Salivary variables measured for caries risk assessment.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"1770",leadTitle:null,fullTitle:"Gel Electrophoresis - Principles and Basics",title:"Gel Electrophoresis",subtitle:"Principles and Basics",reviewType:"peer-reviewed",abstract:"Most will agree that gel electrophoresis is one of the basic pillars of molecular biology. This coined terminology covers a myriad of gel-based separation approaches that rely mainly on fractionating biomolecules under electrophoretic current based mainly on the molecular weight. In this book, the authors try to present simplified fundamentals of gel-based separation together with exemplarily applications of this versatile technique. We try to keep the contents of the book crisp and comprehensive, and hope that it will receive overwhelming interest and deliver benefits and valuable information to the readers.",isbn:null,printIsbn:"978-953-51-0458-2",pdfIsbn:"978-953-51-4309-3",doi:"10.5772/2205",price:139,priceEur:155,priceUsd:179,slug:"gel-electrophoresis-principles-and-basics",numberOfPages:378,isOpenForSubmission:!1,isInWos:1,hash:"279701f6c802cf02deef45103e0611ff",bookSignature:"Sameh Magdeldin",publishedDate:"April 4th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",numberOfDownloads:227344,numberOfWosCitations:103,numberOfCrossrefCitations:39,numberOfDimensionsCitations:118,hasAltmetrics:1,numberOfTotalCitations:260,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 26th 2011",dateEndSecondStepPublish:"June 23rd 2011",dateEndThirdStepPublish:"October 28th 2011",dateEndFourthStepPublish:"November 27th 2011",dateEndFifthStepPublish:"March 26th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8,9",editedByType:"Edited by",kuFlag:!1,editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin",profilePictureURL:"https://mts.intechopen.com/storage/users/123648/images/475_n.jpg",biography:"Sameh Magdeldin is senior researcher in the Medical School,\nNiigata University, Japan, and academic associate professor in\nthe Physiology Department, Suez Canal University (SCU), Egypt.\nHe received his M.V.Sc. and Ph.D. in Physiology and his second\nPh.D. in Proteomics in July 2012. He has expertise in shotgun proteomics analysis, reversed-phase chromatography and label-free comparative proteomics\napproaches. Dr. Magdeldin has published outstanding articles on aquaporin research using proteomics technology. He also created the outstanding “All and\nNone” methodology for analyzing large-throughput proteomics data published\nin a highly respected proteomics journal. He currently serves as a guest editor,\nassociate editor and peer reviewer for several international journals. Dr. Magdeldin received several grants and awards, such as the national encouraging prize,\n8th HUPO congress young investigator award, JSN award, grant-in-aid for young\nscientists and young researcher overseas grant from the Japan Society for the\nPromotion of Science (JSPS).",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"Niigata University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"410",title:"Biotechnology",slug:"biochemistry-genetics-and-molecular-biology-microbiology-biotechnology"}],chapters:[{id:"35087",title:"Introduction to Agarose and Polyacrylamide Gel Electrophoresis Matrices with Respect to Their Detection Sensitivities",doi:"10.5772/38573",slug:"introduction-to-agarose-and-polyacrylamide-gel-electrophoresis-matrices-with-respect-to-their-detect",totalDownloads:31980,totalCrossrefCites:10,totalDimensionsCites:17,signatures:"Patricia Barril and Silvia Nates",downloadPdfUrl:"/chapter/pdf-download/35087",previewPdfUrl:"/chapter/pdf-preview/35087",authors:[{id:"118087",title:"Dr.",name:"Silvia",surname:"Nates",slug:"silvia-nates",fullName:"Silvia Nates"},{id:"118134",title:"Dr.",name:"Patricia",surname:"Barril",slug:"patricia-barril",fullName:"Patricia Barril"}],corrections:null},{id:"35088",title:"Gel-Electrophoresis and Its Applications",doi:"10.5772/38479",slug:"gel-electrophoresis-and-its-applications",totalDownloads:17184,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Pulimamidi Rabindra Reddy and Nomula Raju",downloadPdfUrl:"/chapter/pdf-download/35088",previewPdfUrl:"/chapter/pdf-preview/35088",authors:[{id:"117476",title:"Prof.",name:"Rabindra",surname:"Reddy",slug:"rabindra-reddy",fullName:"Rabindra Reddy"},{id:"118369",title:"Mr.",name:"Raju",surname:"Nomula",slug:"raju-nomula",fullName:"Raju Nomula"}],corrections:null},{id:"35089",title:"Principles of Nucleic Acid Separation by Agarose Gel Electrophoresis",doi:"10.5772/38654",slug:"principles-of-nucleic-acid-separation-by-agarose-gel-electrophoresis",totalDownloads:35382,totalCrossrefCites:4,totalDimensionsCites:10,signatures:"Muhittin Yılmaz, Cem Ozic and İlhami Gok",downloadPdfUrl:"/chapter/pdf-download/35089",previewPdfUrl:"/chapter/pdf-preview/35089",authors:[{id:"118546",title:"Dr.",name:"Muhitdin",surname:"Yilmaz",slug:"muhitdin-yilmaz",fullName:"Muhitdin Yilmaz"},{id:"143191",title:"Dr.",name:"Cem",surname:"Ozic",slug:"cem-ozic",fullName:"Cem Ozic"},{id:"143193",title:"PhD.",name:"İlhami",surname:"Gok",slug:"ilhami-gok",fullName:"İlhami Gok"}],corrections:null},{id:"35090",title:"Discriminatory Power of Agarose Gel Electrophoresis in DNA Fragments Analysis",doi:"10.5772/36891",slug:"discriminatory-power-of-agarose-gel-electrophoresis-in-dna-fragment-analysis",totalDownloads:31746,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Seow Ven Lee and Abdul Rani Bahaman",downloadPdfUrl:"/chapter/pdf-download/35090",previewPdfUrl:"/chapter/pdf-preview/35090",authors:[{id:"110308",title:"Dr.",name:"Seow Ven",surname:"Lee",slug:"seow-ven-lee",fullName:"Seow Ven Lee"}],corrections:null},{id:"35091",title:"Gel Electrophoresis of Proteins",doi:"10.5772/37514",slug:"gel-electrophoresis-of-proteins",totalDownloads:10408,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Laura García-Descalzo, Eva García-López, Alberto Alcázar, Fernando Baquero and Cristina Cid",downloadPdfUrl:"/chapter/pdf-download/35091",previewPdfUrl:"/chapter/pdf-preview/35091",authors:[{id:"113044",title:"Dr.",name:"Cristina",surname:"Cid",slug:"cristina-cid",fullName:"Cristina Cid"},{id:"138425",title:"Dr.",name:"Fernando",surname:"Baquero",slug:"fernando-baquero",fullName:"Fernando Baquero"},{id:"138426",title:"Dr.",name:"Laura",surname:"Garcia-Descalzo",slug:"laura-garcia-descalzo",fullName:"Laura Garcia-Descalzo"},{id:"138427",title:"Dr.",name:"Eva",surname:"Garcia-Lopez",slug:"eva-garcia-lopez",fullName:"Eva Garcia-Lopez"},{id:"138428",title:"Dr.",name:"Alberto",surname:"Alcazar",slug:"alberto-alcazar",fullName:"Alberto Alcazar"}],corrections:null},{id:"35092",title:"Gel Electrophoresis of Protein - From Basic Science to Practical Approach",doi:"10.5772/38062",slug:"gel-electrophoresis-of-protein-from-basic-science-to-practical-approach",totalDownloads:6268,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Gholamreza