Mercy Hospital St Louis In-HOSPITAL Therapeutic Hypothermia Protocol
\r\n\t[2] J. V. Moloney, A. C. Newell. Nonlinear Optics. Westview Press, Oxford, 2004.
\r\n\t[3] M. Kauranen, A. V. Zayats. Nonlinear Plasmonics. Nature Photonics, vol. 6, 2012, pp. 737-748.
\r\n\t[4] P. Dombi, Z. Pápa, J. Vogelsang et al. Strong-field nano-optics. Reviews of Modern Physics, vol. 92, 2020, pp. 025003-1 – 025003-66.
\r\n\t[5] N. C. Panoiu, W. E. I. Sha, D.Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20, 2018, pp. 1-36.
\r\n\t[6] A. Krasnok, A. Alu. Active nanophotonics. Proceedings of IEEE, vol. 108, 2020, pp. 628-654.
\r\n\t[7] M. Lapine, I.V. Shadrivov, Yu. S. Kivshar. Colloquium: Nonlinear metamaterials. Reviews of Modern Physics, vol. 86, 2014, pp. 1093-1123.
\r\n\t[8] Iam Choon Khoo. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, vol. 38, 2014, pp. 77- 117.
\r\n\t
Therapeutic hypothermia has been around for centuries, ancient Egyptians, Greeks, and Romans have used it.
Hypothermia is any body temperature below 36 degree C.
Therapeutic Hypothermia is induced hypothermia and can be mild (34-35.9 degree C), moderate (32-33.9 degree C), moderately deep (30.1-31.9 degree C) or deep (less than 30degree C)
Current indications for induced therapeutic hypothermia
Despite advances in ICU care, cardiac arrest remains a significant cause of death in many countries. Mortality reports vary from 65 to 95% for out-of hospital cardiac arrest.I is a class –I recommendation now that after return of spontaneous circulation in out-of-hospital VF cardiac arrest, patients that remain comatose should be subjected to hypothermia at 32°C to 34°C for 12 to 24 hours. This may also be applied to comatose adult patients with spontaneous circulation after OHCA from a non VF rhythm or in-hospital cardiac arrest.1
Several unanswered questions however remain, due to lack of randomized studies. These in part, relate to time from initiation of therapy to achieving target temperature, and whether this is a significant predictor of outcome. The optimal rate of cooling is also an unanswered question, so is the optimal duration of TH in some settings, albeit in the setting of cardiac arrest, improved outcomes have been demonstrated with 12 and 24 hrs of TH at 32°C to 34°C. Hypothermia for neonatal asphyxia is commonly performed for 72 hrs, while hypothermia for cerebral edema associated with liver failure has been reported for as long as 5 days. 2
Traumatic brain injury (TBI) is a leading cause of death and disability in young people in Western countries. The neuroprotectant effects are thought to be related to decreased metabolic rate, cerebral blood flow, decreased release of excitatory neurotransmitters, decreased apoptosis, cerebral edema, decreased cytokine response etc.3
While studies have shown that Hypothermia is clearly effective in controlling intracranial hypertension (level of evidence: class I); it has been difficult to show that lowering ICP definitely improves outcomes. Few positive studies with regard to survival and improved neurological outcome have been shown mainly in tertiary referral centers with experience in use of hypothermia. Here again, as in cardiac arrest, more unanswered questions remain- duration, time of cooling and rewarming, type of rewarming. Currently, most centers perform it for at least 48 hours. Rewarming is typically done slowly, over at least 24 h (level of evidence: class IIa).4 If there is evidence of ICP elevation during rewarming, again no definite recommendations are available, but most experts will proceed with repeat cooling. It could be that in traumatic brain injury, other therapies, including cerebrospinal fluid drainage, osmolar therapies, sedation, barbiturate coma, and decompressive craniectomy may confer additional benefits that may make it more difficult to prove that Therapeutic hypothermia is superior.
Similar to Cardiac arrest and TBI there is evidence from animal studies that show benefits of therapeutic hypothermia in stroke. Use of hypothermia in stroke remains experimental, until large prospective randomized human clinical trials using hypothermia in acute stroke are completed. 5
Hypothermia may decrease infarct size in patients with acute myocardial infarction after emergency percutaneous coronary intervention
Intraoperative hypothermia is used during neurological surgery but without strong evidence from randomized controlled trials. Indications are being studied in the areas of SAH, Neurosurgery, liver failure, Spinal cord injury.
Both Invasive and non invasive cooling methods have been developed and used to induce hypothermia. The ideal cooling technique should offer efficacy, speed of cooling for target organs, and offer ease of use and transport.It should also have the ability to provide controlled rewarming.
Surface cooling as a noninvasive method to induce hypothermia is easy to use, on the other hand requires more time to achieve the target temperature. There are two described methods: generalized cooling, and selective brain cooling.
Generalized cooling is achieved through the use of cooling blankets, ice packs, and cooling pads. Care should be paid to prevent cold injury to the patient’s skin. This method has variability in time to cooling, ranging from 0.03 to 0.98 °C per hour and difficulty in titration of temperature.
Pads that provide direct thermal conduction through the skin are also used; these are unlike conventional water blankets or wraps where heat transfer is by convection. The cooling rate is reported to be 1.5°C/hour or more. Hydrogel-coated pads in these circulate temperature-controlled water under negative pressure, and are placed usually on the patient’s abdomen, back and thighs.
Selective brain cooling is another non invasive method. The most commonly used methods are cooling caps and helmets that contain a solution of aqueous glycerol to facilitate heat exchange. Helmet devices do not appear to provide particularly significant protection to the brain, but they reduce core temperature slowly.
Several other limitations exist in surface cooling methods. Through vasoconstriction, shivering, redirection of blood flow away from extremities, they create thermal energy. Overcooling occurs. In a study involving 32 patients where surface cooling was used to induce hypothermia, 63% of patients were overcooled, increasing the risk for adverse events. Another problem with surface cooling is cold injury, causing pressure ulcers and skin breakdown. Surface cooling is less efficient in reducing the temperature of target organs, such as the brain and heart6
30 ml/kg Lactated Ringers solution that has been chilled to 4°C can be infused over 30 minutes. No adverse effects of the rapid infusion of this volume of IV crystalloid fluid in a study by Bernard. This is followed by another method to maintain hypothermia. Different types of fluids can be used, including 0.9% sodium chloride injection, lactated Ringer\'s injection, and albumin. Studies have reported cooling rates of 0.8–1.2 °C per liter of fluid infused. Some experts caution that in patients unable to handle the fluid challenge, infusion of large volumes of intravenous fluids in the presence of pulmonary edema or chronic renal failure requiring dialysis may increase adverse events. However, several studies have shown that this process has not been associated with worsening pulmonary edema.7
Endovascular cooling is another invasive method used. This is achieved by inserting central venous catheters, with an external heat exchange-control device that circulates cold intravenous fluid. The user sets a target temperature, and the device appropriately adjusts the fluid /water temperature. These devices can reduce temperatures at rates close to 4 °C per hour. In a study by Holzer and colleagues, looking at post cardiac arrest patients, endovascular cooling was found to improve survival and short-term neurologic recovery without higher rates of adverse events, compared with standard treatment. Furthermore, the constant rate of rewarming prevents elevations in ICP. As with any central venous catheters, insertion risks and infectious, bleeding complications may occur. The placement of catheters with associated risks and, and costs of placing them need to be factored. 8
Other methods for invasive cooling that are reported include cold carotid infusions, single carotid artery perfusion with extracorporeal cooled blood, ice water nasal lavage, cold peritoneal and lung lavage and nasogastric and rectal lavage
Temperature must be monitored continuously and accurately during TH. Peripheral and core temperatures may not always correlate, so two methods of monitoring are usually recommended. A true core temperature is obtained from a pulmonary artery catheter. Tympanic temperatures poorly reflect core temperature. Bladder temperatures are easily obtained by temperature-sensing indwelling urinary catheters. Studies have shown that bladder temperatures are continuous, safe and reliable, correlate well with fluctuations in core temperature. Clinicians must be mindful that in oliguric patients, bladder temperature may poorly reflect core temperature, and other monitoring sites should be used. There is also a delay in reflecting core temperature changes, before bladder temperature also changes, especially the more rapid the cooling rate. This is more of a problem with rectal temperatures. Education of the caregivers about this helps prevent undercooling or overcooling the patient, thereby helps to mitigate the risk of adverse events. Stone, Gilbert J et al
Temperature modulation during therapeutic hypothermia may be broken down into four phases: induction, maintenance, rewarming/ decooling, and normothermia. Each of these phases requires monitoring for and prevention of associated complications.(please refer to Figure 2 for an example of a therapeutic hypothermia protocol used in our institution for cardiac arrest patients).
