Chapters authored
Management of Wine Aroma Compounds: Principal Basis and Future Perspectives By Antia G. Pereira, Maria Fraga, Paula Garcia-Oliveira, Maria Carpena, Cecilia Jimenez-Lopez, Catarina Lourenço-Lopes, Lillian Barros, Isabel C.F.R. Ferreira, Miguel Angel Prieto and Jesus Simal-Gandara
Wine’s aroma is defined by volatile and non-volatile compounds that contribute to its make-up. The complex variety of volatile compounds, coming from grapes, interact with other non-volatile substances of the wine as precursors of wine’s aroma, known as primary aromas, which give the aroma of the young wine. The volatile compounds present in the skin and in the grape juice change according to the grape variety. Most of wine volatile compounds responsible for aroma are linked to sugars and they initially form odorless glycosides. Through the process of hydrolysis, they are reverted into an aromatic form. Chemical reactions among these compounds occur during the fermentation and in the first months of a wine’s existence, triggering fast and multiple modifications in wine’s aroma at this point. As wine ages and matures, changes and development in aroma will continue to take place but at a slower and more gradual pace. The study of the compounds responsible for aroma and flavor, as well as their correlation with the wine quality, is ongoing. Improving the knowledge of wine aromatic compounds could increase the risk of its potential adulteration; however, consumers prefer wine for its natural origin, so this scenario is unlikely in the future.
Part of the book: Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging
Application of Green Extraction Techniques for Natural Additives Production By Anxo Carreira-Casais, Catarina Lourenço-Lopes, Paz Otero, María Carpena Rodriguez, Antia Gonzalez Pereira, Javier Echave, Anton Soria-Lopez, Franklin Chamorro, Miguel A. Prieto and Jesus Simal-Gandara
During the last decades, consumers have increased the demand for healthier natural foods with lower presence of chemical additives. One reason of this choice is the controversy about chemical additives possible adverse effects. To fulfill market needs, different techniques have been developed to extract compounds from various raw materials to produce natural additives with different properties (preservatives, emulsifiers, or colorants) and bioactivities. In addition, the growing concern about the effects of climate change has led the development of more sustainable techniques to carry out the extraction. The use of new alternative nonconventional, emerging, or green extraction methodologies has gained considerable attention during the last decade. These novel techniques have been applied to minimize any negative changes in the nutritional, physicochemical or sensory properties of the natural source, while at the same time reducing the environmental impact of the process and gaining competitiveness of the world market. For this purpose, new green extraction methods have been proposed and optimized for the reduction of the consumption of raw materials, solvents, and energy. In this chapter, a revision of different types of green extraction techniques is compiled together with the main factor that can affect extraction-process feasibility and the main challenges and future trends for their development.
Part of the book: Natural Food Additives
Flavonoids: A Group of Potential Food Additives with Beneficial Health Effects By María Carpena Rodriguez, Cristina Caleja, Bernabe Nuñez-Estevez, Eliana Pereira, Maria Fraga-Corral, Filipa S. Reis, Jesus Simal-Gandara, Isabel C.F.R. Ferreira, Miguel A. Prieto and Lillian Barros
Recently, there has been an increasing interest in health-promoting products which are also natural and safe for consumption because the consumer market has been searching for a healthy lifestyle. This global market trend has driven the food industry to invest in developing innovative products containing bioactive components. Flavonoids are a group of phenolic compounds of low molecular weight, consisting of 15 carbon atoms. Their alterations in the heterocyclic ring’s substitution pattern generate six subclasses: flavonols, flavanols, flavones, flavanones, isoflavones and anthocyanins. Also, different studies have reported that diets rich in flavonoids provide numerous benefits associated with health-promoting effects by reducing the risk of development of chronic diseases such as cardiovascular diseases, diabetes type II and some types of cancers. These effects have been related to their biological properties which also include other activities such as colorant effects (e.g., anthocyanins), transforming them into potential food additives with desirable capacities. Therefore, this review aims to revise the classes of flavonoids and their main biological properties as well as the most used extraction techniques applied for obtaining these compounds, their bioavailability and the application to formulate new natural food additives.
Part of the book: Natural Food Additives