Kavoosi and Susan K. Ardestani",downloadPdfUrl:"/chapter/pdf-download/35092",previewPdfUrl:"/chapter/pdf-preview/35092",authors:[{id:"115406",title:"Prof.",name:"Susan K",surname:"Ardestani",slug:"susan-k-ardestani",fullName:"Susan K Ardestani"},{id:"137623",title:"Dr.",name:"Gholamreza",surname:"Kavoosi",slug:"gholamreza-kavoosi",fullName:"Gholamreza Kavoosi"}],corrections:null},{id:"35093",title:"Two-Dimensional Polyacrylamide Gel Electrophoresis - A Practical Perspective",doi:"10.5772/36816",slug:"two-dimensional-polyacrylamide-gel-electrophoresis-a-practical-perspective",totalDownloads:10459,totalCrossrefCites:2,totalDimensionsCites:7,signatures:"Sameh Magdeldin, Ying Zhang, Bo Xu, Yutaka Yoshida and Tadashi Yamamoto",downloadPdfUrl:"/chapter/pdf-download/35093",previewPdfUrl:"/chapter/pdf-preview/35093",authors:[{id:"123648",title:"Dr.",name:"Sameh",surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],corrections:null},{id:"35094",title:"High-Resolution Two-Dimensional Polyacrylamide Gel Electrophoresis: A Tool for Identification of Polymorphic and Modified Linker Histone Components",doi:"10.5772/38235",slug:"high-resolution-two-dimensional-polyacrylamide-gel-electrophoresis-tool-for-the-identification-of-po",totalDownloads:3283,totalCrossrefCites:1,totalDimensionsCites:8,signatures:"Andrzej Kowalski and Jan Pałyga",downloadPdfUrl:"/chapter/pdf-download/35094",previewPdfUrl:"/chapter/pdf-preview/35094",authors:[{id:"116161",title:"Dr.",name:"Andrzej",surname:"Kowalski",slug:"andrzej-kowalski",fullName:"Andrzej Kowalski"},{id:"138505",title:"Prof.",name:"Jan",surname:"Pałyga",slug:"jan-palyga",fullName:"Jan Pałyga"}],corrections:null},{id:"35095",title:"Two-Dimensional Gel Electrophoresis (2-DE)",doi:"10.5772/38312",slug:"two-dimensional-gel-electrophoresis",totalDownloads:4047,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Bruno Baudin",downloadPdfUrl:"/chapter/pdf-download/35095",previewPdfUrl:"/chapter/pdf-preview/35095",authors:[{id:"116600",title:"Prof.",name:"Bruno",surname:"Baudin",slug:"bruno-baudin",fullName:"Bruno Baudin"}],corrections:null},{id:"35096",title:"High Speed Isoelectric Focusing of Proteins Enabling Rapid Two-Dimensional Gel Electrophoresis",doi:"10.5772/36854",slug:"high-speed-ief-and-increased-two-dimensional-gel-electrophoresis-throughput",totalDownloads:3451,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Gary B. Smejkal and Darren J. Bauer Part",downloadPdfUrl:"/chapter/pdf-download/35096",previewPdfUrl:"/chapter/pdf-preview/35096",authors:[{id:"110134",title:"Prof.",name:"Gary",surname:"Smejkal",slug:"gary-smejkal",fullName:"Gary Smejkal"}],corrections:null},{id:"35097",title:"Denaturing Gradient Gel Electrophoresis (DGGE) in Microbial Ecology - Insights from Freshwaters",doi:"10.5772/38177",slug:"denaturing-gradient-gel-electrophoresis-dgge-in-microbial-ecology-insights-from-freshwaters",totalDownloads:11538,totalCrossrefCites:5,totalDimensionsCites:23,signatures:"Sofia Duarte, Fernanda Cassio and Claudia Pascoal",downloadPdfUrl:"/chapter/pdf-download/35097",previewPdfUrl:"/chapter/pdf-preview/35097",authors:[{id:"115878",title:"Dr.",name:"Sofia",surname:"Duarte",slug:"sofia-duarte",fullName:"Sofia Duarte"},{id:"138487",title:"Prof.",name:"Fernanda",surname:"Cássio",slug:"fernanda-cassio",fullName:"Fernanda Cássio"},{id:"138488",title:"Prof.",name:"Cláudia",surname:"Pascoal",slug:"claudia-pascoal",fullName:"Cláudia Pascoal"}],corrections:null},{id:"35098",title:"Statistical Analysis of Gel Electrophoresis Data",doi:"10.5772/36959",slug:"statistical-analysis-of-gel-electrophoresis-data",totalDownloads:4668,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Kimberly F. Sellers and Jeffrey C. Miecznikowski",downloadPdfUrl:"/chapter/pdf-download/35098",previewPdfUrl:"/chapter/pdf-preview/35098",authors:[{id:"84103",title:"Dr.",name:"Jeffrey",surname:"Miecznikowski",slug:"jeffrey-miecznikowski",fullName:"Jeffrey Miecznikowski"},{id:"95380",title:"Dr.",name:"Kimberly",surname:"Sellers",slug:"kimberly-sellers",fullName:"Kimberly Sellers"}],corrections:null},{id:"35099",title:"Quantitative Analysis of Electrophoresis Data - Application to Sequence-Specific Ultrasonic Cleavage of DNA",doi:"10.5772/37686",slug:"quantitative-analysis-of-electrophoresis-data-application-to-sequence-specific-ultrasonic-cleavage-o",totalDownloads:2574,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Sergei Grokhovsky, Irina Il’icheva, Dmitry Nechipurenko, Michail Golovkin, Georgy Taranov, Larisa Panchenko,\r\nRobert Polozov and Yury Nechipurenko",downloadPdfUrl:"/chapter/pdf-download/35099",previewPdfUrl:"/chapter/pdf-preview/35099",authors:[{id:"113885",title:"Dr.",name:"Sergei",surname:"Grokhovsky",slug:"sergei-grokhovsky",fullName:"Sergei Grokhovsky"},{id:"138334",title:"Dr.",name:"Irina",surname:"Il'Icheva",slug:"irina-il'icheva",fullName:"Irina Il'Icheva"},{id:"138335",title:"Dr.",name:"Dmitry",surname:"Nechipurenko",slug:"dmitry-nechipurenko",fullName:"Dmitry Nechipurenko"},{id:"138336",title:"Dr.",name:"Michail",surname:"Golovkin",slug:"michail-golovkin",fullName:"Michail Golovkin"},{id:"138337",title:"Mr.",name:"Georgy",surname:"Taranov",slug:"georgy-taranov",fullName:"Georgy Taranov"},{id:"138338",title:"Dr.",name:"Larisa",surname:"Panchenko",slug:"larisa-panchenko",fullName:"Larisa Panchenko"},{id:"138339",title:"Dr.",name:"Robert",surname:"Polozov",slug:"robert-polozov",fullName:"Robert Polozov"},{id:"138340",title:"Dr.",name:"Yury",surname:"Nechipurenko",slug:"yury-nechipurenko",fullName:"Yury Nechipurenko"}],corrections:null},{id:"35100",title:"The Use of Pulsed Field Gel Electrophoresis in Listeria monocytogenes Sub-Typing - Harmonization at the European Union Level",doi:"10.5772/38578",slug:"harmonization-of-listeria-monocytogenes-pfge-sub-typing-at-european-union-level",totalDownloads:3974,totalCrossrefCites:5,totalDimensionsCites:13,signatures:"Benjamin Felix, Trinh Tam Dao, Bertrand Lombard, Adrien Assere Anne Brisabois and Sophie Roussel",downloadPdfUrl:"/chapter/pdf-download/35100",previewPdfUrl:"/chapter/pdf-preview/35100",authors:[{id:"116745",title:"Dr.",name:"Sophie",surname:"Roussel",slug:"sophie-roussel",fullName:"Sophie Roussel"},{id:"118109",title:"Dr.",name:"Benjamin",surname:"Félix",slug:"benjamin-felix",fullName:"Benjamin Félix"}],corrections:null},{id:"35101",title:"Electrophoretic Techniques in Microbial Ecology",doi:"10.5772/38488",slug:"electrophoretic-techniques-in-microbial-ecology",totalDownloads:2492,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Elena Gonzalez-Toril, David Lara-Astiaso, Ricardo Amils and Angeles Aguilera",downloadPdfUrl:"/chapter/pdf-download/35101",previewPdfUrl:"/chapter/pdf-preview/35101",authors:[{id:"68352",title:"Dr.",name:"Angeles",surname:"Aguilera",slug:"angeles-aguilera",fullName:"Angeles Aguilera"},{id:"74686",title:"Dr.",name:"Ricardo",surname:"Amils",slug:"ricardo-amils",fullName:"Ricardo