DO NOT SUBSTITUTE | STAT MEDICATION ORDER | ||||
| PLEASE INCLUDE: PHYSICIAN NAME, NUMBER AND SIGNATURE | ||||
DATE | TIME | Hypothermia Induction Order Set Page 1 of 2 | |||
Indication: Patient weight: kg | |||||
NS - 30 mL/kg IV of cold injection at a target of 4° Celsius STAT | |||||
Initiate cooling with the appropriate hypothermia induction device according to Hypothermia Induction policy | |||||
Apply pads appropriate for patient weight(Apply Universal pads if Wt"/>= 220 LBs) | |||||
The Arctic Sun is preset to 33° Celsius | |||||
Start Magnesium Sulphate 4 Gm IV (in 100 ml injectable water ) over 4 hours | |||||
Nursing | |||||
Continuous cardiac monitoring with pulse oximetry - monitor vital signs and record every hour | |||||
Consider target MAP ≥ 90mmHg or mmHg to maintain Cerebral Perfusion Pressure (CPP) of ____ | |||||
Goal CVP 8-12mmHg or mmHg Maintain ScvO2 "/> 70%.(if available) | |||||
Obtain bedside glucose every 1 hour. (See Adult Insulin order sheet if already initiated.)Maintain Accuchecks q 1 Hr until T=37° Celsius.(maintain BS=110-150) | |||||
ABG every hour(s) | |||||
CBC, BMP, Magnesium, Phosphorus, PT/PTT every 6 hours | |||||
Consider blood cultures 12 hours after initiation of cooling | |||||
Initiate VAP Bundle Order Set, if not already begun | |||||
No sedation vacation if patient is receiving neuromuscular blockade infusion or in cooling phase | |||||
Consider Empiric Antimicrobial therapy if sepsis or immunosuppression is suspected(ex: neutropenia..) | |||||
Activity | |||||
Bedrest | |||||
Skin assessment should be performed and documented every 4 hours | |||||
Turn patient every two hours unless contraindicated and ordered | |||||
PT/OT consults and treatment if not already ordered | |||||
Sedation/Analgesia/Control of Shivering | |||||
Propofol (DIPRIVAN) drip initiated at 10mcg/kg/min. - titrate by 5mcg/kg/min for Ramsay of _____ to a max. of 80mcg/kg/min | |||||
Midazolam (VERSED) drip initiated at mg/hour - titrate by 1mg/hr for Ramsay of _____ | |||||
Fentanyl infusion at mcg/hour - titrate to mcg/hour | |||||
Morphine infusion at mg/hour - titrate to mg/hour | |||||
If still shivering (physical assessment or trend indicator) give: | |||||
Buspar 10mg/ 20mg PT TID(circle dose) | |||||
DATE | TIME | Hypothermia Induction Order Set Page 2 of 2 | |||
If still shivering, consider neuromuscular blockade: | |||||
Start with PRN dosing as ordered for shivering If patient still shivering, consider continuous infusion. Place “Neuromuscular Blockade in use” sign at head of bed. | |||||
Atracurium | Intermittent dosing__________________________(dose/route/interval) Loading dose (0.5 mg/kg) = ________ mg IV x one dose now Infusion – begin at 4 mcg/kg/min IV to a max. of 12 mcg/kg/min | ||||
Vecuronium | Intermittent dosing__________________________(dose/route/interval) Loading dose (0.1 mg/kg) = ________ mg IV x one dose now Infusion – begin at 1 mcg/kg/min IV to a max. of 2 mcg/kg/min | ||||
Paralytic Titration | |||||
Monitor patient for ventilator compliance and shivering | |||||
Continuous EEG(please choose one of the following): | |||||
Start now and D/C when patient is rewarmed to 37° Celsius - page EEG tech | |||||
Start in am and D/C when patient is rewarmed to 37° Celsius - page EEG tech | |||||
Respiratory: Maintain O2 Sats=95% Maintain pCO2=40mmHg | |||||
Medications | |||||
Artificial tears ophthalmic ointment (LACRILUBE or equivalent) – one ribbon in each eye every 12 hours. | |||||
Maintenance IV Fluids: at ml/hr.-Titrate to maintain equal to UO. | |||||
Rewarming - To start 24 hours after temperature of 33° Celsius is attained | |||||
Continuous EKG for dysrhythmias | |||||
Stop all potassium infusions | |||||
Rewarm at 0.25° Celsius to 0.33° Celsius per hour - Keep patient in goal temperature range of 36° Celsius to 37° Celsius for next 48 hours | |||||
May discontinue paralytic(if used) once goal temperature is obtained | |||||
Begin daily sedation vacation once paralytic has been discontinued | |||||
Once rewarmed, please maintain EUTHERMIA(~37° Celsius). |
Mercy Hospital St Louis In-HOSPITAL Therapeutic Hypothermia Protocol
In the setting of cardiac arrest, based on animal and human data, initiation of cooling should be done as soon as possible after return of spontaneous circulation (ROSC). The induction phase can be initiated in the prehospital or in hospital setting. There are ongoing studies involving prehospital cooling. One should be mindful that if prehospital cooling is not followed by in hospital cooing, outcomes could be considerably worse, especially if patients are rewarmed quickly
The maintenance phase usually occurs in an intensive care unit and hemodynamic parameters, electrolytes should be watched closely. For example, hypokalemia is a common occurrence, and can precipitate further arrests, so replacement is essential. Secondary insults such as hypercarbia, hypoxemia, glycemic shifts should be avoided. It is important to recognize that drug metabolism is altered in hypothermia, meticulous attention to medication dosing is needed and aggressive treatment of shivering, with sedation and neuromuscular blockade is often needed
Fever in the first 72 hrs after ROSC is associated with poor outcome. Although unproven, an increasing body of evidence supports the cautious prevention and treatment of fever in the setting of critical neurological illness, and many clinicians attempt to maintain a core temperature of 36°C to 37.5°C until at least 72 hrs after ROSC
Rewarming /Decooling is associated with electrolyte shifts, vasodilation, and the “post resuscitation” syndrome, many deaths occur in this phase due to hemodynamic instability and other complications. Rewarming / Decooling should not be treated casually.
The “post resuscitation” syndrome which is characterized by elevated inflammatory cytokine levels, vasodilatory shock, intracranial hypertension, and thereby decreased cerebral perfusion pressure often compounds the myocardial dysfunction related to acute myocardial infarction, defibrillation injury or cardiomyopathy. The duration of cooling and rewarming may vary depending on the indication, for instance, in post cardiac arrest, rewarming is usually begun 24 hours after the initiation of cooling, in intracranial hypertension, this is typically done later, after 48 hours. Patients should be rewarmed slowly so that it avoids rapid hemodynamic alterations, while preserving the neuroprotectant effects of hypothermia. The usual rate of rewarming is a goal rate of 0.2°C to 0.33°C per hour, in ICP elevations; the rate is sometimes slower, at 0.05 to 0.1 degrees C per hour. While the optimal rewarming rate remains unknown; the process usually takes about 8 hours. Careful hemodynamic monitoring is needed, patients may require additional hemodynamic support with fluid boluses, inotropes, and vasopressors to maintain adequate cerebral perfusion pressures, and mean arterial pressures during decooling, Sometimes, if significant hemodynamic instability or signs of elevated ICP occur, it may become necessary to slow or stop the temperature decooling process.Rewarming is typically achieved through active or passive means through the use of heated-air blankets, or the removal of cooling methods allowing the patient\'s body temperature to increase over time. Paralysis and sedation should be maintained until the patient\'s temperature reaches 35 °C. Patients must be monitored closely, and all electrolyte infusions must be discontinued to avoid dangerous electrolyte shifts
Hypothermia affects many intracellular processes. While some of these are directly related to its protective effects, hypothermia therapy is also known to be associated with a number of potential adverse events. These adverse effects generally do not pose a problem until core body temperatures are< 35°C.
