California Bearing Ratio (CBR) is an important parameter used in designing pavement layers in road construction but testing this parameter requires time, labor, and huge cost. The study therefore applies multivariate approach to evaluate CBR based on contrasted geotechnical parameters along Ilorin-Lokoja highway. The results obtained showed that the migmatite-gneiss-derived soils are slightly more fines (< 0.075 mm; 7.4–59.6%), more plastic (PI; 1.6–39%), and have low strength (MDD = 1.8 mg/m3; CBR = 29.0%) than the metasediments (11–57.7%, 2.0–30%, 1.6 mg/m3, 23.6%) and older granite soils (8.2–32.7%, 2.6–13.4%, 1.7 mg/m3, 27.8%), respectively. The principal component analysis (PCA) revealed three major components (eigenvalues >1) which accounted for 83.8% of the total variance at the rate of 33.4, 14.7, and 11.4%. Major contributing variables for the components were fines (R = 0.87), plasticity index (R = 0.7), and coarse sand (R = 0.67%). Spatial distribution of these groups established interplay of sediment-gradation and moisture-connection evident in hierarchical cluster analysis that revealed patterns of homogeneity and soil relationships. Regression analysis established five models from predictor variables such as fines, activity, free swell, liquid and plastic limits, weighted plasticity index, optimum moisture content, and maximum dry density with the coefficient of determination (R2 = 0.33) and root mean square error (RMSE) of 7.80.
Part of the book: Engineering Geology