Amils"},{id:"117519",title:"Dr.",name:"Elena",surname:"González-Toril",slug:"elena-gonzalez-toril",fullName:"Elena González-Toril"},{id:"117529",title:"Mr.",name:"David",surname:"Lara-Astiaso",slug:"david-lara-astiaso",fullName:"David Lara-Astiaso"}],corrections:null},{id:"35102",title:"Application of Multiplex PCR, Pulsed-Field Gel Electrophoresis (PFGE), and BOX-PCR for Molecular Analysis of Enterococci",doi:"10.5772/37897",slug:"application-of-multiplex-pcr-pulsed-field-gel-electrophoresis-pfge-and-box-pcr-for-molecular-analysi",totalDownloads:3504,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Charlene R. Jackson, Lori M. Spicer, John B. Barrett and Lari M. Hiott",downloadPdfUrl:"/chapter/pdf-download/35102",previewPdfUrl:"/chapter/pdf-preview/35102",authors:[{id:"82511",title:"Dr",name:"Charlene",surname:"Jackson",slug:"charlene-jackson",fullName:"Charlene Jackson"},{id:"114713",title:"Mr.",name:"John",surname:"Barrett",slug:"john-barrett",fullName:"John Barrett"},{id:"137245",title:"Mrs.",name:"Lori",surname:"Spicer",slug:"lori-spicer",fullName:"Lori Spicer"},{id:"137246",title:"MSc.",name:"Lari",surname:"Hiott",slug:"lari-hiott",fullName:"Lari Hiott"}],corrections:null},{id:"35103",title:"The Use of Pulsed Field Gel Electrophoresis in Listeria monocytogenes Sub-Typing - Comparison with MLVA Method Coupled with Gel Electrophoresis",doi:"10.5772/38342",slug:"feasibility-of-the-mlva-method-coupled-with-agarose-gel-electrophoresis-for-subtyping-listeria-monoc",totalDownloads:2160,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Sophie Roussel, Marie-Leone Vignaud, Jonass T Larsson, Benjamin Felix, Aurore Rossignol,\r\nEva Moller Nielsen and Anne Brisabois",downloadPdfUrl:"/chapter/pdf-download/35103",previewPdfUrl:"/chapter/pdf-preview/35103",authors:[{id:"116745",title:"Dr.",name:"Sophie",surname:"Roussel",slug:"sophie-roussel",fullName:"Sophie Roussel"},{id:"118109",title:"Dr.",name:"Benjamin",surname:"Félix",slug:"benjamin-felix",fullName:"Benjamin Félix"}],corrections:null},{id:"35104",title:"Restriction Fragment Length Polymorphism Analysis of PCR-Amplified Fragments (PCR-RFLP) and Gel Electrophoresis - Valuable Tool for Genotyping and Genetic Fingerprinting",doi:"10.5772/37724",slug:"restriction-fragment-length-polymorphism-analysis-of-pcr-amplified-fragments-pcr-rflp-and-related-te",totalDownloads:32402,totalCrossrefCites:4,totalDimensionsCites:19,signatures:"Henrik Berg Rasmussen",downloadPdfUrl:"/chapter/pdf-download/35104",previewPdfUrl:"/chapter/pdf-preview/35104",authors:[{id:"114068",title:"Dr.",name:"Henrik",surname:"Rasmussen",slug:"henrik-rasmussen",fullName:"Henrik Rasmussen"}],corrections:null},{id:"35105",title:"Application of Two-Dimensional Gel Electrophoresis to Microbial Systems",doi:"10.5772/38125",slug:"application-of-two-dimensional-gel-electrophoresis-to-microbial-systems",totalDownloads:9827,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Fatemeh Tabandeh, Parvin Shariati and Mahvash Khodabandeh",downloadPdfUrl:"/chapter/pdf-download/35105",previewPdfUrl:"/chapter/pdf-preview/35105",authors:[{id:"115663",title:"Dr.",name:"Fatemeh",surname:"Tabandeh",slug:"fatemeh-tabandeh",fullName:"Fatemeh Tabandeh"},{id:"118100",title:"Dr.",name:"Parvin",surname:"Shariati",slug:"parvin-shariati",fullName:"Parvin Shariati"},{id:"118101",title:"Dr.",name:"Mahvash",surname:"Khodabandeh",slug:"mahvash-khodabandeh",fullName:"Mahvash Khodabandeh"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"2303",title:"Gel Electrophoresis",subtitle:"Advanced Techniques",isOpenForSubmission:!1,hash:"99b6af88dfcbe43d82dc7293184207c1",slug:"gel-electrophoresis-advanced-techniques",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/2303.jpg",editedByType:"Edited by",editors:[{id:"123648",title:"Dr.",name:"Sameh",surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1490",title:"Affinity Chromatography",subtitle:null,isOpenForSubmission:!1,hash:"b605cd690ec61005a6b6b27c934de321",slug:"affinity-chromatography",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1490.jpg",editedByType:"Edited by",editors:[{id:"123648",title:"Dr.",name:"Sameh",surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2529",title:"State of the Art of Therapeutic Endocrinology",subtitle:null,isOpenForSubmission:!1,hash:"dceb40f2949b5ab959e7353030595761",slug:"state-of-the-art-of-therapeutic-endocrinology",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/2529.jpg",editedByType:"Edited by",editors:[{id:"123648",title:"Dr.",name:"Sameh",surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4726",title:"Recent Advances in Proteomics Research",subtitle:null,isOpenForSubmission:!1,hash:"859400536370791c6bcb3e464b0c5835",slug:"recent-advances-in-proteomics-research",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/4726.jpg",editedByType:"Edited by",editors:[{id:"123648",title:"Dr.",name:"Sameh",surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"584",title:"Advances in Applied Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"fcc9fab84b820983f2a462d5145d2a0e",slug:"advances-in-applied-biotechnology",bookSignature:"Marian Petre",coverURL:"https://cdn.intechopen.com/books/images_new/584.jpg",editedByType:"Edited by",editors:[{id:"74654",title:"Prof.",name:"Marian",surname:"Petre",slug:"marian-petre",fullName:"Marian Petre"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1910",title:"Oxidative Stress",subtitle:"Molecular Mechanisms and Biological Effects",isOpenForSubmission:!1,hash:"a5fc01580caefb2637f31d59b377032a",slug:"oxidative-stress-molecular-mechanisms-and-biological-effects",bookSignature:"Volodymyr Lushchak and Halyna M. Semchyshyn",coverURL:"https://cdn.intechopen.com/books/images_new/1910.jpg",editedByType:"Edited by",editors:[{id:"96151",title:"Dr.",name:"Volodymyr",surname:"Lushchak",slug:"volodymyr-lushchak",fullName:"Volodymyr Lushchak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2115",title:"Biotechnology",subtitle:"Molecular Studies and Novel Applications for Improved Quality of Human Life",isOpenForSubmission:!1,hash:"07ebd9c0af07dd6b0649bc67ae612b1e",slug:"biotechnology-molecular-studies-and-novel-applications-for-improved-quality-of-human-life",bookSignature:"Reda Helmy Sammour",coverURL:"https://cdn.intechopen.com/books/images_new/2115.jpg",editedByType:"Edited by",editors:[{id:"32232",title:"Dr.",name:"Reda",surname:"Sammour",slug:"reda-sammour",fullName:"Reda Sammour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3404",title:"Environmental Biotechnology",subtitle:"New Approaches and Prospective Applications",isOpenForSubmission:!1,hash:"925d14b19ca0f7945996b169d9836f5b",slug:"environmental-biotechnology-new-approaches-and-prospective-applications",bookSignature:"Marian Petre",coverURL:"https://cdn.intechopen.com/books/images_new/3404.jpg",editedByType:"Edited by",editors:[{id:"74654",title:"Prof.",name:"Marian",surname:"Petre",slug:"marian-petre",fullName:"Marian