Many physiological, laboratory changes occur with induction of hypothermia. Education of caregivers is key, so there is not only timely recognition of adverse events, but unnecessary interventions are minimized in case of routine changes that are seen. It is possible that in many studies especially in traumatic brain injury and hypothermia, the results may have been negatively impacted by adverse events related to hypothermia and /or failure to recognize and treat the physiological effects.
Example, mild hypothermia is associated leucopenia, thrombocytopenia. Hyperglycemia is common due to decreased insulin sensitivity and increased insulin resistance. Decreases in cardiac output may be seen, also an increase in lactate levels and levels of serum transaminases, amylase. A common occurrence is increased urinary output (cold diuresis). These effects of hypothermia depend on the degree of hypothermia, age, comorbidities. A significant risk for severe arrhythmias occurs at temperatures below 28–30_C. These low temperatures are not typically used in current practice; the target temperature is usually mild –moderate hypothermia, although they are still practiced in major vascular and other neurosurgical procedures.4
Hypothermia leads to a decrease in the metabolic rate. Metabolism is reduced by between 5% and 7% per Celsius degree reduction in body temperature. Cerebral blood flow is decreased, but, this is offset by the decrease in metabolism. It decreases cerebral edema, decreases the excessive influx of Ca2+ into the cell, decreases the accumulation of glutamate, an excitatory neurotransmitter. It thereby is thought to decrease apoptosis.
Hypothermia inhibits neutrophil and macrophage function, suppresses inflammatory reactions and inhibits the release of pro-inflammatory cytokines. While this may help contribute to hypothermia’s neuroprotective effects, this may occur at the expense of an increased the risk of infections.
Adverse events of Hypothermia, prevention and management strategies:
Shivering is the body’s physiological response to hypothermia. Both in the induction and maintenance of hypothermia, this can pose challenges, and shivering is sometimes more an issue when normothermia is the goal temperature. Shivering generates heat and increases the oxygen consumption and metabolic demands of tissues.
Shivering is especially important in the extremes of age. It has been associated with a higher risk of adverse cardiac events and poor outcomes in the perioperative setting. The threshold for shivering is slightly higher in females. The process is regulated via the preoptic nucleus of the anterior hypothalamus. Through positive and negative feedback loops this helps minimize fluctuations, maintains core body temperature within 0.1°C– 0.2°C. 4
Typically a shivering response is seen when core temperature decreases below 35.5°C, the “shivering threshold.” However, in febrile patients, and in brain injured patients, this regulation is altered and both the temperature “set point” and the shivering threshold increase. The hypothalamus then makes attempts to maintain the higher temperatures as it does to maintain normal temperature or normothermia. This causes an increase in oxygen consumption, metabolic rate, and increases carbon dioxide production. At temperatures lower than 33-34°C, the shivering response decreases, therefore sedation and paralytics can be decreased at this point, if the clinical situation allows it.
The Bedside Shivering Assessment Scale (BSAS) is a simple scale that was developed as a means to detect and quantify shivering and guide therapeutic interventions. The scale has 4 levels. 9
Score | Description or observation | Severity |
0 | Absence of shivering on palpation of neck or pectoralis muscles | None |
1 | Localized to the neck and/or thorax | Mild |
2 | Involvement of the upper extremities with or without neck | Moderate |
3 | Generalized, whole-body involvement | Severe |
Bedside Shivering assessment Scale
A non pharmacologic measure that has been shown to decrease shivering in some studies, mainly in healthy volunteers is called Surface counter warming. Studies have shown decreased shivering and improved metabolic profiles, and that is safe and effective, easy to use. Theoretically, an increase of 4°C in skin temperature could compensate for a 1°C decrease in core temperature, reducing the shivering response.9
Numerous pharmacologic strategies have been used to control shivering. In the operating room, volatile anesthetics, including halothane, isoflurane and enflurane, are used to control post anesthetic shivering. In the intensive care unit, other agents are of more practical use. These agents are thought to be effective by various mechanisms. The agents act though serotonin manipulation, or are N-methyl-D-aspartate Antagonists, α2-agonists, Opioids, and others. Most studies involving these agents have been conducted in healthy volunteers.
Buspirone is a serotonin (5-HT) 1A partial agonist that has been shown to be a good anti shivering agent.At a 60-mg dose, buspirone – a 5-HT1a partial agonist – reduced the shivering threshold by 0.7ºC. A study in volunteers found that a 30-mg dose combined with low-dose meperidine produced a similar reduction in shivering threshold compared to a large dose of meperidine alone (2.3ºC).Buspirone provides a good synergistic therapy when combined with other antishivering interventions. The main disadvantage of buspirone is that it needs to be administered enterally, no IV formulation is available. Bioavailability in the critically ill may not be reliable.10
Meperidine is an opioid analgesic. Meperidine is probably the single most useful antishivering drug, but has significant adverse events. Meperidine acts on both mu and kappa receptors, is considered the most effective antishivering agent among the opioids. The mechanism behind meperidine’s antishivering action is not clearly known. It is thought that activation of [kappa]-opioid receptors, anticholinergic action, and N-methyl-d-aspartate antagonism all play a role. In studies, plasma concentrations near 1.3 µg/mL have been required to induce moderate hypothermia with meperidine alone, which could increase the risk of side effects.Meperidine is effective for postoperative shivering and, it inhibits shivering twice as much as vasoconstriction.
Meperidine has major side effects; the more significant of them is lowering of seizure threshold. Other reported adverse events include arrhythmias, hyperreflexia, and myoclonus. The metabolite Normeperidine accumulates in patients with renal failure and could potentiate these adverse events.
Fentanyl, morphine are pure mu opioid receptor agonists, and have had mixed results in studies. High doses may be needed to achieve this effect, and this may potentiate side effects11.
The alpha2-receptor agonists are another important class of drugs used as pharmacologic measures to control shivering. Bradycardia and hypotension are the main adverse events with this class of drugs.Important to remember, they may also exacerbate the bradycardia induced by hypothermia.
Clonidine decreases the vasoconstriction and shivering thresholds. Prophylactic use of clonidine lowered the threshold of vasoconstriction in healthy volunteers. 12, 13 In a trial comparing clonidine and meperidine, the average onset of action for meperidine and clonidine were 2.7 and 3.1 minutes, respectively. At least from these data, clonidine appears to be as effective as meperidine for postanesthetic shivering14
Dexmedetomidine is another agent that has been shown to decrease postanesthetic shivering when compared to both placebo and Meperidine. In studies with dexmedetomidine in healthy volunteers, it showed a decrease in the vasoconstriction and shivering thresholds by similar amounts.15
A small study looked at healthy volunteers and found that Meperidine and Dexmedetomidine were synergistic as well. 16, 17
Magnesium is another anti shivering agent. It is thought to act as an antagonist of the NMDA receptors. In addition, hypothermia causes hypomagnesaemia commonly, and magnesium replacement is often required. Results on magnesium as a neuroprotectant have been variable. In a study of healthy volunteers, despite reducing the shivering threshold, the authors concluded that it was not clinically significant in counteracting the shivering effect of therapeutic hypothermia. 18 In another study, magnesium shortened the time to achieve target temperature and improved patient comfort.
