This chapter describes the computational approach used in analyzing rice transcriptomics and genomics data to identify and annotate potential single nucleotide polymorphism (SNPs) as potential biomarker in the production of flavonoid. SNPs play a role in the accumulation of nutritional components (e.g. antioxidants), and flavonoid is one of them. However, the number of identified SNPs associated with flavonoid nutritional trait is still limited. We develop a knowledge-based bioinformatic workflow to search for specific SNPs and integration analysis on the SNPs and their co-expressed genes to investigate their influence on the gain/loss of functional genes that are involved in the production of flavonoids. Raw files obtained from the functional genomics studies can be analyzed in details to obtain a useful biological insight. Different tools, algorithms and databases are available to analyze the ontology, metabolic and pathway at the molecular level in order to observe the effects of gene and protein expression. The usage of different tools, algorithms and databases allows the integration, interpretation and the inference of analysis to provide better understanding of the biological meaning of the resutls. This chapter illustrates how to select and bring together several software to develop a specific bioinformatic workflow that processes and analyses omics data. The implementation of this bioinformatic workflow revealed the identification of potential flavonoid biosynthetic genes that can be used as guided-gene to screen the single nucleotide polymorphisms (SNPs) in the flavonoid biosynthetic genes from genome and transcriptomics data.
Part of the book: Recent Advances in Rice Research