Petre"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4529",title:"Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"187f1fe91150e1be30e641799522b977",slug:"biotechnology",bookSignature:"Deniz Ekinci",coverURL:"https://cdn.intechopen.com/books/images_new/4529.jpg",editedByType:"Edited by",editors:[{id:"13652",title:"Associate Prof.",name:"Deniz",surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",isOpenForSubmission:!1,hash:"3a8efa00b71abea11bf01973dc589979",slug:"bioluminescence-analytical-applications-and-basic-biology",bookSignature:"Hirobumi Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",editedByType:"Edited by",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"69565",slug:"erratum-laser-based-additive-manufacturing-technology-for-fabrication-of-titanium-aluminide-based-co",title:"Erratum - Laser Based Additive Manufacturing Technology for Fabrication of Titanium Aluminide-Based Composites in Aerospace Component Applications",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/69565.pdf",downloadPdfUrl:"/chapter/pdf-download/69565",previewPdfUrl:"/chapter/pdf-preview/69565",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/69565",risUrl:"/chapter/ris/69565",chapter:{id:"66879",slug:"laser-based-additive-manufacturing-technology-for-fabrication-of-titanium-aluminide-based-composites",signatures:"Sadiq Abiola Raji, Abimbola Patricia Idowu Popoola, Sisa Leslie Pityana, Olawale Muhmmed Popoola, Fatai Olufemi Aramide, Monnamme Tlotleng and Nana Kwamina Kum Arthur",dateSubmitted:"November 7th 2018",dateReviewed:"February 28th 2019",datePrePublished:"September 27th 2019",datePublished:null,book:{id:"8558",title:"Aerodynamics",subtitle:null,fullTitle:"Aerodynamics",slug:null,publishedDate:null,bookSignature:"Prof. Mofid Gorji-Bandpy and Prof. Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"66879",slug:"laser-based-additive-manufacturing-technology-for-fabrication-of-titanium-aluminide-based-composites",signatures:"Sadiq Abiola Raji, Abimbola Patricia Idowu Popoola, Sisa Leslie Pityana, Olawale Muhmmed Popoola, Fatai Olufemi Aramide, Monnamme Tlotleng and Nana Kwamina Kum Arthur",dateSubmitted:"November 7th 2018",dateReviewed:"February 28th 2019",datePrePublished:"September 27th 2019",datePublished:null,book:{id:"8558",title:"Aerodynamics",subtitle:null,fullTitle:"Aerodynamics",slug:null,publishedDate:null,bookSignature:"Prof. Mofid Gorji-Bandpy and Prof. Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"8558",title:"Aerodynamics",subtitle:null,fullTitle:"Aerodynamics",slug:null,publishedDate:null,bookSignature:"Prof. Mofid Gorji-Bandpy and Prof. Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7925",leadTitle:null,title:"Embolic Disease",subtitle:"Evolving Diagnostic and Management Approaches",reviewType:"peer-reviewed",abstract:"In the realm of medical practice, the word “embolism” has many implications to many people, with most providers instinctively placing this word within an inherently negative context. Derived from the Greek word, ἐμβολισμός, this term most literally means “interposition.” Yet, regardless of how benign this etymological derivation may appear, the clinical context is quite the opposite—a symbol of much dreaded morbidity and mortality. Whether the embolus consists of a blood clot, a fat globule, a bubble of gas, amniotic fluid, or even an iatrogenic or traumatic foreign body, the unfavorable connotations persist even if the patient has few or no associated symptoms and requires no intervention.The primary goal of this book is to provide the reader with an overview of the most common types of embolic phenomena encountered in clinical practice, including some of the key related diagnostic and therapeutic considerations. Among chapters featured in the current collection are important contributions in the areas of pulmonary embolism, fat embolism, embolic complications of non-malignant cardiac tumors, acute arterial embolism of the lower extremity, thrombophilia in pregnancy, bullet and shrapnel embolization, coronary artery embolization, as well as a comprehensive review of venous interventions utilized in the management of thromboembolic disorders. When measured in terms of both human and financial costs, broadly defined “embolic phenomena” have tremendous impact on healthcare systems and societies around the globe. Through this academic effort of both our editorial team and individual chapter authors, we hope to provide the reader with valuable insight into the gravity of the collective problem. Among key takeaway messages of this book is that diagnostic relativity and uncertainty continue to prevail in the realm of “embolic diseases.” Consequently, much more progress is required before we are able to declare success.",isbn:"978-1-78923-860-0",printIsbn:"978-1-78923-859-4",pdfIsbn:"978-1-78985-330-8",doi:"10.5772/intechopen.77755",price:119,priceEur:129,priceUsd:155,slug:"embolic-diseases-evolving-diagnostic-and-management-approaches",numberOfPages:176,isOpenForSubmission:!1,hash:"70a90d1a07cc875f7eda4641fbf32339",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg and Mamta Swaroop",publishedDate:"February 5th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/7925.jpg",keywords:null,numberOfDownloads:3664,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:2,numberOfTotalCitations:3,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 4th 2018",dateEndSecondStepPublish:"October 30th 2018",dateEndThirdStepPublish:"February 18th 2019",dateEndFourthStepPublish:"March 19th 2019",dateEndFifthStepPublish:"May 18th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki",profilePictureURL:"https://mts.intechopen.com/storage/users/181694/images/system/181694.jpeg",biography:"Stanislaw P. Stawicki, MD, MBA, FACS, FAIM, is Chair of the Department of Research of Innovation, St. Luke\\'s University Health Network, Bethlehem, Pennsylvania, and Professor of Surgery at Temple University School of Medicine. Dr. Stawicki has edited numerous books and book series on the topics of clinical research, medical education, medical leadership, patient safety, health security, and various other subjects. He is a member of multiple editorial boards and has co-authored more than 650 publications. He served as the inaugural president of the American College of Academic International Medicine (ACAIM) and directed its Taskforce on International Health Security. He has given a multitude of scientific presentations around the globe and is board certified in general surgery, surgical critical care, and neurocritical care.",institutionString:"St. Luke's University Health Network",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"29",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"St. Luke's University Health Network",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"197820",title:"Dr.",name:"Mamta",middleName:null,surname:"Swaroop",slug:"mamta-swaroop",fullName:"Mamta Swaroop",profilePictureURL:"https://mts.intechopen.com/storage/users/197820/images/system/197820.jpeg",biography:"Mamta Swaroop, MD, FACS FICS FAIM, is Associate Professor of Surgery in the Division of Trauma and \nCritical Care, the Director for the Center for Global Surgery in the Institute for Global Health, and the Global Surgery Program Director at Northwestern University Feinberg School of Medicine. Her lab, the Northwestern Trauma and Surgical Initiative (www.ntsi.global), aims to build sustainable access to surgical care through education and research in low-resource settings.