT elements across CI/CII-chains. Certain CI/CII services are composed of a set of (chained) ICT and OT elements provided and operated by multiple operators. The criticality of certain elements to a CI or CII may be unknown to its operator; therefore, its protection has less priority than required from the national CI protection (CIP) or NIS point of view. It is a challenge to identify such critical elements and to assess the risk attached across the chain. In support of this type of assessments, new methods have been proposed, e.g. the RA method suggested by the Dutch cyber security council which requires the collaboration of all organizations in a supply chain to collectively assess the risk and define the appropriate security controls [39].
Identifying the risk related to critical elements in various CI/CII: Some ICT and OT products are widely used across many CI and CII sectors and other organizations. The cyber risk attached to a systemic failure or vulnerability of such a product may be large, e.g. a vulnerability in Microsoft Windows systems or in commonly used OT systems. Such a vulnerability may lead to a high level of risk at the national or even the international level. This risk is difficult to assess since it requires a detailed and well-maintained asset inventory of systems and applications used by each CI/CII operator.
The international nature of part of the CII: Assessing the risk and taking mitigating measures for CIIP might be troublesome when the CII ownership, operations and or (operational) jurisdiction are beyond one’s national border. Conflict of interests, legal requirements, and procedures may occur. For example, a cloud server operator having its operations in state B should report a cyber security breach to the national authority in that state. However, state A may have made regulation that each CII operator should report security breaches within 24 hours to them. When a CI operator in state A uses such a cloud service, the cloud service could have been designated as CII thereby imposing regulation on the cloud operator in state B. Such cross-border CII issues arise with the diverse national implementations of the EU NIS directive [40], and other CII-related laws. The new EU security strategy intends to address these issues [35].
These challenges lead to the necessity to perform RM not only at the company level but also across the service chain, and at the sector and national levels.
To identify the main threats and vulnerabilities for the OT environment, a structured approach will be used in distinguishing multiple layers. Threats to OT may occur at multiple layers as defined by [41]:
The governance layer.
The socio-technical layer comprising the OT/ICT architecture, the technology, networking, and human factors.
The operational-technical layer including (3rd party) maintenance.
According to [42], a threat to OT is the “potential cause of an unwanted incident through the use of one of more OT, which may result in harm to individuals, a system, an organization, critical infrastructure and vital societal services, the environment or the society at large”.
The governance layer. At the governance layer, the first threat stems from the fact that OT is technically embedded in functionality. The management focusses on the functionality, e.g. provide drinking water. Therefore, many chief information security officers (CISOs) or equivalent executive level responsibilities largely neglect the cyber risk to OT which at the same time is a major risk to the functioning of the whole CI.
Moreover, there is major cultural difference between the IT department and other departments which use OT as part of the 24/7 functionality of their CI services. In addition, the IT department often has the cyber security mandate for the whole organization. “IT” develops the organization-wide cyber security policies (e.g. authentication and password policy, patch and anti-malware policies). Protection of the integrity, confidentiality, and privacy of information is a high priority. Therefore, “IT” may disrupt its operational services when required to install urgent patches. In their mindset, “IT” is key to the business of the whole organization; “OT is just the department of grease, pumps, and valves, isn’t it?”
The OT department on the other hand optimizes the control of the physical processes and are less concerned with cyber security. Most often, “OT” has to use of the networks managed by “IT” for wide area connectivity and remote access. “IT” even may state the company-wide cyber security policy to comply with specific cyber security management standards such as the ISO/IEC 27000-series [28]. “OT” has to adhere to those policies while such cyber security standards and good practices have not been developed for a 24/7 operational environment. For example, blocking an account after three subsequent login errors is of no help when an operator needs to change production settings in the middle of the night during an operational crisis. Such dissimilar needs, policies, and service expectations between “IT” and “OT” can be a source of conflicts. Governance of OT security therefore requires efforts by all involved to bridge the gap between the ICT and OT domains.
Another governance level threat is that the economic depreciation of OT is often equal to that of the OT-controlled system, e.g. a water purification unit. Therefore, very aged control system components such as a 486 Windows/XP system still operate hidden in cabinets. They still control metros, sewage systems, and so on.
In other situations, the renewal of OT will be a long-term process where the upgrade will be performed (sub)process by (sub)process. This means that the central system control must cooperate with both new and legacy OT. Mixed configurations mean that cyber security measures cannot be activated at all or can only be effective on and between the new OT-systems and applications.
“No worry about cyber security of OT, the processes still can be controlled manually”. At least management holds that view neglecting that the same management considerably reduced the experienced workforce able to manually operate the CI system. Therefore, an OT-disruption for longer than a couple of hours inevitably brings down the OT-controlled CI/CII services to society.
