Ceramic monoliths are applied in many insulating and high resistive engineering applications, but the energy application of ceramics monoliths is still vacant due to less conductivity of monolithic ceramics (for example, in silica- and alumina-based hybrids). This book chapter is a significant contribution in the graphene industry as it explains some novel and modified fabrication techniques for ceramics-graphene hybrids. The improved physical properties may be used to set ceramics-graphene hybrids as a standard for electrical, mechanical, thermal, and energy applications. Further, silica-rGO hybrids may be used as dielectric materials for high-temperature applications due to improved dielectric properties. The fabricated nano-assembly is important for a technological point of view, which may be further applied as electrolytes, catalysts, and conductive, electrochemically active, and dielectric materials for the high-temperature applications. In the end, this chapter discussed porous carbon as a massive source of electrochemical energy for supercapacitors and lithium-ion batteries. Carbon materials which are future of energy storage devices because of their ability to store energy in great capacity, so sustainability through smart materials got a huge potential, so hereby keeping in view all the technological aspects, this chapters sums up important contribution of graphene and porous carbon for applied applications.
Part of the book: 21st Century Surface Science
In the developing world, energy crisis is the main reason for less progress and development. Renewable and sustainable energy may be of bright future for scientific lagging and low-income countries; further, sustainability through smart materials got a huge potential; so, hereby keeping in view the energy crisis which the developing world is facing for many decades, we are proposing to write a chapter project for obtaining energy through cheap, sustainable, and functional advanced carbon materials. Carbon materials are the future of energy storage devices because of their ability to store energy in great capacity. The graphene is a material with amazing properties like no band gap, which turns graphene a wonderful candidate for use in the photovoltaic. Shortly, this chapter will discuss how superior energy storage may be obtained through various routes like using pyrrolic (N5) and pyridinic (N6) doping in advanced carbon functional materials, or superior energy by KOH activation in carbon materials, or through carbonization in organic matter, respectively. Further, for the advanced carbon functional materials, the superior energy storage using pyrrolic (N5) and pyridinic (N6) doping, or KOH activation, or through carbonization will be discussed one by one for lithium ion batteries, supercapacitors, and relevant energy devices, respectively.
Part of the book: Advanced Functional Materials