\nThe NTSI conducts community-directed research and programmatic I development in Southeast Asia, \nSouth America, and Chicago, Illinois, USA. To honor her family’s legacy, she founded a 501(c)(3) NGO, the Sadanah Foundation (www.sadanah.org), to build sustainable access to health care and education in low-resource settings.",institutionString:"Northwestern University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/64343/images/system/64343.jpeg",biography:"Dr. Firstenberg is a cardiothoracic surgeon and current Director of Research and Special Projects for the William Novick Global Cardiac Alliance. Previously, he was Chief of Cardiothoracic at the Medical Center of Aurora. He attended Case Western Reserve University Medical School, trained in General Surgery at university hospitals in Cleveland and with Cardiothoracic Fellowships at The Ohio State University and The Cleveland Clinic. He is active in numerous medical societies and a Founding Fellow and President-elect of the American College of Academic International Medicine. He has lectured extensively worldwide and authored over 200 peer-reviewed manuscripts, abstracts, and book chapters. He has edited numerous textbooks ranging from Medical Leadership, Patient Safety, and Extra-corporeal Membrane Oxygenation.",institutionString:"The Medical Center of Aurora",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"22",totalChapterViews:"0",totalEditedBooks:"10",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1155",title:"Vascular Surgery",slug:"vascular-surgery"}],chapters:[{id:"70644",title:"Introductory Chapter: Defining the True Global Impact of Embolic Phenomena",slug:"introductory-chapter-defining-the-true-global-impact-of-embolic-phenomena",totalDownloads:277,totalCrossrefCites:0,authors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}]},{id:"66295",title:"Fat Embolism: What We Have Learned from Animal Models",slug:"fat-embolism-what-we-have-learned-from-animal-models",totalDownloads:265,totalCrossrefCites:1,authors:[{id:"273097",title:"M.D.",name:"Alan",surname:"Poisner",slug:"alan-poisner",fullName:"Alan Poisner"},{id:"273105",title:"Dr.",name:"Agostino",surname:"Molteni",slug:"agostino-molteni",fullName:"Agostino Molteni"}]},{id:"67715",title:"Non-Malignant Cardiac Tumors",slug:"non-malignant-cardiac-tumors",totalDownloads:418,totalCrossrefCites:0,authors:[{id:"64343",title:null,name:"Michael S.",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"},{id:"198418",title:"Dr.",name:"Bethany",surname:"Malone",slug:"bethany-malone",fullName:"Bethany Malone"},{id:"299466",title:"Dr.",name:"Sarah",surname:"Eapen",slug:"sarah-eapen",fullName:"Sarah Eapen"}]},{id:"70645",title:"Coronary Embolic Phenomena: High-Impact, Low-Frequency Events",slug:"coronary-embolic-phenomena-high-impact-low-frequency-events",totalDownloads:174,totalCrossrefCites:0,authors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}]},{id:"66190",title:"Acute Arterial Embolism of the Lower Limb",slug:"acute-arterial-embolism-of-the-lower-limb",totalDownloads:791,totalCrossrefCites:0,authors:[{id:"274389",title:"Dr.",name:"André",surname:"Casas",slug:"andre-casas",fullName:"André Casas"}]},{id:"66156",title:"Thrombophilia and Pregnancy: Diagnosis and Management",slug:"thrombophilia-and-pregnancy-diagnosis-and-management",totalDownloads:717,totalCrossrefCites:0,authors:[{id:"48837",title:"Prof.",name:"Panagiotis",surname:"Tsikouras",slug:"panagiotis-tsikouras",fullName:"Panagiotis Tsikouras"},{id:"229224",title:"Ms.",name:"Theodora",surname:"Deftereou",slug:"theodora-deftereou",fullName:"Theodora Deftereou"},{id:"229225",title:"Ms.",name:"Anna",surname:"Chalkidou",slug:"anna-chalkidou",fullName:"Anna Chalkidou"},{id:"229226",title:"Ms.",name:"Xanthoula",surname:"Anthoulaki",slug:"xanthoula-anthoulaki",fullName:"Xanthoula Anthoulaki"},{id:"229230",title:"Prof.",name:"Stefanos",surname:"Zervoudis",slug:"stefanos-zervoudis",fullName:"Stefanos Zervoudis"},{id:"229232",title:"Prof.",name:"Georgios",surname:"Iatrakis",slug:"georgios-iatrakis",fullName:"Georgios Iatrakis"},{id:"229233",title:"Prof.",name:"Georgios",surname:"Galazios",slug:"georgios-galazios",fullName:"Georgios Galazios"},{id:"282013",title:"Mrs.",name:"Anastasia",surname:"Bothou",slug:"anastasia-bothou",fullName:"Anastasia Bothou"},{id:"282016",title:"Mr.",name:"Eleftherios",surname:"Chatzimichael",slug:"eleftherios-chatzimichael",fullName:"Eleftherios Chatzimichael"},{id:"290370",title:"Dr.",name:"Anna",surname:"Christoforidou",slug:"anna-christoforidou",fullName:"Anna Christoforidou"},{id:"290371",title:"Mrs.",name:"Fotini",surname:"Gaitatzi",slug:"fotini-gaitatzi",fullName:"Fotini Gaitatzi"},{id:"290372",title:"Mr.",name:"Ioannis",surname:"Tsirkas",slug:"ioannis-tsirkas",fullName:"Ioannis Tsirkas"},{id:"290373",title:"Mrs.",name:"Arsou",surname:"Chalil Bourazan",slug:"arsou-chalil-bourazan",fullName:"Arsou Chalil Bourazan"},{id:"290374",title:"Prof.",name:"Werner",surname:"Rath",slug:"werner-rath",fullName:"Werner Rath"},{id:"298197",title:"Mrs.",name:"Eirini",surname:"Bampageorgaka",slug:"eirini-bampageorgaka",fullName:"Eirini Bampageorgaka"}]},{id:"65896",title:"Peripartum Pulmonary Embolism",slug:"peripartum-pulmonary-embolism",totalDownloads:467,totalCrossrefCites:0,authors:[{id:"107703",title:"Dr.",name:"Nissar",surname:"Shaikh",slug:"nissar-shaikh",fullName:"Nissar Shaikh"}]},{id:"66734",title:"Venous Interventions: From Lower-Limb Deep Vein Thrombosis to May-Thurner Syndrome and Budd-Chiari Syndrome",slug:"venous-interventions-from-lower-limb-deep-vein-thrombosis-to-may-thurner-syndrome-and-budd-chiari-sy",totalDownloads:409,totalCrossrefCites:0,authors:[{id:"66436",title:"Prof.",name:"Hao",surname:"Xu",slug:"hao-xu",fullName:"Hao Xu"},{id:"274933",title:"Associate Prof.",name:"Ding-Kwo",surname:"Wu",slug:"ding-kwo-wu",fullName:"Ding-Kwo Wu"},{id:"293982",title:"Prof.",name:"Maoheng",surname:"Zu",slug:"maoheng-zu",fullName:"Maoheng Zu"},{id:"296522",title:"Dr.",name:"Chih-Wei",surname:"Chen",slug:"chih-wei-chen",fullName:"Chih-Wei Chen"}]},{id:"70768",title:"Bullet and Shrapnel Embolism: When “Uncommon” Meets “Dangerous”",slug:"bullet-and-shrapnel-embolism-when-uncommon-meets-dangerous-",totalDownloads:146,totalCrossrefCites:0,authors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"278926",firstName:"Ivana",lastName:"Barac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/278926/images/8058_n.jpg",email:"ivana.