In this small study, 22 volunteers were randomly assigned to one of four therapies: meperidine monotherapy; meperidine plus buspirone; meperidine plus ondansetron; or meperidine, ondansetron, and magnesium sulfate. In this study, Magnesium was shown to decrease time to target temperature and increase patient comfort. Although the presence of shivering was recorded in this investigation, these data were not reported. 19
Dantrolene is another agent that has been used for malignant hyperthermia. It acts on the skeletal muscle and interferes with the release of calcium from the sarcoplasmic reticulum, and inhibits the excitation-contraction coupling of skeletal muscles. It is a good adjunctive antishivering agent. In a study with healthy volunteers, dantrolene decreased the gain of shivering. Dantrolene had no effect on the vasoconstriction threshold.Hepatitis is a complication of dantrolene, especially in people older than 35 years. The reaction can be dose dependent or idiosyncratic.20
Propofol has been widely studied in Shivering control. It has been compared to Thiopental and isoflurane.Patients on propofol experienced less shivering compared to thiopental alone or thiopental plus isoflurane. Like other drugs, during hypothermia, the plasma concentration of propofol is increased by 30% due to reduced clearance. Clinicians should also be aware of propofol infusion syndrome.21\n\t\t\t\t\t22 Propofol infusion syndrome is a rare complication of propofol infusion. Risk factors include administration of high doses (greater than 3-5 mg/kg per) and prolonged use, more than 48 hours, patients on catecholamines for vasopressor support, steroids. Additional proposed risk factors include a young age, critical illness, high fat and low carbohydrate intake, inborn errors of mitochondrial fatty acid oxidation. Patients present with cardiac dysrhythmias, metabolic acidosis, rhabdomyolysis, and renal failure. It can be associated with a high mortality.
There is limited data on the use of other agents such as Ketamine, methylphenidate and doxapram as anti shivering agents in hypothermia.
By redistributing blood flow away from muscle, skin, and fat, hypothermia alters drug pharmacokinetics. Drugs with a large volume of distribution, in the setting of hypothermia distribute to reduced volume and thereby produce higher plasma concentrations. Due to reduced blood flow, these drugs may initially be sequestered in tissue, but subsequently with rewarming and vasodilation, these drugs now redistribute from tissues, leading to high plasma concentrations, thereby increasing the risk of toxicity.23
Cardiac output decreases, but this is offset by the decreased metabolic rate
Common electrocardiographic findings during hypothermia include prolonged P-R and Q-T intervals and widening of the QRS complex as well as altered T waves and appearance of the J wave. (Osborne). These usually do not require interventions.
Arrhythmias: Initially, hypothermia causes tachycardia, and then bradycardia ensues. The arrhythmias depend on the severity of hypothermia, more severe commonly occur at temperatures of < 28C.The bradycardia may be severe enough to warrant discontinuing hypothermia. This is compounded by the fact that the anti arrhythmics become less effective, and so does electrical defibrillation. Attempts at electrical defibrillation can initiate malignant arrhythmias.
In the setting of a cardiac arrest, the myocardium in a deeply hypothermic patient is easily susceptible to manipulations such as CPR, defibrillation, and can predispose to arrhythmias. While mild hypothermia can be protective by stabilizing membranes, severe hypothermia increases risk of malignant arrhythmias.
Limited data exist on the efficacy of various antiarrhythmics. Bretylium, the most commonly studied agent, has been recommended as the drug of choice during moderate-to-severe hypothermia
Observational data from humans and experimental animal models have looked at Bretylium. Bretylium is a parenteral Class III antiarrhythmic agent. However, Bretylium is no longer available in the US secondary to lack of availability of raw materials needed to produce the drug, as well as declining usage in clinical practice. Amiodarone has been studied in an animal model. Stoner et al looked at thirty anesthetized dogs and induced hypothermic VF. They compared defibrillation rates after drug therapy with amiodarone, bretylium, and placebo. In this study, neither amiodarone nor bretylium was significantly better than placebo in improving the resuscitation rate.24, 25.The benefits of amiodarone during hypothermia have not been clearly established in humans. In the Bernard study looking at hypothermia after cardiac arrest, Lidocaine was administered for 24 hrs. Clinically significant cardiac arrhythmias occurred with less frequency in the Australian study compared to the European study, where no lidocaine was employed. 6
Coronary blood flow has been shown to decrease during mild hypothermia in patients with coronary artery disease. Evidence from animal studies has shown a 10% reduction in myocardial infarct size for every 1°C decrease in body temperature. 26
Dixon et al looked at a randomized study of 42 patients with acute myocardial infarction and where cooling was maintained for 3 hours after reperfusion (core temperature target 33 degrees C.)There were no significant adverse hemodynamic events with cooling; however, the median infarct size was not significantly smaller in those that were cooled compared with the control group27
Other clinical studies of therapeutic hypothermia in patients with acute myocardial infarction who are undergoing primary PCI have not shown any beneficial effects.
Despite these data, hypothermia can potentially cause hypotension and myocardial dysfunction. It induces a cold diuresis and induces hypovolemia. This is through increased venous return, stimulation of atrial natriuretic peptide, decreased anti diuretic hormone levels, and renal tubular dysfunction.
Patients with severe Traumatic brain injury may also receive mannitol for hyperosmolar therapy for raised intracranial pressures or may have diabetes insipidus, which can further contribute to hypovolemia.4
Infectious complications occur frequently in ICU patients, especially after cardiac arrest. The increasing use of therapeutic hypothermia has raised awareness about increased infectious complications. In a retrospective review of a single institution cohort, Mongardon et al found that pneumonia as the most common source, and Staphylococcus aureus was the main causative agent. Duration of hypothermia was associated with increased infection rates. ICU survival and neurologic outcome were not affected. 28A numbers of studies, especially in patients with stroke or TBI, have reported higher risks of pneumonia when therapeutic hypothermia is used over longer periods of time (48–72 h) However, other studies using hypothermia for prolonged periods in patients with TBI reported no increase in infection rates.
Evidence from clinical and in vitro studies shows that hypothermia can impair immune function. Hypothermia inhibits the release of various pro-inflammatory cytokines, inhibit neutrophil and macrophage function. Kimura and colleagues found that the peak release of interleukin-6, interleukin-1, and other proinflammatory cytokines was significantly delayed at 33 °C compared with 37 °C 29, 30 Hypothermia reduces gastrointestinal motility, and cardiac dysfunction in post arrest patients, therefore, it may increase risk of mucosal ischemia and breakdown. This may cause bacterial translocation. The insulin resistance and hyperglycemia associated with hypothermia may further predispose the patient to infection. The normal host responses to infection like leukocytosis may not be noted in hypothermic patients, so careful surveillance is needed. The threshold to initiate antibiotic treatment should be low. Fever in these patients should be treated aggressively to prevent further neurologic injury.
Many institutions perform blood cultures and sputum cultures at the time of initiation of hypothermia, and periodic surveillance cultures to detect early bacteremia. In patients developing infections after hypothermia treatment, fever should be treated aggressively, to mitigate new or additional neurological injuries
In a retrospective observational study involving neonates, moderate cooling decreased seizures recorded by EEG.31 Seizures after cardiac arrest and TBI are common; the detection of seizures is an important aspect of a neurointensivist in the care of therapeutic hypothermia patients. Many of these patients are under neuromuscular blockade, and convulsive movements are absent. The incidence of seizures after cardiac arrest is around 24%, with some studies showing a higher incidence than others. Continuous EEG monitoring should be used when available over intermittent EEG, because seizures could be no convulsive as well as convulsive in these patients. The disadvantage of continuous EEG is that is not always available, is expensive, labor intensive, and subject to misinterpretation. No clear guidelines exist to guide therapy of EEG findings like PLEDS.
