Traumatic brain injury (TBI) represents a leading contributor to long-term neurological damage. Though TBI is a leading cause of death and neurological damage worldwide, there exists no therapeutic treatments to alleviate deleterious secondary injury due to neuroinflammation. The continuum of pro- and anti-inflammatory response elicited by TBI is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain poorly defined. This chapter explores rodent models of injury used to study the disease pathology of TBI, as well as the major contributions of the peripheral immune response following injury. Further, this chapter discusses the influence of individual immune cell types on neuroinflammation following TBI, focusing on peripheral monocyte/macrophages, their polarization state, and the current literature surrounding their behavior within the TBI milieu. Finally, cell-to-cell contact regulators that effect peripheral-induced neuroinflammation and may serve as novel targets for therapeutics will be highlighted.
Part of the book: Advancement and New Understanding in Brain Injury