The socio-technical layer. At the socio-technical layer, [42] identifies a number of threats to the undisturbed functioning of OT-controlled CI processes, and therefore to the continuity, integrity and safety of physical processes. For example:
Lack of cyber-security awareness of operators and other people operating and maintaining OT-controlled processes. No specific cyber-security education and training is part of their curricula.
In the process control environment, it is not unusual that employees have been employed for many years. The risk of sabotage activities by disgruntled and dismissed employees is large. Many cases can be found in the media, e.g. the Maroochy water breach, and a sabotaged leak detection system of the Pacific Oil platforms and pipelines near Huntington Beach, USA. A risk which is not new: insider OT sabotage occurred already in the 90’s, see e.g. [43].
The operational-technical layer. At the operational-technical layer, [42] identifies OT-specific threats including:
The SCADA (and similar) protocols were designed in the 60’s with a no threat, benign, closed operating environment in mind. Such protocols are not robust against any serious cyberattack. Applying such protocols now on top of TCP/IP increases the risk even more. A malformed packet may crash or lead to a dementia paralytica of process logic controllers as was shown by [44].
The use of old technology and legacy OT, for reasons mentioned above, requires the need for personnel still knowing all ins and outs of twenty year or older OT as well as current technology. The old OT has no security-by-design. Moreover, old OT has too limited CPU and memory resources to run a malware protection package or encryption; the addition may break the critical process monitoring and control cycle. Moreover, a new plug-compatible board to replace a defective one may introduce new vulnerable functionality that is attractive to cyber attackers.
In standard “IT” communications, temporary blocking of transmissions is accepted. In the OT-environment, however, not timely received status information from a process or a delayed control command may cause irreversible effects in the physical environment.
OT systems may directly or indirectly be connected via remote operations or maintenance with the internet. Shodan [45] and similar search engine tools show ample OT-equipment that are directly accessible via the internet.
System maintenance of OT in CI requires a lot of efforts due to the sheer size of the number of components. Password management policies, e.g. replacing passwords regularly, conflicts with the 24/7 operational continuity. CI sectors have agreed to good practices for patching and anti-malware signature updates but struggle with applying them, e.g. to apply security critical patches within a week after publication; all other patches to be applied during the next scheduled maintenance slot [46, 47]. In practice, patches are applied some three-quarter years after they became available and anti-malware signature files are updated after weeks if not months. “If the controlled process works, do not break it” is used as an excuse. Therefore, the risk of unauthorized exploitation of OT in CI sectors is high.
Third party maintenance engineers are often given unrestricted and unmonitored access to key processes 24/7. Incidents have shown that third party employees cannot always be trusted.
A complex element in identifying the cyber risk in CII operations is assessing the risk in the wide variety of hardware and software CI operators use. Most CI/CII operators use ICT and OT from a multitude of suppliers, partly being global players. The hardware and software may contain hidden vulnerabilities. A CI/CII operator should try to ensure a high level of security of their own hardware, software, and services, and of those that are procured from suppliers. Organizations should adopt a security lifecycle approach to enhance the safe and secure functioning of their ICT elements. The security lifecycle comprises the acquisition, installation, system integration, operations, maintenance, upgrading, and decommissioning phases. When CI/CII operators are dependent on ICT and OT suppliers, system integrators, and third-party maintenance companies, they should have contractual agreements and measures in place to ensure that the resilience is up to par with the security requirements of the CI/CII organization. Based on the efforts of each organization, the use of cyber security standards and frameworks may increase the level of resilience across the chain. Examples of this approach are the third-party security requirements included in cyber security standards and frameworks [25, 29, 30, 32].
Assessing the level of assurance of each ICT/OT element, proves to be a challenge for an individual organization. Therefore, many organizations require support from their government, e.g. in certification of certain equipment. Recently, the EU Cyber Security Act [48] provides a framework structure for certifications, which is being taken up by ENISA and several of the European states although a number of challenges is perceived [49, 50].
The above-mentioned characteristics of OT systems, makes it necessary to include the following steps as part of the RA process:
Use a multi-disciplinary team to assess the holistic risk to cyber. The team shall include those involved with general IT security, OT security, physical security, electronic security, security of services and supplies by utilities and third parties (e.g. power, external telecommunications, cooling), human resources (e.g. personnel security and safety).
Collaborate with government organizations and relevant computer incident response teams (CSIRTs) on threat information and on assessing the risk to OT-equipment, software, and (tele)communication means.
Identify the ICT and OT systems and networks that are critical to the key operational processes of the CI operator.
Assess the impact of a disruption of ICT and OT to the CI service(s).
Identify the connections with outside networks.
Identify the external dependencies including third parties.
Identify legacy systems that may pose additional vulnerabilities.