Intravenous benzodiazepines are used the initial medical treatment of status epilepticus. If the patient fails first line therapy and is considered to be in refractory status epilepticus, there is no firm data to guide subsequent management. The VA cooperative study showed that early control with a first line agent is important, because, if the first line agent fails, the success of subsequent second and third line agents is marginal. In the VA cooperative trial, the treatment success rate with the first drug was 55% in the overt status group and 15% in the subtle status group.32, 33\n\t\t\t\t
Many experts recommend continuous intravenous antiepileptic drugs at this stage. Midazolam is the safest anesthetic agent in treating SE. Doses as high as 3 to 5 mg/kg/h may be necessary to maintain seizure suppression in the most refractory cases. Tachyphylaxis is often encountered when prolonged infusions are used. The other agents used to treat SE are propofol, and barbiturates (Thiopental or pentobarbital). Barbiturates produce hypotension, and myocardial depression, this may pose further challenges in the post cardiac arrest setting. Other side effects include ileus, hepatotoxicity, increased susceptibility to infections and very prolonged sedation. Propofol can be associated with propofol infusion syndrome as discussed earlier.Valproic acid, levetiracetam, are emerging as alternative agents. Fosphenytoin is an antiepileptic that is often added in these patients. Fosphenytoin is a prodrug of phenytoin and its preparation does not include propylene glycol. It can be administered faster than IV phenytoin, and has less adverse cardiac events with IV infusion compared to phenytoin. It is much less likely to produce local tissue reactions, and it can be infused faster than phenytoin.34 As with status epilepticus from other causes, it is not clear whether burst suppression on EEG is superior to seizure suppression. No data on seizure prophylaxis after hypoxic ischemic encephalopathy are available
Bleeding diatheses occur in the setting of mild therapeutic hypothermia. For every 1 °C decrease in temperature, coagulation-factor function is decreased by 10%. Watts et al showed that in trauma patients, enzyme activity alteration, platelet dysfunction and changes in fibrin pathways occur. Clinically significant bleeding is rarely a significant problem, even in traumatic brain injury patients. Schefold et al. in a prospective observational study of 31 patients with AMI and mild induced hypothermia and primary PCI found no excessive bleeding risk with cooling/PCI.35,36\n\t\t\t
Values of standard coagulation tests such as prothrombin time and partial thromboplastin times are usually normal, because these tests are usually performed at 37_C in the lab. Tests will be prolonged only if they are performed at the patient’s actual core temperature
Skin integrity should be assessed carefully and frequently. The surface cooling, vasoconstrictive response to cooling can increase skin breakdown in hypothermic patients.6
Hypothermia patients have GI dysmotility, ileus. Caution needs to be exercised with promotility agents like Erythromycin, metoclopramide, neostigmine, as they can induce arrhythmias. Increased serum amylase levels are common, but patients rarely have significant pancreatitis. Enteral nutrition can help decrease risk of bacterial translocation. Gaussorgues P, et al. Bacteremia following cardiac arrest and cardiopulmonary resuscitation. Intensive Care Med 1988; 14(5):575-7.
A common problem is severe electrolyte disorders hypokalemia, hypomagnesemia, hypophosphatemia during induction of cooling. These may cause further arrhythmias in post-arrest patients. Hypothermia decreases insulin sensitivity and insulin secretion, which often leads to hyperglycemia. Tight control of glucose levels may decrease morbidity and mortality in ICU patients, but the exact levels at which glycemia needs to be maintained is controversial. During rewarming, glucose levels tend to drop, and therefore, insulin may need to be decreased or discontinued. Likewise, hyperkalemia and hypermagnesemia are common during rewarming, and cardiac arrests have occurred when the clinician s unaware of this phenomenon. Hypothermia also induces a metabolic acidosis by increased synthesis of glycerol, free fatty acids, ketones and lactate. These changes are normal metabolic consequences of hypothermia and should not be attributed to complications such as bowel ischemia.4
Hypotension can occur through hypovolemia, the cold diuresis, that occurs in hypothermia, and the use of agents like mannitol in TBI or diuretics in the setting of cardiomyopathies can further exacerbate this.If this is unrecognized, the problem is worse in the rewarming phase when vasodilatation often occurs, and profound shock ensues. Cueni-Villoz N, et al.\n\t\t\t
In conclusion, hypothermia is becoming increasingly used across many intensive care units, and the applications could expand well beyond the current indications. It is important to use safe, effective cooling methods, recognize, prevent and treat various adverse events that could occur, so we can improve the survival of these patients.
Retinoblastoma (Rb) is the most common intraocular malignancy of childhood, but a relatively rare disease, occurring in approximately 1: 16,000–18,000 live births [1]. Its incidence is uniform across populations, with no known gender, racial or ethnic predilection. Rb develops in early childhood, with the vast majority of cases that present before the age of 5 years. The disease can involve one or both eyes and can be inherited from an affected parent or developed de novo in a child with no family history of Rb. This chapter discusses the epidemiological aspects of Rb, including basic concepts in Rb development, incidence and prevalence, age, sex and racial considerations, associated environmental factors, trilateral Rb and secondary non-Rb malignancies.
\nRb can be inherited by an affected parent or developed de novo in a child with no known family history of Rb (i.e., sporadic). The neoplasm can involve one or both eyes and may present in an asymmetrical manner, with different grades in each eye at presentation or even initially appearing as unilateral and becoming bilateral in the course of the disease. The disorder, which is believed to originate from an immature cone photoreceptor cell early in childhood, is initiated in most cases by a mutation in the RB1 gene. RB1 loss initially produces a retinoma, the benign precursor of Rb, and causes genomic instability that subsequently leads to the cancerous tumor, Rb.
\nIn hereditary Rb cases, a single RB1 allele is mutated in most or every cell of a child’s body. An additional “hit” in the second allele in the retina will result in clinical Rb. These cases usually present with bilateral and multifocal disease at a median age of 15 months, but can present also in unilateral disease, albeit less frequently. Between 30 and 37% of Rb cases are bilateral [2], and all bilateral cases are hereditary. However, it is estimated that up to 18% of unilateral cases are also hereditary [3]. This emphasizes the importance of genetic testing in addition to clinical examination, as it has direct impact on the recommended screening frequency of the fellow eye and occasionally on management decisions.
\nNon-hereditary cases (i.e., somatic) usually present at a later age (median: 24 months) with unilateral unifocal disease. In order for the disease to develop in this scenario, two consecutive “hits” occur in a retinal cell, resulting in both RB1 alleles mutated and the development of clinical Rb.
\nAll familial cases are hereditary, but not necessarily vice versa. A mutation can occur at or after conception in an individual with no family history of Rb, and depending on the stage at which it occurs, some of the fetus’ cells will have a mutated RB1 allele, resulting in mosaicism. Children with mosaicism are at increased risk of developing Rb. The disease in this scenario is not inherited, hence siblings of the proband are not at risk, but offspring potentially are, and therefore should be screened soon after birth.
\nHereditary Rb has been associated with an increased risk of developing secondary non-Rb malignancies [4, 5], including sarcomas, carcinomas, malignant melanoma, and neuroectodermal cancers. Secondary tumors were reported to occur in up to 20% of cases in 10 years and the incidence was reported to directly correlate with the time lag from initial diagnosis. It is also well established that treatment by radiotherapy increases the risk of developing secondary tumors, both in and outside the field of radiation [6]. Draper et al. showed in a series of nearly 400 hereditary cases that close to 10% developed secondary malignancies, mainly osteosarcomas, most of which were in the field of radiation [6].
\nTrilateral Rb is a syndrome consisting of unilateral or bilateral hereditary Rb associated with an intracranial neuroblastic tumor that develops most often in the pineal gland (i.e., Pinealblastoma). On a meta-analysis by Kivelä [7], 2% of trilateral Rb cases had a brain tumor but no intraocular Rb, 12% had unilateral Rb and the remaining had bilateral disease.
\nThe reported incidence of Rb is constant worldwide at one case per 16,000–18,000 live births [8, 9]. In 2009 the estimated global annual incidence of Rb ranged from 7200 to 8100 children. The global birth rate has dropped since then, from 20.3 to 18.6 births per 1000 population, but the world’s population has grown from 6593 to 7550 million [10], resulting in an estimated 7800–8800 newly diagnosed Rb cases globally in 2017. The highest disease prevalence is recorded in areas with high birth rates, which is the case of many low- and middle-income countries (LMICs).
\nOver 80% of the newly diagnosed cases are in LMICs in Asia and Africa (Table 1 and Figure 1) [3]. These regions also show the lowest survival rate, reporting up to 70% mortality from Rb. Only about 15% of children with Rb reside in high-income countries, and their prognosis is considered to be very good, with an estimated disease-free survival rate of nearly 100% [11].