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6672",title:"Vignettes in Patient Safety",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"2c8b1831a8cceea8be146cbfbd582b81",slug:"vignettes-in-patient-safety-volume-3",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/6672.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7043",title:"Clinical Management of Shock",subtitle:"The Science and Art of Physiological Restoration",isOpenForSubmission:!1,hash:"0f79000187ae93618e2213631e00047c",slug:"clinical-management-of-shock-the-science-and-art-of-physiological-restoration",bookSignature:"Stanislaw P. Stawicki and Mamta Swaroop",coverURL:"https://cdn.intechopen.com/books/images_new/7043.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8645",title:"Contemporary Topics in Graduate Medical Education",subtitle:null,isOpenForSubmission:!1,hash:"76d224ba3c158c43fda8141a61ababd6",slug:"contemporary-topics-in-graduate-medical-education",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, James P. Orlando and Thomas J. Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/8645.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7447",title:"Vignettes in Patient Safety",subtitle:"Volume 4",isOpenForSubmission:!1,hash:"88d9ec0c55c5e7e973a35eafa413ded2",slug:"vignettes-in-patient-safety-volume-4",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7447.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"980",title:"Organ Donation and Transplantation",subtitle:"Public Policy and Clinical Perspectives",isOpenForSubmission:!1,hash:"591607d84f802684beb4660893273004",slug:"organ-donation-and-transplantation-public-policy-and-clinical-perspectives",bookSignature:"Gurch Randhawa",coverURL:"https://cdn.intechopen.com/books/images_new/980.jpg",editedByType:"Edited by",editors:[{id:"83650",title:"Dr.",name:"Gurch",surname:"Randhawa",slug:"gurch-randhawa",fullName:"Gurch Randhawa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"363",title:"Gangrene",subtitle:"Current Concepts and Management Options",isOpenForSubmission:!1,hash:"b66b0835c5a8c7c89c0daaf4e7dc0644",slug:"gangrene-current-concepts-and-management-options",bookSignature:"Alexander Vitin",coverURL:"https://cdn.intechopen.com/books/images_new/363.jpg",editedByType:"Edited by",editors:[{id:"46555",title:"Dr.",name:"Alexander",surname:"Vitin",slug:"alexander-vitin",fullName:"Alexander Vitin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2703",title:"Vascular Surgery",subtitle:"Principles and Practice",isOpenForSubmission:!1,hash:"7e1d45158df7b8e62946961a0e551e0f",slug:"vascular-surgery-principles-and-practice",bookSignature:"Dai Yamanouchi",coverURL:"https://cdn.intechopen.com/books/images_new/2703.jpg",editedByType:"Edited by",editors:[{id:"68673",title:"Dr.",name:"Dai",surname:"Yamanouchi",slug:"dai-yamanouchi",fullName:"Dai Yamanouchi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1002",title:"Vascular Surgery",subtitle:null,isOpenForSubmission:!1,hash:"1b12f3c85c6e19555f03e8c53e2af7fa",slug:"vascular-surgery",bookSignature:"Dai Yamanouchi",coverURL:"https://cdn.intechopen.com/books/images_new/1002.jpg",editedByType:"Edited by",editors:[{id:"68673",title:"Dr.",name:"Dai",surname:"Yamanouchi",slug:"dai-yamanouchi",fullName:"Dai Yamanouchi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5155",title:"Frontiers in Transplantology",subtitle:null,isOpenForSubmission:!1,hash:"f358194cd9d33671b03808b346f354dc",slug:"frontiers-in-transplantology",bookSignature:"Hesham Abdeldayem, Ahmed F. El-Kased and Ahmed El-Shaarawy",coverURL:"https://cdn.intechopen.com/books/images_new/5155.jpg",editedByType:"Edited by",editors:[{id:"72383",title:"Prof.",name:"Hesham",surname:"Abdeldayem",slug:"hesham-abdeldayem",fullName:"Hesham Abdeldayem"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3282",title:"Gangrene Management",subtitle:"New Advancements and Current Trends",isOpenForSubmission:!1,hash:"2addd66f1300faca3348977f1a1916ef",slug:"gangrene-management-new-advancements-and-current-trends",bookSignature:"Alexander Vitin",coverURL:"https://cdn.intechopen.com/books/images_new/3282.jpg",editedByType:"Edited by",editors:[{id:"46555",title:"Dr.",name:"Alexander",surname:"Vitin",slug:"alexander-vitin",fullName:"Alexander Vitin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"19084",title:"The Chemistry Behind the Use of Agricultural Biomass as Sorbent for Toxic Metal Ions: pH Influence, Binding Groups, and Complexation Equilibria",doi:"10.5772/16451",slug:"the-chemistry-behind-the-use-of-agricultural-biomass-as-sorbent-for-toxic-metal-ions-ph-influence-bi",body:'\n\t\t
Waters, because of human activities, are often characterized by different kinds of contamination. In this chapter we will deal with contamination due to toxic metal ions. To purify wastewaters from these pollutants different treatment processes are applied, which include chemical precipitation, chemical oxidation or reduction, electrochemical treatment, membrane filtration, ion exchange, carbon sorption, and coprecipitation/sorption. A number of these processes are extremely expensive and some of them are ineffective at low concentrations. Alternative cost effective technologies based on low cost sorbents are nowadays of great concern in the applied research. These low cost sorbents must be abundant in nature, easily available, and above all they have to fit the worldwide request of recycling. Certain waste products from agricultural operations may become inexpensive sorbents and the potential of some of these wastes for the removal of a number of metal ions has been extensively investigated.
\n\t\t\tThe use of these wastes as sorbents fulfills two important scopes for the protection of environment: the reuse of waste materials and the detoxification of wastewaters.
\n\t\t\tThe biomass source depends on the agricultural production prevailing in the geographical areas where pollution and subsequent decontamination process take place.
\n\t\t\tThe real challenge in the field of biosorption is to identify the chemical mechanism that governs metal uptake by biosorbents. Vegetal biomaterials, constituted principally by lignin, cellulose and by a non-negligible portion of fatty acid as major constituents, can be regarded as natural ion-exchange materials. Furthermore, the functional groups on the biomaterial surface, such as hydroxyl, carbonyl, amino, sulphydryl and carboxylic groups, allow the sorption of metal ions by strong coordination. Therefore, identification of the functional groups can help in shedding light on the mechanism responsible for metal uptake. Also some factors affecting the sorption process such as particle size, pH, metal ion concentration, agitation time, and kinetics must be investigated. The results obtained contribute to the knowledge of the overall process that takes place.