Section 3.4 discussed the challenges for risk analysis across organizations in CI/CII chains. There exist several methods that support risk analysis across a chain of organizations which provide critical or essential services. There are, however, many challenges in applying such methods as is shown in Section 5.2.
Due to the specific characteristics, there is a need to perform RM not only at the company level but also perform a collaborative assessment across CI/CII service chains. There have been some studies that aim to establish a method for assessing the cyber-security risk across chains of CI/CII operations [38, 39].
The Dutch chain analysis method [39] has been developed by a set of CI operators in the energy sector. It was their believe that organizations in a supply chain together are in the best position to define and deploy appropriate controls and initiatives to reduce any cyber security risk themselves. The method aims to provide insight into the cyber security risk within a supply chain. It uses a layered approach to provide insight into the risk that arise from the ICT/OT systems and their interconnections as well as the potential risk that may pose to the chain of business processes of organizations. The identified risk in the business processes can ultimately disrupt the continuity of the entire supply chain of one or more critical or essential CI/CII services. By combining and merging the identified risk in business processes per organization, which should include their own third-party risk to these processes, the overall risk to the supply chain can be assessed (see Figure 4).
Visualization of the Dutch supply chain risk management method (from [39]).
The aforementioned EURAM/EURACOM method uses a similar approach by combining three components to assess risk at an aggregated level, based on RAs by the individual organizations and is based on embedding lower level RA results by mapping the identified risk at the higher level [38].
Note that due to the hidden nature of ICT and OT within CI and CII, RM across the chain requires a large effort and a combination of expertise by all stakeholders to assess this risk and define appropriate mitigating measures as is highlighted by the aforementioned Dutch supply chain RA pilot [39]: “Providing insight into the cyber security risk within a supply chain requires a level of commitment of all organizations involved. It is paramount that in addition to the availability of adequate resources sufficient trust exists between organizations to share sensitive information among each other.”
In safeguarding CI and CII, cyber risk mitigation plays an important role. Cyber risk mitigation approaches comprise legal frameworks [13], the implementation of mostly non-CI/CII specific cyber security frameworks for ICT and OT [25, 29, 30, 31, 32, 51], the sharing of cyber security information [52, 53], and a collaborative approach. The incentive for collaborative action to the cyber risk at the sector level and across service chains is clear. Resources are scarce and can be optimized by collaborating. Due to the interconnectedness of CI and CII, all organizations in a sector or service chain suffer when one weak link exists and fails, making a joint approach a necessity. Although many initiatives exist, the uptake of these initiatives is sometimes less than planned. Although there are methods available to assess the cyber risk across a CI chain, there exist challenges to apply those methods. Some of the factors that may prove a barrier in the adaptation of these methodologies are:
Different RA methodologies used by individual organizations: Collaboration of RA across chains requires information sharing and discussions on the results of RA for the individual organizations. The sharing of information on the RA may be hampered when different methodologies are used. Although there are ways to overcome this, see e.g. [38], this requires some additional effort by the participating organizations.
Scarce resources: Cyber security is a domain where expertise is still a scarce resource. When large scale incidents occur that would benefit from cross-organizational collaboration, many of the personnel needed will be taken-up by high-priority activities within their own organizations.
Difficulties in establishing effective public and private partnerships: collaboration across the chain may require a close collaboration between public and private organizations, e.g. on information sharing on threats and vulnerabilities. While public-private partnerships (PPPs) are a popular form of collaboration in a number of states, in practice we see that they often lead to less than satisfactory results. Although the precise failure rate of PPPs in CIP is unknown, in the context of business-to-business partnerships failure rates of 30% up to 80% have been reported. This high failure rate may be based on tensions inherent to a PPP. Some balancing mechanisms are needed to overcome the inherent tensions [54].
Cross-border collaboration: Most CI/CII operators use equipment of many different suppliers that originate worldwide. This may hamper information sharing and collaboration.
Legal barriers: Anti-trust legislation on the one hand, and Freedom of Information (FOI) legislation on the other hand may create barriers to collaborate and exchange information between organizations [53].
Internal barriers: Legal departments tend to block collaboration as they regard the shareholder risk too high due to negative image when information about cyber vulnerabilities or incidents leaks through partners [53].
CIIP is an ongoing challenge for governmental policymakers and political leadership. Effective CIIP requires a constant assessment of future technological developments and keeping track of the dynamics in the ICT and OT domains. The increasing use of ICT and (embedded) OT to monitor and control critical and complex cyber-physical systems means that most CI have CII components or are slowly transforming into CII. Meanwhile, the cyber security of OT is lagging far behind that of ICT despite specific cyber security good practices and standards [32, 55]. However, the IEC 62443 framework on Security for industrial automation and control systems has recently been extended with a part on RA [31].