\n\n | High incidence (1:16,000) | \nLow incidence (1:18,000) | \nAverage incidence | \n
---|---|---|---|
n | \nn | \nn (%) | \n|
Continent | \n\n | \n | \n |
North America | \n273 | \n242 | \n258 (3.1) | \n
Latin America and the Caribbean | \n669 | \n595 | \n632 (7.7) | \n
Africa | \n2567 | \n2282 | \n2425 (29.5) | \n
Asia | \n4656 | \n4139 | \n4398 (53.5) | \n
Europe | \n504 | \n448 | \n476 (5.8) | \n
Oceania | \n37 | \n32 | \n35 (0.4) | \n
National income level | \n\n | \n | \n |
Low | \n1413 | \n1256 | \n1335 (16.2) | \n
Lower-middle | \n4221 | \n3752 | \n3987 (48.5) | \n
Upper-middle | \n2272 | \n2020 | \n2146 (26.1) | \n
High | \n800 | \n711 | \n756 (9.2) | \n
Estimated number of newly diagnosed retinoblastoma patients in 2017.
Estimated average number of newly diagnosed Rb patients in 2017 by national income level. Income level data source: United Nations, Department of Economic and Social Affairs PD [10].
According to the World Health Organization’s compendium of data from cancer registries, the average Rb incidence rate in children aged 0–4 years is >10 per million compared to <1 per million in children aged 5–9 years, and significantly lower beyond that age [12].
\nIt is difficult to accurately estimate the time at which Rb tumors first develop as information about the biological development of the disease is essentially lacking. There are three important time points associated with Rb development and the time of Rb diagnosis. These include (1) retinal tumor growth following two RB1 mutative events, (2) parents/guardians noticing the first ocular sign, and (3) presentation to an Rb center, at which diagnosis is made and treatment given.
\nAs discussed earlier, the median age of presentation for bilateral cases is 15 months, while for non-hereditary cases is 24 months. Most of the available knowledge originates from familial cases in high income countries, where Rb centers commonly perform screening tests for patients at risk (i.e., siblings of probands). Screening allows detection of small tumors very early in the course of disease, relatively soon after they develop. However, since sporadic cases are not screened, we rely only on age of presentation at two time points. First, the time at which the parents/guardians notice an ocular abnormality, it is usually a white pupillary reflex (i.e., leukocoria). Second, the time at which the final diagnosis is made, which is dependent on the time it takes the patient to reach the Rb center in the referral pathway.
\nThe body of knowledge on Rb is based on retrospective studies, hence, the most accurate data in this context reports the age of the child’s first presentation at an Rb center. Nevertheless, several studies have investigated the lag time from the first ocular sign as noticed by parents, to the presenting sign at the Rb center. In this respect, a huge gap exists between high-income countries and LMICs. In the UK, the referral time from sign onset to visiting primary care was found to be 28 days, primary care to ophthalmologist 3 days, and the time from local ophthalmologist to an Rb Unit was 6 days. In low-income countries, these time lags are considerably longer, and can take 6 months or more [13].
\nRarely, Rb can develop in adults older than 20 years of age, with fewer than 50 case reports found in the literature. Adult-onset Rb is quite different in its presentation compared to its pediatric form, and due to its rarity, it is usually not considered in the differential diagnosis, often leading to delay in diagnosis.
\nIn trilateral Rb [7], rates of familial Rb, the age at diagnosis and laterality were found to be similar to ordinary hereditary Rb. Cases of suprasellar trilateral Rb, however, were diagnosed at an earlier age as compared to Pinealblastoma. The median age of Rb diagnosis was 5 months, and cases of familial Rb were diagnosed at an earlier age than non-familial cases.
\nThere is no known gender predilection in Rb, and although this notion is widely quoted in many scientific reports in the field, it has not actually been thoroughly investigated. Based on data available from the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute, Tamboli et al. calculated the incidence of Rb in the United States from 1974 to 1985 and found no gender differences [14]. Gurney et al. used the same data source for similar years (1974–1989), but concluded that rates of Rb were higher in females [15], and Wong et al., in contrast, found an excess of Rb cases in males using the SEER database for the years 2000–2009 [8]. RB1 gene is located on chromosome 13 and there is no known relation to any of the sex chromosomes. There is also no evidence of an association between sex hormones and Rb. Cases of trilateral Rb do not show any gender predilection either [7].
\nSimilar to sex, there is no known association between race and Rb, although some exceptions have been reported. Gurney et al. found higher rates of Rb in blacks as compared to whites in the United States [15]. Broaddus et al., in contrast, found that the overall mean age-adjusted incidence of Rb was 11.3 for Caucasians and 13.0 for blacks, with no significant difference between the two populations [8]. Krishna et al. examined the incidence of Rb using data from the International Agency for Research on Cancer [16], and found no significant difference between white populations in the United States and Europe/Australia, Hispanic populations in Spain and the United States, and Hispanic populations in Uruguay and the United States. They concluded that Rb incidence is similar among varied populations.
\nSeveral studies have shown a link between human papillomavirus (HPV) and the development of sporadic Rb [17, 18]. Shetty et al. analyzed enucleated eyes with Rb and found that 70% were positive for HPV [17], suggesting that the virus may play a role in the development of sporadic RB. Anand et al. tested the presence of HPV in Rb tissue (formalin-fixed paraffin-embedded tissue and fresh-frozen specimens) and found that nearly a quarter of the specimens were positive for HPV [19]. However, the implications of the presence of HPV in Rb tissue and its role in carcinogenesis warrant further study. Jemal et al. investigated the relation between Rb incidence and ultraviolet (UV-B) radiation levels in the SEER program and found no statistically significant correlations [20]. To the best of our knowledge, there are no other reports focused on any additional environmental factors in association with Rb development.
\nRb is the most common primary intraocular malignancy of childhood. The disease can involve one or both eyes and can be inherited or sporadic. The incidence of Rb is stable worldwide at one case per 16,000–18,000 live births. The average Rb incidence rate in children aged 0–4 years is >10 per million compared to <1 per million in children aged 5–9 years, and significantly lower beyond that age. In 2017, globally, an estimated 7800–8800 Rb cases were newly diagnosed. Over 80% of these are in LMICs in Asia and Africa.
\nSo far, there is no validated evidence that retinoblastoma incidence is associated with gender, ethnicity or geographical factors. Studies have shown the presence of HPV in sporadic Rb tissue. Its role in carcinogenesis and the development of sporadic Rb warrants further investigation.
\nWe lack accurate information about the biological development of Rb which creates difficulties in estimating the time at which Rb tumors first develop. In familial cases from high-income countries, genetic screening is routinely conducted. However, in low-income countries this is not the case, and in all settings sporadic cases are not screened. In these cases, we rely on time of presentation, which is strongly influenced by the referral pathways in different settings.
\nSurvival rates are related to the time taken for the child to present at an Rb center and vary greatly between countries: while almost all Rb cases from high-income countries survive, cases in LMICs have a mortality rate of 70%.
\nNo conflicts of interest to disclose.
IntechOpen is the first native scientific publisher of Open Access books, with more than 116,000 authors worldwide, ranging from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery. Established in Europe with the new headquarters based in London, and with plans for international growth, IntechOpen is the leading publisher of Open Access scientific books. The values of our business are based on the same ones that any scientist applies to their research -- we have created a culture of respect, collegiality and collaboration within an atmosphere that’s relaxed, friendly and progressive.
",metaTitle:"Social Media Community Manager and Marketing Assistant",metaDescription:"We are looking to add further talent to our team in The Shard office in London with a full-time Marketing and Communications Specialist position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate will be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\\n\\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\\n\\nResponsibilities:
\\n\\nEssential Skills:
\\n\\nDesired Skills:
\\n\\nWhat makes IntechOpen a great place to work?
\\n\\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\\n\\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\\n\\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\\n\\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\n\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\n\nResponsibilities:
\n\nEssential Skills:
\n\nDesired Skills:
\n\nWhat makes IntechOpen a great place to work?