\n\t\t\tNo doubt that metal removal from waste water by biomass requires a multidisciplinary approach (as do environmental sciences in general). The efforts of analytical chemists and solution equilibrium experts can give an important contribution to the knowledge and optimization of these processes.
\n\t\t\tThe study of the chemical characteristics (complex formation constants, hydrolysis,…) of binding groups present on the biomass is of paramount importance to identify the mechanisms of metal sequestration, and to predict the selectivity towards the different cations, the strength of binding and the influence of pH on the sorption processes.
\n\t\tMany elements play a double role in the physiology of living organisms; some are indispensable, while most of them are toxic at elevated concentrations. The concern on the potential toxic effects of metal ions has been increasing in recent years. As a result of industrial activities and technological development, heavy metals released into the environment pose a significant threat to environment and public health because of their toxicity, accumulation in the food chain and persistence in nature.
\n\t\t\tIn the sixties of last century the importance of controlling the concentration of toxic metal ions in waters for human use became apparent after the Four Big Pollution Diseases of Japan, a group of manmade diseases all caused by environmental pollution due to improper handling of industrial wastes by Japanese corporations.
\n\t\t\tTwo of the Four Big Pollution Diseases of Japan, Minamata (1932-1968) and Niigata disease (1965), were due to mercury poisoning. The first one, first discovered in Minamata in 1956, is a neurological disease characterized by ataxia, numbness in the hands and feet, general muscle weakness, narrowing of the field of vision and damage to hearing and speech, and in extreme cases, insanity, paralysis, coma and death. This poisoning was caused by the release of methyl mercury in the industrial wastewater from the Chisso Corporation\'s chemical factory. The highly toxic mercury has been bio-accumulated in shellfish and fish in Minamata Bay and the Shiranui Sea, and human and animals deaths continued over more than 30 years. In March 2001, 2265 victims had been officially recognized (1784 of whom had died) and, in addition, individual payments of medical expenses and a medical allowance had been provided to 10072 people in Kumamoto, Kagoshima and Niigata for their mercury related diseases (
Environmental pollution, strictly interconnected to industrial spread, started in the most advanced countries. It is now diffused all over the world with a significant predominance in the emerging industrialized states. Varying factors contribute to the location of a large number of “potential polluting” industries in these countries due to the quite recent industrialization: source of raw materials (mines, forests, …), water availability, ready availability of manpower and its lower incidence on cost, laws not yet as restrictive as in advanced industrial countries. Actually, most raw matter is treated locally, not only for their natural resources, but also because of the lower cost of preliminary treatments. These treatments are the most hazardous, the heaviest and above all the most polluting.
\n\t\t\t\tIn order to have a clear picture of the main anthropogenic sources of metal, or better said toxic element in general, pollution and their health effects, the sources, uses, correlated health disorders, and suggested concentration limits are reported in the following sections for each main polluting toxic element.
\n\t\t\t\tThe element aluminium (atomic weight 26.98) is a silver white metal (density 2.7 g/mL). In its inorganic compound it presents only two oxidation states: 0, +3. Aluminium is the most abundant metal in the Earth\'s crust, and the third most abundant element, after oxygen and silicon. Because of its extremely low redox-potential potential in nature, it is found combined in over 270 different minerals as oxides or silicates. Aluminium is remarkable for low density and for its ability to resist corrosion due to the phenomenon of passivation.
\n\t\t\t\t\tStructural components made from aluminium and its alloys are vital to the aerospace industry and are very important in transportation and building. Aluminium compounds are widely used in the paper industry, in the dye production, in the textile industry, in processed food, and as a component of many cosmetic and pharmaceutical preparations.
\n\t\t\t\t\tSoluble aluminium salts have demonstrated toxic effects in elevated concentrations. Its toxicity can be traced to deposition in bone and the central nervous system. Because aluminium competes with calcium for absorption, increased amounts of dietary aluminium may contribute to osteopenia (reduced skeletal mineralization). In very high doses, aluminium can cause neurotoxicity. In a smaller amount it can give in susceptible people contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion.
\n\t\t\t\t\tOwing to limitations in the animal data as a model for humans and the uncertainty surrounding the human data, a health-based WHO guideline value cannot be derived; however, practicable levels based on optimization of the coagulation process in drinking-water plants using aluminium-based coagulants are derived: 0.1 mg/L or less in large water treatment facilities, and 0.2 mg/L or less in small facilities (World Health Organization [WHO], 2008).
\n\t\t\t\tThe element arsenic exists in three allotropes: grey arsenic, density 5.73 g/mL; yellow arsenic, density 1.93 g/mL; and non stable black amorphous arsenic, density 4.73 g/mL. Arsenic (atomic weight 74.92) shows metallic as well as non metallic properties. In its inorganic compound it presents different oxidation states: -3, 0, +3, +5. It is released into the air by volcanoes and is a natural contaminant of some deep-water wells. Arsenic is used to preserve wood, as a pesticide, to produce glass, in copper and other metal manufacturing, in the electronics industry and in medicine.
\n\t\t\t\t\tOccupational exposure to arsenic is common in the smelting industry (in which arsenic is a by-product) and in the microelectronics industry. Low-level arsenic exposure takes place in the general population through the use of inorganic arsenic compounds in common products such as wood preservatives, pesticides, herbicides, fungicides, and paints; through the consumption of foods treated with arsenic-containing pesticides; and through the burning of fossil fuels in which arsenic is a contaminant. The toxicity depends on its valence oxidation state and on its form inorganic or organic. In general, inorganic arsenic is more toxic than organic arsenic, and trivalent arsenite is more toxic than pentavalent and zero-valent arsenic. Arsenic, particularly in its trivalent form, inhibits critical sulphydryl-containing enzymes. In the pentavalent form, the competitive substitution of arsenic for phosphate can lead to rapid hydrolysis of the high-energy bonds in compounds such as ATP. The normal intake of arsenic by adults primarily occurs through ingestion and averages around 50 μg/d. After absorption, inorganic arsenic accumulates in the liver, spleen, kidneys, lungs, and gastrointestinal tract. It is then rapidly cleared from these sites but leaves a residue in keratin-rich tissues such as skin, hair, and nails.
\n\t\t\t\t\tGuide line value for drinking water is 0.01 mg/L. It is a provisional value, as there is evidence of a hazard, but the available information on heath effects is limited (WHO, 2008).
\n\t\t\t\tCadmium (atomic weight 112.41) is a silver white metal (density 8.65 g/mL). The oxidation states are 0, +2. The main uses of cadmium were steel production, non-ferrous metal production, refining, cement manufacture, cadmium plating, battery manufacture, waste and combustion, and phosphate fertilizers. Nowadays, because of concerns about its environmental toxicity, the use of cadmium has drastically decreased. About two thirds of the cadmium in use today come from nickel-cadmium batteries, the rest from pigments, metal plating and the plastic industry. It is a lot like lead and mercury, in that it accumulates both in the environment and in the body, causing long-term damage to life.
\n\t\t\t\t\tCadmuim toxicity can manifest in a variety of syndromes, as hypertension, renal dysfunction, bone defects, hepatic injuries, lung damage, and reproductive effects. The maximum acceptable cadmium in drinking water is 0.003 mg/L (WHO, 2008).