Developments in ICT and OT and their interrelationships continuously alter the nature of CI and CII, for instance big data, smart energy grids, autonomously driving vehicles, 5G, e-health monitoring, and remote robotic surgery. Keeping track of the dynamically changing cyber risk landscape for CI and CII is therefore a challenge. Chapter 6 of [56] states that the “continuous developments in digital technology require states to keep track of the changing risk landscape and to review CIIP policy accordingly”. Moreover, Chapter 4 of [11] states that “Horizon scanning strengthens CIIP policy as it enables nations to proactively signal and assess developments in technology, and to act when new technology reaches the potential to become part of the national CII.”
Nevertheless, it is difficult to recognize developments in the criticality of information infrastructures due to the hyper-connectivity of modern technologies which suddenly may alter existing dependencies and introduce new dependencies within CIIs and between CII and CI. Dependencies may shift in unforeseen ways due to unanticipated adoption of traditional or seemingly unimportant information infrastructure elements. Such changes may cause other information infrastructure services to become critical to a state on the one hand and to cause the criticality of other CII elements to disappear over time on the other hand [57].
Similarly, company policy changes unexpectedly may affect CI/CII incident response and recovery plans for ICT and OT operations. Consider the organization’s green policy to replace all vehicles by e-vehicles. The existing incident response and recovery plans which dispatches repair trucks and their crews over long distances during a long power disruption will fail when no special provisions for recharging during non-normal modes of operation are made and will delay the recovery of CIs/CIIs.
Mass adoption and integration of new technologies such as internet of things (IoT), industrial internet of things (IIoT), internet-of-medical-things (IOMT), robotics and artificial intelligence may, besides changing the nature of CI and CII, also increase the risk of cyber and hybrid attacks to CII [34, 35]. Ecosystems of not well-secured, hundreds of thousands, if not more, of internetted devices may fall victim of cyber criminals. Their combined power may be used to attack CI, CII and life-essential devices, e.g. by denial of service attacks and spreading malware [58]. CI/CII operators and states shall be aware of this risk in time and take precautionary actions. For instance, smart grid technologies are fundamentally changing the energy sector and may introduce new CII elements at the national level. With the advancements in sensory, actuator and wireless technologies as well as the global internet, the usage of OT expands rapidly towards IIoT. The need for cyber security by design in new technological developments such as robotics and AI most often is an afterthought. This increases the cyber risk to CI, CII and humans, e.g. the use of robotic equipment such as vehicles and as human assistants in dangerous CI environments [59]. Moreover, new technologies enter the organization via the backdoor and is part of CI/CII services before the cyber risk is assessed and mitigated in a proper way.
The global cyber risk makes that states develop strategies, laws and regulations to get more grip on the cyber security risk to their state. Apart from the European general data protection regulation (GDPR) that became fully into effect in all EU Member States on May 25, 2018 [60], CI and some CII operators may be designated as operator of essential services (OES) or DSP as a result of the national law and related regulations which implement the EU NIS directive [13]. Whether one is designed as an OES or DSP depends on the service(s) provided, size of the operations, number of customers, area, and the level of criticality as laid down in national ruling. One requirement is that the OES or DSP shall notify the competent authority or the CSIRT with national authority without undue delay of any incident having a substantial impact on the provision of services. Moreover, national law may oblige notification by an OES to the ‘CI stovepipe’ responsible ministry or regulator. In case personal data is involved, the GDPR notification is required as well. Non-compliance with the law may result in a huge fine.
Reporting cyber incidents may lead to more transparency on the actual level of the cyber risk and may lead that to more awareness with operators and policymakers on the risk that cyber threats and vulnerabilities pose for society.
Analyzing the cyber risk in CI and CII, firstly requires the identification of CII using a set of (nationally) established criteria. RA for CI and CII may take place at multiple levels: by the organization of the CI/CII operator, by the CI/CII sector, nationally across all CI/CII sectors, and along the critical and essential service supply chains. This chapter provided insight to the OT risk, identifies the need for RA across organizations, and describes some RA models to address the cyber risk across multiple organizations and for service supply chains.
In assessing the cyber risk to CI/CII at the operator level, both ICT and OT should be considered. There exist many CI/CII sector-specific security control standards which can be mapped on common structures or frameworks as has been shown by e.g. NIST and ENISA. Although many standards and control measures exist, the OT risk at the governance, socio-technical, and operational-technical layers is often less understood and addressed by organizations. Recent advisories by government agencies show that the need to address the OT risk has become more urgent since the number of malicious attacks on OT as well as hybrid threats are growing while disruptions of the OT may have a large impact on the physical CI processes.