\n\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\n\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\n\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\n\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"178"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"54",title:"Human Genetics",slug:"human-genetics",parent:{title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:31,numberOfAuthorsAndEditors:1019,numberOfWosCitations:1067,numberOfCrossrefCitations:413,numberOfDimensionsCitations:1019,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"human-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8073",title:"Chromosomal Abnormalities",subtitle:null,isOpenForSubmission:!1,hash:"6a9d3c58434edf5e65f9849a6858edfe",slug:"chromosomal-abnormalities",bookSignature:"Tülay Aşkın Çelik and Subrata Dey",coverURL:"https://cdn.intechopen.com/books/images_new/8073.jpg",editedByType:"Edited by",editors:[{id:"74041",title:"Dr.",name:"Tulay",middleName:null,surname:"Askin Celik",slug:"tulay-askin-celik",fullName:"Tulay Askin Celik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6920",title:"Cytogenetics",subtitle:"Past, Present and Further Perspectives",isOpenForSubmission:!1,hash:"d72001eed508dfa72d9a68e1de28bb4b",slug:"cytogenetics-past-present-and-further-perspectives",bookSignature:"Marcelo Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/6920.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6719",title:"Genetic Diversity and Disease Susceptibility",subtitle:null,isOpenForSubmission:!1,hash:"0c9919347cc7cb1dcbc245ce8684eee7",slug:"genetic-diversity-and-disease-susceptibility",bookSignature:"Yamin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/6719.jpg",editedByType:"Edited by",editors:[{id:"201887",title:"Ph.D.",name:"Yamin",middleName:null,surname:"Liu",slug:"yamin-liu",fullName:"Yamin Liu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7204",title:"Gene Expression and Regulation in Mammalian Cells",subtitle:"Transcription Toward the Establishment of Novel Therapeutics",isOpenForSubmission:!1,hash:"10030057b2e2dee7d800ff27658c3a69",slug:"gene-expression-and-regulation-in-mammalian-cells-transcription-toward-the-establishment-of-novel-therapeutics",bookSignature:"Fumiaki Uchiumi",coverURL:"https://cdn.intechopen.com/books/images_new/7204.jpg",editedByType:"Edited by",editors:[{id:"47235",title:"Dr.",name:"Fumiaki",middleName:null,surname:"Uchiumi",slug:"fumiaki-uchiumi",fullName:"Fumiaki Uchiumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6435",title:"Gene Expression and Regulation in Mammalian Cells",subtitle:"Transcription From General Aspects",isOpenForSubmission:!1,hash:"8573c44c537def5c800a0f6d4ed844d6",slug:"gene-expression-and-regulation-in-mammalian-cells-transcription-from-general-aspects",bookSignature:"Fumiaki Uchiumi",coverURL:"https://cdn.intechopen.com/books/images_new/6435.jpg",editedByType:"Edited by",editors:[{id:"47235",title:"Dr.",name:"Fumiaki",middleName:null,surname:"Uchiumi",slug:"fumiaki-uchiumi",fullName:"Fumiaki Uchiumi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5784",title:"Antibody Engineering",subtitle:null,isOpenForSubmission:!1,hash:"2c8c3e133140fbc7f563918285e7c3c2",slug:"antibody-engineering",bookSignature:"Thomas Böldicke",coverURL:"https://cdn.intechopen.com/books/images_new/5784.jpg",editedByType:"Edited by",editors:[{id:"176804",title:"Dr.",name:"Thomas",middleName:null,surname:"Böldicke",slug:"thomas-boldicke",fullName:"Thomas Böldicke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5986",title:"The Role of Matrix Metalloproteinase in Human Body Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"ef3e8940d7f0b229028d6fb71b1e0927",slug:"the-role-of-matrix-metalloproteinase-in-human-body-pathologies",bookSignature:"Francesco Travascio",coverURL:"https://cdn.intechopen.com/books/images_new/5986.jpg",editedByType:"Edited by",editors:[{id:"172239",title:"Dr.",name:"Francesco",middleName:null,surname:"Travascio",slug:"francesco-travascio",fullName:"Francesco Travascio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5817",title:"Embryo Cleavage",subtitle:null,isOpenForSubmission:!1,hash:"11de486fcf8fe42d4359c65e71a8f1da",slug:"embryo-cleavage",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/5817.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4588",title:"New Discoveries in Embryology",subtitle:null,isOpenForSubmission:!1,hash:"2d40aace9724b9c451a8d8168acd0169",slug:"new-discoveries-in-embryology",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/4588.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4594",title:"胚胎移植新进展",subtitle:"Advances in Embryo Transfer",isOpenForSubmission:!1,hash:"32b738c0d0cbce7a61a3ea63b5d43ed0",slug:"advances-in-embryo-transfer-translation-chinese",bookSignature:"Bin Wu",coverURL:"https://cdn.intechopen.com/books/images_new/4594.jpg",editedByType:"Edited by",editors:[{id:"108807",title:"Ph.D.",name:"Bin",middleName:null,surname:"Wu",slug:"bin-wu",fullName:"Bin Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1907",title:"Reviews on Selected Topics of Telomere Biology",subtitle:null,isOpenForSubmission:!1,hash:"5f4f25ba706645403bab2aa721a0809b",slug:"reviews-on-selected-topics-of-telomere-biology",bookSignature:"Bibo Li",coverURL:"https://cdn.intechopen.com/books/images_new/1907.jpg",editedByType:"Edited by",editors:[{id:"109879",title:"Dr.",name:"Bibo",middleName:null,surname:"Li",slug:"bibo-li",fullName:"Bibo Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2518",title:"Binding Protein",subtitle:null,isOpenForSubmission:!1,hash:"6e70c7a9b0007d8f78ae4f3effba9664",slug:"binding-protein",bookSignature:"Kotb Abdelmohsen",coverURL:"https://cdn.intechopen.com/books/images_new/2518.jpg",editedByType:"Edited by",editors:[{id:"144861",title:"Dr.",name:"Kotb",middleName:null,surname:"Abdelmohsen",slug:"kotb-abdelmohsen",fullName:"Kotb Abdelmohsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:31,mostCitedChapters:[{id:"38236",doi:"10.5772/50129",title:"Extrinsic and Intrinsic Apoptosis Signal Pathway Review",slug:"extrinsic-and-intrinsic-apoptosis-signal-pathway-review",totalDownloads:10544,totalCrossrefCites:33,totalDimensionsCites:61,book:{slug:"apoptosis-and-medicine",title:"Apoptosis and Medicine",fullTitle:"Apoptosis and Medicine"},signatures:"Zhao Hongmei",authors:[{id:"146795",title:"Dr.",name:"Zhao",middleName:null,surname:"Hongmei",slug:"zhao-hongmei",fullName:"Zhao Hongmei"}]},{id:"35489",doi:"10.5772/37107",title:"MM-GB(PB)SA Calculations of Protein-Ligand Binding Free Energies",slug:"mm-gb-pb-sa-calculations-of-protein-ligand-binding-free-energies",totalDownloads:8040,totalCrossrefCites:9,totalDimensionsCites:45,book:{slug:"molecular-dynamics-studies-of-synthetic-and-biological-macromolecules",title:"Molecular Dynamics",fullTitle:"Molecular Dynamics - Studies of Synthetic and Biological Macromolecules"},signatures:"Joseph M. Hayes and Georgios Archontis",authors:[{id:"102666",title:"Dr.",name:"Joseph",middleName:"M.",surname:"Hayes",slug:"joseph-hayes",fullName:"Joseph Hayes"},{id:"111282",title:"Prof.",name:"Georgios",middleName:null,surname:"Archontis",slug:"georgios-archontis",fullName:"Georgios Archontis"}]},{id:"38806",doi:"10.5772/48277",title:"Bacterial Two-Component Systems: Structures and Signaling