Recent research on RA for CI emphasizes on taking CI dependencies into account. This proves to be even more urgent and complex for CII. RA for CIIs and their dependencies is complex due to the highly dynamic nature of advances in and use of IT and OT, the often hidden nature of technological dependencies, think e.g. about PNT services, and inclusion of embedded systems. Several RA approaches and methods exist to assess the cyber risk across organizations. However, assessing the cyber risk to the CI/CII service supply chains proves to be complex as it requires trust and willingness of all organizations involved.
And last not but least, organizations need to consider the cyber risk of future technologies before such technologies creep in via the backdoor and are an essential part of their critical services and business operations. The introduction of these new technologies can be planned (e.g. in the case of smart grids), which allows for an upfront analysis of the security risk involved, even when this risk is not always fully considered. New technologies, e.g. IoTs and dependencies may also be introduced in a more haphazard way into traditionally well-separated environments of CI/CII operators. Managing this additional risk is a major challenge for the operators.
IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. We uphold a flexible Copyright Policy, guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Monograph",metaDescription:"IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.",metaKeywords:null,canonicalURL:"/page/publication-agreement-monograph",contentRaw:'[{"type":"htmlEditorComponent","content":"When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\\n\\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\\n\\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\\n\\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\\n\\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\\n\\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\\n\\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\\n\\nAUTHOR'S DUTIES
\\n\\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\\n\\nThe Author agrees to:
\\n\\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\\n\\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\\n\\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\\n\\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\\n\\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\nAUTHOR'S WARRANTY
\\n\\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\\n\\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\\n\\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\\n\\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\nTERMINATION
\\n\\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\\n\\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\\n\\nIntechOpen’s DUTIES AND RIGHTS
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\\n\\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\\n\\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\nMISCELLANEOUS
\\n\\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\\n\\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\\n\\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\\n\\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\\n\\nPolicy last updated: 2018-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\n\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\n\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\n\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\n\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\n\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\n\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\n\nAUTHOR'S DUTIES
\n\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\n\nThe Author agrees to:
\n\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\n\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\n\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\n\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\n\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\nAUTHOR'S WARRANTY
\n\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\n\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\n\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\n\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\nTERMINATION
\n\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\n\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\n\nIntechOpen’s DUTIES AND RIGHTS
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\n\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\n\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\n\nMISCELLANEOUS
\n\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\n\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\n\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\n\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\n\nPolicy last updated: 2018-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5758},{group:"region",caption:"Middle and South America",value:2,count:5220},{group:"region",caption:"Africa",value:3,count:1711},{group:"region",caption:"Asia",value:4,count:10348},{group:"region",caption:"Australia and Oceania",value:5,count:895},{group:"region",caption:"Europe",value:6,count:15755}],offset:12,limit:12,total:118014},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"11,10,12"},books:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:"Dr. John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!0,hash:"421757c56a3735986055250821275a51",slug:null,bookSignature:"Dr. Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editedByType:null,editors:[{id:"274242",title:"Dr.",name:"Meng",surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10769",title:"Supercapacitors",subtitle:null,isOpenForSubmission:!0,hash:"dda2f53b2c9ee308fe5f3e0d1638ff5c",slug:null,bookSignature:"Associate Prof. Daisuke Tashima",coverURL:"https://cdn.intechopen.com/books/images_new/10769.jpg",editedByType:null,editors:[{id:"254915",title:"Associate Prof.",name:"Daisuke",surname:"Tashima",slug:"daisuke-tashima",fullName:"Daisuke Tashima"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10754",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!0,hash:"8994a915a306910a01cbe2027aa2139b",slug:null,bookSignature:"Dr. Stuart Arthur Harris",coverURL:"https://cdn.intechopen.com/books/images_new/10754.jpg",editedByType:null,editors:[{id:"12539",title:"Dr.",name:"Stuart",surname:"Harris",slug:"stuart-harris",fullName:"Stuart Harris"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10681",title:"Biodegradation",subtitle:null,isOpenForSubmission:!0,hash:"9a6e10e02788092872fd249436898e97",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes, Dr. Rodrigo Nogueira de Sousa and Dr. Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Hydropower",subtitle:null,isOpenForSubmission:!0,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:null,bookSignature:"Dr. Yizi Shang, Dr. Ling Shang and Dr. Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:null,editors:[{id:"349630",title:"Dr.",name:"Yizi",surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10763",title:"Biodiversity of Ecosystems",subtitle:null,isOpenForSubmission:!0,hash:"c96b42d4539957c58dfc2eb8fd9ffc21",slug:null,bookSignature:"Dr. Levente Hufnagel",coverURL:"https://cdn.intechopen.com/books/images_new/10763.jpg",editedByType:null,editors:[{id:"10864",title:"Dr.",name:"Levente",surname:"Hufnagel",slug:"levente-hufnagel",fullName:"Levente Hufnagel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5220},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editedByType:"Edited by",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editedByType:"Edited by",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editedByType:"Edited by",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editedByType:"Edited by",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editedByType:"Edited by",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9423",title:"AI and Learning Systems",subtitle:"Industrial Applications and Future Directions",isOpenForSubmission:!1,hash:"10ac8fb0bdbf61044395963028653d21",slug:"ai-and-learning-systems-industrial-applications-and-future-directions",bookSignature:"Konstantinos Kyprianidis and Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:"Edited by",editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8990",title:"Current Concepts in Zika Research",subtitle:null,isOpenForSubmission:!1,hash:"f410c024dd429d6eb0e6abc8973ecc14",slug:"current-concepts-in-zika-research",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/8990.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"310",title:"Pestology",slug:"agronomy-pestology",parent:{title:"Agronomy",slug:"agronomy"},numberOfBooks:2,numberOfAuthorsAndEditors:65,numberOfWosCitations:25,numberOfCrossrefCitations:42,numberOfDimensionsCitations:86,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agronomy-pestology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6095",title:"Insecticides",subtitle:"Agriculture and Toxicology",isOpenForSubmission:!1,hash:"4e249884334e8155c1e57e34b7d8c9d2",slug:"insecticides-agriculture-and-toxicology",bookSignature:"Ghousia Begum",coverURL:"https://cdn.intechopen.com/books/images_new/6095.jpg",editedByType:"Edited by",editors:[{id:"83759",title:"Dr.",name:"Ghousia",middleName:null,surname:"Begum",slug:"ghousia-begum",fullName:"Ghousia Begum"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5526",title:"Biological Control of Pest and Vector Insects",subtitle:null,isOpenForSubmission:!1,hash:"2e787450cc7eded94883ef67852a07b4",slug:"biological-control-of-pest-and-vector-insects",bookSignature:"Vonnie D.C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/5526.jpg",editedByType:"Edited by",editors:[{id:"82613",title:"Dr.",name:"Vonnie D.C.",middleName:null,surname:"Shields",slug:"vonnie-d.c.