Mechanisms",slug:"bacterial-two-component-systems-structures-and-signaling-mechanisms",totalDownloads:4694,totalCrossrefCites:14,totalDimensionsCites:28,book:{slug:"protein-phosphorylation-in-human-health",title:"Protein Phosphorylation in Human Health",fullTitle:"Protein Phosphorylation in Human Health"},signatures:"Shuishu Wang",authors:[{id:"141519",title:"Dr.",name:"Shuishu",middleName:null,surname:"Wang",slug:"shuishu-wang",fullName:"Shuishu Wang"}]}],mostDownloadedChaptersLast30Days:[{id:"62578",title:"DNA Polymorphisms: DNA-Based Molecular Markers and Their Application in Medicine",slug:"dna-polymorphisms-dna-based-molecular-markers-and-their-application-in-medicine",totalDownloads:3132,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"genetic-diversity-and-disease-susceptibility",title:"Genetic Diversity and Disease Susceptibility",fullTitle:"Genetic Diversity and Disease Susceptibility"},signatures:"Salwa Teama",authors:[{id:"249329",title:"Dr.",name:"Salwa",middleName:null,surname:"Teama",slug:"salwa-teama",fullName:"Salwa Teama"}]},{id:"59173",title:"Separation of Monoclonal Antibodies by Analytical Size Exclusion Chromatography",slug:"separation-of-monoclonal-antibodies-by-analytical-size-exclusion-chromatography",totalDownloads:2846,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"antibody-engineering",title:"Antibody Engineering",fullTitle:"Antibody Engineering"},signatures:"Atis Chakrabarti",authors:[{id:"199389",title:"Ph.D.",name:"Atis",middleName:null,surname:"Chakrabarti",slug:"atis-chakrabarti",fullName:"Atis Chakrabarti"}]},{id:"56481",title:"Detailed Protocols for the Selection of Antiviral Human Antibodies from Combinatorial Immune Phage Display Libraries",slug:"detailed-protocols-for-the-selection-of-antiviral-human-antibodies-from-combinatorial-immune-phage-d",totalDownloads:1369,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antibody-engineering",title:"Antibody Engineering",fullTitle:"Antibody Engineering"},signatures:"Philipp Diebolder and Adalbert Krawczyk",authors:[{id:"198001",title:"Dr.",name:"Adalbert",middleName:null,surname:"Krawczyk",slug:"adalbert-krawczyk",fullName:"Adalbert Krawczyk"},{id:"198002",title:"Dr.",name:"Philipp",middleName:null,surname:"Diebolder",slug:"philipp-diebolder",fullName:"Philipp Diebolder"}]},{id:"38804",title:"The Prp4 Kinase: Its Substrates, Function and Regulation in Pre-mRNA Splicing",slug:"the-prp4-kinase-its-substrates-function-and-regulation-in-pre-mrna-splicing",totalDownloads:2303,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"protein-phosphorylation-in-human-health",title:"Protein Phosphorylation in Human Health",fullTitle:"Protein Phosphorylation in Human Health"},signatures:"Martin Lützelberger and Norbert F. Käufer",authors:[{id:"141382",title:"Prof.",name:"Norbert",middleName:"F.",surname:"Käufer",slug:"norbert-kaufer",fullName:"Norbert Käufer"},{id:"144512",title:"Dr.",name:"Martin",middleName:null,surname:"Lützelberger",slug:"martin-lutzelberger",fullName:"Martin Lützelberger"}]},{id:"49200",title:"Human Embryology",slug:"human-embryology",totalDownloads:2688,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"new-discoveries-in-embryology",title:"New Discoveries in Embryology",fullTitle:"New Discoveries in Embryology"},signatures:"Shigehito Yamada, Mark Hill and Tetsuya Takakuwa",authors:[{id:"49486",title:"Prof.",name:"Shigehito",middleName:null,surname:"Yamada",slug:"shigehito-yamada",fullName:"Shigehito Yamada"},{id:"90205",title:"Prof.",name:"Tetsuya",middleName:null,surname:"Takakuwa",slug:"tetsuya-takakuwa",fullName:"Tetsuya Takakuwa"},{id:"175453",title:"Dr.",name:"Mark",middleName:null,surname:"Hill",slug:"mark-hill",fullName:"Mark Hill"}]},{id:"58467",title:"Generation of Antibody Diversity",slug:"generation-of-antibody-diversity",totalDownloads:2024,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"antibody-engineering",title:"Antibody Engineering",fullTitle:"Antibody Engineering"},signatures:"Oliver Backhaus",authors:[{id:"177685",title:"M.Sc.",name:"Oliver",middleName:null,surname:"Backhaus",slug:"oliver-backhaus",fullName:"Oliver Backhaus"}]},{id:"40892",title:"Control of Telomere Length in Drosophila",slug:"control-of-telomere-length-in-drosophila",totalDownloads:1455,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"reviews-on-selected-topics-of-telomere-biology",title:"Reviews on Selected Topics of Telomere Biology",fullTitle:"Reviews on Selected Topics of Telomere Biology"},signatures:"Sergey Shpiz and Alla Kalmykova",authors:[{id:"115829",title:"Dr.",name:"Alla",middleName:null,surname:"Kalmykova",slug:"alla-kalmykova",fullName:"Alla Kalmykova"},{id:"117877",title:"Dr.",name:"Sergey",middleName:null,surname:"Shpiz",slug:"sergey-shpiz",fullName:"Sergey Shpiz"}]},{id:"39204",title:"Modulation of Gene Expression by RNA Binding Proteins: mRNA Stability and Translation",slug:"modulation-of-gene-expression-by-rna-binding-proteins-mrna-stability-and-translation",totalDownloads:4940,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"binding-protein",title:"Binding Protein",fullTitle:"Binding Protein"},signatures:"Kotb Abdelmohsen",authors:[{id:"144861",title:"Dr.",name:"Kotb",middleName:null,surname:"Abdelmohsen",slug:"kotb-abdelmohsen",fullName:"Kotb Abdelmohsen"}]},{id:"19303",title:"Archaeal DNA Repair Nucleases",slug:"archaeal-dna-repair-nucleases",totalDownloads:2322,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"dna-repair-on-the-pathways-to-fixing-dna-damage-and-errors",title:"DNA Repair",fullTitle:"DNA Repair - On the Pathways to Fixing DNA Damage and Errors"},signatures:"Roxanne Lestini, Christophe Creze, Didier Flament, Hannu Myllykallio and Ghislaine Henneke",authors:[{id:"44844",title:"Dr.",name:"Hannu",middleName:null,surname:"Myllykallio",slug:"hannu-myllykallio",fullName:"Hannu Myllykallio"},{id:"51718",title:"Dr.",name:"Ghislaine",middleName:null,surname:"Henneke",slug:"ghislaine-henneke",fullName:"Ghislaine Henneke"},{id:"57263",title:"Dr.",name:"Rosane",middleName:null,surname:"Lestini",slug:"rosane-lestini",fullName:"Rosane Lestini"},{id:"57264",title:"Dr.",name:"Christophe",middleName:null,surname:"Creze",slug:"christophe-creze",fullName:"Christophe Creze"},{id:"57265",title:"Dr.",name:"Didier",middleName:null,surname:"Flament",slug:"didier-flament",fullName:"Didier Flament"}]},{id:"38242",title:"Cell Death and Cancer, Novel Therapeutic Strategies",slug:"cell-death-and-cancer-novel-therapeutic-strategies",totalDownloads:3117,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"apoptosis-and-medicine",title:"Apoptosis and Medicine",fullTitle:"Apoptosis and Medicine"},signatures:"Silvina Grasso, M. Piedad Menéndez-Gutiérrez, Estefanía Carrasco-García, Leticia Mayor-López, Elena Tristante, Lourdes Rocamora-Reverte, Ángeles Gómez-Martínez, Pilar García-Morales, José A. Ferragut, Miguel Saceda and Isabel Martínez-Lacaci",authors:[{id:"145739",title:"Dr.",name:"Isabel",middleName:null,surname:"Martinez-Lacaci",slug:"isabel-martinez-lacaci",fullName:"Isabel Martinez-Lacaci"}]}],onlineFirstChaptersFilter:{topicSlug:"human-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/320949/helena-pinheiro",hash:"",query:{},params:{id:"320949",slug:"helena-pinheiro"},fullPath:"/profiles/320949/helena-pinheiro",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()