-shields",fullName:"Vonnie D.C. Shields"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"53392",doi:"10.5772/66461",title:"The Sublethal Effects of Insecticides in Insects",slug:"the-sublethal-effects-of-insecticides-in-insects",totalDownloads:3138,totalCrossrefCites:12,totalDimensionsCites:23,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Solange M. de França, Mariana O. Breda, Douglas R. S. Barbosa,\nAlice M. N. Araujo and Carolina A. Guedes",authors:[{id:"72398",title:"MSc",name:"Solange",middleName:"Maria",surname:"De França",slug:"solange-de-franca",fullName:"Solange De França"},{id:"161232",title:"MSc.",name:"Mariana",middleName:null,surname:"Breda",slug:"mariana-breda",fullName:"Mariana Breda"},{id:"193241",title:"Dr.",name:"Douglas Rafael",middleName:null,surname:"Silva Barbosa",slug:"douglas-rafael-silva-barbosa",fullName:"Douglas Rafael Silva Barbosa"},{id:"193242",title:"Dr.",name:"Alice Maria",middleName:null,surname:"Nascimento Araújo",slug:"alice-maria-nascimento-araujo",fullName:"Alice Maria Nascimento Araújo"},{id:"193243",title:"MSc.",name:"Carolina",middleName:null,surname:"Arruda Guedes",slug:"carolina-arruda-guedes",fullName:"Carolina Arruda Guedes"}]},{id:"53055",doi:"10.5772/66463",title:"Semiochemicals and Their Potential Use in Pest Management",slug:"semiochemicals-and-their-potential-use-in-pest-management",totalDownloads:4058,totalCrossrefCites:7,totalDimensionsCites:11,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Hamadttu Abdel Farag El-Shafie and Jose Romeno Faleiro",authors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"El-Shafie",slug:"hamadttu-el-shafie",fullName:"Hamadttu El-Shafie"}]},{id:"53702",doi:"10.5772/66946",title:"Transmission of Major Arboviruses in Brazil: The Role of Aedes aegypti and Aedes albopictus Vectors",slug:"transmission-of-major-arboviruses-in-brazil-the-role-of-aedes-aegypti-and-aedes-albopictus-vectors",totalDownloads:1570,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Thaís Chouin-Carneiro and Flavia Barreto dos Santos",authors:[{id:"192462",title:"Ph.D.",name:"Flavia",middleName:null,surname:"Dos Santos",slug:"flavia-dos-santos",fullName:"Flavia Dos Santos"},{id:"196670",title:"MSc.",name:"Thais",middleName:null,surname:"Chouin-Carneiro",slug:"thais-chouin-carneiro",fullName:"Thais Chouin-Carneiro"}]}],mostDownloadedChaptersLast30Days:[{id:"53055",title:"Semiochemicals and Their Potential Use in Pest Management",slug:"semiochemicals-and-their-potential-use-in-pest-management",totalDownloads:4053,totalCrossrefCites:7,totalDimensionsCites:11,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Hamadttu Abdel Farag El-Shafie and Jose Romeno Faleiro",authors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"El-Shafie",slug:"hamadttu-el-shafie",fullName:"Hamadttu El-Shafie"}]},{id:"53392",title:"The Sublethal Effects of Insecticides in Insects",slug:"the-sublethal-effects-of-insecticides-in-insects",totalDownloads:3135,totalCrossrefCites:12,totalDimensionsCites:23,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Solange M. de França, Mariana O. Breda, Douglas R. S. Barbosa,\nAlice M. N. Araujo and Carolina A. Guedes",authors:[{id:"72398",title:"MSc",name:"Solange",middleName:"Maria",surname:"De França",slug:"solange-de-franca",fullName:"Solange De França"},{id:"161232",title:"MSc.",name:"Mariana",middleName:null,surname:"Breda",slug:"mariana-breda",fullName:"Mariana Breda"},{id:"193241",title:"Dr.",name:"Douglas Rafael",middleName:null,surname:"Silva Barbosa",slug:"douglas-rafael-silva-barbosa",fullName:"Douglas Rafael Silva Barbosa"},{id:"193242",title:"Dr.",name:"Alice Maria",middleName:null,surname:"Nascimento Araújo",slug:"alice-maria-nascimento-araujo",fullName:"Alice Maria Nascimento Araújo"},{id:"193243",title:"MSc.",name:"Carolina",middleName:null,surname:"Arruda Guedes",slug:"carolina-arruda-guedes",fullName:"Carolina Arruda Guedes"}]},{id:"58099",title:"Toxic Effects of the Organophosphorus Insecticide Fenthion on Growth and Chlorophyll Production Activity of Unicellular Marine Microalgae Tetraselmis suecica: Comparison between Observed and Predicted Endpoint Toxicity Data",slug:"toxic-effects-of-the-organophosphorus-insecticide-fenthion-on-growth-and-chlorophyll-production-acti",totalDownloads:583,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"insecticides-agriculture-and-toxicology",title:"Insecticides",fullTitle:"Insecticides - Agriculture and Toxicology"},signatures:"Maria C. Vagi, Andreas S. Petsas, Maria D. Pavlaki, Niki M.\nSmaragdaki and Maria N. Kostopoulou",authors:[{id:"200196",title:"Dr.",name:"Andreas",middleName:null,surname:"Petsas",slug:"andreas-petsas",fullName:"Andreas Petsas"},{id:"200198",title:"Dr.",name:"Maria",middleName:null,surname:"Vagi",slug:"maria-vagi",fullName:"Maria Vagi"},{id:"217857",title:"Dr.",name:"Maria",middleName:"Dimitriou",surname:"Pavlaki",slug:"maria-pavlaki",fullName:"Maria Pavlaki"},{id:"217858",title:"Prof.",name:"Maria",middleName:null,surname:"Kostopoulou",slug:"maria-kostopoulou",fullName:"Maria Kostopoulou"},{id:"229000",title:"Ms.",name:"Niki",middleName:null,surname:"Smaragdaki",slug:"niki-smaragdaki",fullName:"Niki Smaragdaki"}]},{id:"58195",title:"Role of the Formulation in the Efficacy and Dissipation of Agricultural Insecticides",slug:"role-of-the-formulation-in-the-efficacy-and-dissipation-of-agricultural-insecticides",totalDownloads:1215,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"insecticides-agriculture-and-toxicology",title:"Insecticides",fullTitle:"Insecticides - Agriculture and Toxicology"},signatures:"Karina Buzzetti",authors:[{id:"214596",title:"Dr.",name:"Karina",middleName:null,surname:"Buzzetti",slug:"karina-buzzetti",fullName:"Karina Buzzetti"}]},{id:"53635",title:"Developing the Arsenal Against Pest and Vector Dipterans: Inputs of Transgenic and Paratransgenic Biotechnologies",slug:"developing-the-arsenal-against-pest-and-vector-dipterans-inputs-of-transgenic-and-paratransgenic-bio",totalDownloads:1514,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Christian E. Ogaugwu and Ravi V. Durvasula",authors:[{id:"192665",title:"Dr.",name:"Christian",middleName:null,surname:"Ogaugwu",slug:"christian-ogaugwu",fullName:"Christian Ogaugwu"},{id:"193249",title:"Dr.",name:"Ravi",middleName:null,surname:"Durvasula",slug:"ravi-durvasula",fullName:"Ravi Durvasula"}]},{id:"53043",title:"Conservation Biological Control Practices",slug:"conservation-biological-control-practices",totalDownloads:2119,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Nabil El-Wakeil, Mahmoud Saleh, Nawal Gaafar and Huda Elbehery",authors:[{id:"82718",title:"Dr.",name:"Nabil",middleName:null,surname:"El-Wakeil",slug:"nabil-el-wakeil",fullName:"Nabil El-Wakeil"},{id:"191853",title:"Dr.",name:"Nawal",middleName:null,surname:"Gaafar",slug:"nawal-gaafar",fullName:"Nawal Gaafar"},{id:"191854",title:"Prof.",name:"Mahmoud",middleName:null,surname:"Saleh",slug:"mahmoud-saleh",fullName:"Mahmoud Saleh"},{id:"197643",title:"Dr.",name:"Huda",middleName:null,surname:"Elbehery",slug:"huda-elbehery",fullName:"Huda Elbehery"}]},{id:"58221",title:"Particulate Nanoinsecticides: A New Concept in Insect Pest Management",slug:"particulate-nanoinsecticides-a-new-concept-in-insect-pest-management",totalDownloads:1008,totalCrossrefCites:1,totalDimensionsCites:7,book:{slug:"insecticides-agriculture-and-toxicology",title:"Insecticides",fullTitle:"Insecticides - Agriculture and Toxicology"},signatures:"Teodoro Stadler, Micaela Buteler, Susana R. Valdez and Javier G.\nGitto",authors:[{id:"207985",title:"Ph.D.",name:"Teodoro",middleName:null,surname:"Stadler",slug:"teodoro-stadler",fullName:"Teodoro Stadler"},{id:"208044",title:"Dr.",name:"Micaela",middleName:null,surname:"Buteler",slug:"micaela-buteler",fullName:"Micaela Buteler"},{id:"208045",title:"Ph.D. Student",name:"Javier",middleName:"Gustavo",surname:"Gitto",slug:"javier-gitto",fullName:"Javier Gitto"},{id:"210819",title:"Dr.",name:"Susana Ruth",middleName:null,surname:"Valdez",slug:"susana-ruth-valdez",fullName:"Susana Ruth Valdez"}]},{id:"53249",title:"Functional Anatomy of the External and Internal Reproductive Structures in Insect Vectors of Chagas Disease with Particular Reference to Rhodnius prolixus",slug:"functional-anatomy-of-the-external-and-internal-reproductive-structures-in-insect-vectors-of-chagas-",totalDownloads:1023,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Ralem Gary Chiang and Jennifer Ann Chiang",authors:[{id:"192613",title:"Dr.",name:"Gary",middleName:null,surname:"Chiang",slug:"gary-chiang",fullName:"Gary Chiang"},{id:"195907",title:"Prof.",name:"Jennifer",middleName:null,surname:"Chiang",slug:"jennifer-chiang",fullName:"Jennifer Chiang"}]},{id:"53609",title:"Insects Associated with Reforestation and Their Management in Poland",slug:"insects-associated-with-reforestation-and-their-management-in-poland",totalDownloads:1865,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Iwona Skrzecz",authors:[{id:"192294",title:"Associate Prof.",name:"Iwona",middleName:null,surname:"Skrzecz",slug:"iwona-skrzecz",fullName:"Iwona Skrzecz"}]},{id:"53883",title:"Major Disease Vectors in Tanzania: Distribution, Control and Challenges",slug:"major-disease-vectors-in-tanzania-distribution-control-and-challenges",totalDownloads:1626,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Eliningaya J. Kweka, Epiphania E. Kimaro, Esther G. Kimaro, Yakob\nP. Nagagi and Imna I. Malele",authors:[{id:"123576",title:"Prof.",name:"Eliningaya",middleName:null,surname:"Kweka",slug:"eliningaya-kweka",fullName:"Eliningaya Kweka"},{id:"196616",title:"Mrs.",name:"Epiphania",middleName:null,surname:"Kimaro",slug:"epiphania-kimaro",fullName:"Epiphania Kimaro"},{id:"196621",title:"Mrs.",name:"Esther",middleName:null,surname:"Gwae",slug:"esther-gwae",fullName:"Esther Gwae"},{id:"196623",title:"Mr.",name:"Yakobo",middleName:null,surname:"Petro",slug:"yakobo-petro",fullName:"Yakobo Petro"},{id:"196625",title:"Dr.",name:"Imna",middleName:null,surname:"Malele",slug:"imna-malele",fullName:"Imna Malele"}]}],onlineFirstChaptersFilter:{topicSlug:"agronomy-pestology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/328758/arun-kumar-singh",hash:"",query:{},params:{id:"328758",slug:"arun-kumar-singh"},fullPath:"/profiles/328758/arun-kumar-singh",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()