\n\t\t\t\tChromium (atomic weight 51.99) is a lustrous, brittle, hard silver-gray metal (density 7.14 g/mL). It exists in different oxidation states: -2, 0, +2, +3, +6. Chromium is mainly used in steel production and in chrome plating. Its products are also used in leather tanning, printing, dye production, pigments, wood preservatives, and many others.
\n\t\t\t\t\tThe respiratory and dermal toxicity of chromium are well-documented. Workers exposed to chromium have developed nasal irritation (at <0.01 mg/m3, acute exposure), nasal ulcers, perforation of the nasal septum (at ~2 µg/m3, subchronic or chronic exposure) and hypersensitivity reactions and "chrome holes" of the skin. Among the general population, contact dermatitis has been associated with the use of bleaches and detergents. Compounds of both Cr(VI) and Cr(III) have induced developmental effects in experimental animals that include neural tube defects, malformations, and fetal deaths. The speciation of chromium has become of relevant interest because of the association Cr(VI)-cancer. The different toxicity of the two forms Cr(VI) and Cr(III) are now under examination, even if at the moment the WHO Guidelines report the provisional value 0.05 mg/L referred to total chromium (WHO, 2008).
\n\t\t\t\tCopper (atomic weight 63.54) is ductile, lustrous, reddish metal (density 8.92 g/mL). The main application of copper is in electrical industry (transformers, generators, and transmission of electricity). Pollution derives from copper mining, brass manufacture, electroplating industries and from the use of its compounds in agriculture. Copper is known as one of the highest mammalian toxic compounds; inhalation of copper containing sprays is linked with an increase in lung cancer among exposed workers. Copper sulphate is widely used as an algaecide in water supply reservoirs affected by blooms of blue-green algae.
\n\t\t\t\t\tThe maximum acceptable copper in drinking water is 2 mg/L (WHO, 2008).
\n\t\t\t\tLead (atomic weight 207.19) is a bluish-grey, soft, dense metal (density 11.34 g/mL). The oxidation states are 0, +2, +4. Lead is extremely resistant to corrosion and is a poor conductor of electricity. Large quantities of lead, both as the metal and as the dioxide, are used in storage batteries. Lead is also used in cable covering, as ammunition, as electrodes, in solder and as roofing material. The metal is used as shielding from radiation, e.g. in x-ray rooms and nuclear reactors. Lead oxide is also used in the manufacture of fine crystal glass. Historically, lead was used in plumbing. Tetraethyl lead was used as an anti-knock agent in petrol, and as an additive in paints. These uses have been reduced recently because of environmental concerns about cumulative lead poisoning. Although lead is one of the most useful of all the metals, used since antiquity because of its wide distribution and its easiness to be extracted and to work with, it is also the metal that has the most damaging effects on human health.
\n\t\t\t\t\tEnvironmental contamination by lead probably dates back to Bronze Age. It can enter the human body through the uptake of food (65%), water (20%) and air (15%). Human activities, such as fuel combustion, industrial processes and solid waste combustion contribute to the rise of lead concentrations in the environment. Lead interferes with a variety of body processes and is toxic to many organs and tissues including heart, bones, intestines, kidneys, and reproductive and nervous systems. It interferes with the development of the nervous system and is therefore particularly toxic to children, causing potentially permanent learning and behavior disorders. Occupational exposure is a common cause of lead poisoning in adults. Lead can reach water through the corrosion of pipelines in water transportation systems. WHO Guidelines limit for lead in drinking water is 0.01 mg/L (WHO, 2008).
\n\t\t\t\tMercury (atomic weight 200.59) is a heavy, liquid at room temperature, silvery colored metal (density 13.53 g/mL). It presents the three oxidation states 0, +1, +2. The most modern uses are in batteries and cells. The Castner-Kellner process, that produces chlorine and sodium hydroxide, requires mercury in the entire process. It is furthermore used in thermometers, thermostats, switches, vacuum pumps, fluorescent and energy-saving lights, tooth fillings and electrical components. Many compounds of mercury have been used as medicines since many ages. However, in recent years, as awareness about the toxicity of mercury has increased amongst people, most of the medicines have become obsolete. Mercurochrome (used in cuts and wounds) and Thimerosal (as an dental amalgamation) are the compounds that are no more used in many countries. Mascara, an ingredient of cosmetics, contains some amounts of Thimerosal. During the past ten years mercury consumption has shown a strong upward trend. The major proportion can be accounted for by the chloro-alkali industry, from which mercury is released into the environment. Most of it finds its way to watercourses exposing aquatic ecosystems where mercury accumulates. The use of seed-dressings containing mercury is decreasing, although this use of mercurial’s is still considerable, and in view of findings in other countries elevated mercury levels in seed-eating birds and their predators must be expected. Many states in the US are now very strict against the use of mercury in cosmetics and medicines. Mercury in the form of gaseous vapors is used in mercury vapor lamps, neon signs and fluorescent lamps.
\n\t\t\t\t\tBiological properties of mercury are very important and include these characteristics: inhaled mercury is more dangerous than ingested mercury; human workers and handlers of mercury may become contaminated and mercury-diseased; elemental and inorganic mercury can be transformed to the extremely toxic methyl-mercury (CH3Hg+) by some microbes; mercury accumulates in living organisms, cells, tissues, organs and organisms; mercury can damage immune cells and tissues, and organs such as brain, heart, kidneys, lungs; mercury can be concentrated in the environment and then magnified upwards along the food chain (bioaccumulation and bio-magnification); all compounds of mercury, except those not soluble in water, are to be considered poisonous regardless of the manner of inhalation or ingestion. Mercury limit in drinking water is 0.006 mg/L (WHO, 2008).
\n\t\t\t\tNickel (atomic weight 58.69) is a ductile, malleable, silver-white metal (density 8.91 g/mL). It presents the oxidation states -1, 0, +1, +2, +3, +4. More than 70% of nickel produced annually is devoted to the production of alloys; nickel is used in a variety of electrolytic procedures, in the manufacture of batteries and in welding procedures, as a catalyst in large scale processes, and in the glass and ceramics industry. In addition to 8.5 million tons per year of nickel in the atmosphere due to natural sources, 43 million tons are released by anthropogenic activities. Population exposed at soluble nickel concentration < 1 µg m-3 has no respiratory cancer risk, which is related to exposure to concentrations greater than 1 mg m-3 (workers in nickel industries). Dermal sensitivity to nickel is presented by 10-20 % of female and 1 % of male population. The nickel content in surface water ranges from 2 to 20 µg/L. The limit for nickel in drinking water is 0.07 mg/L (WHO, 2008).
\n\t\t\t\tZinc (atomic weight 65.41) is a soft, bluish-white metal (density 7.14 g/mL). It presents the oxidation states 0, +2. Zinc and its products are widely used in alloy production, as anticorrosion coatings of steel and iron, in electrical devices, in rubber and tire industries, in paints, in pesticides and as chemical reagents in a number of applications. Zinc is the second most abundant trace metal in the human body: it appears in the active site of a variety of enzymes and many of the metabolic consequences of its deficiency are related to a diminished activity of zinc metallo-enzymes. Zinc is relatively nontoxic, even if daily doses greater than 100 mg during several months may lead to different disorders. Zinc imparts an undesirable astringent taste to water. Water containing zinc at concentrations in the range 3–5 mg/L also tends to appear opalescent and develops a greasy film when boiled. This feature allows the high zinc limit 3 mg/L in drinking water (WHO, 2008).
\n\t\t\t\tThe capacity of a given biomass to absorb toxic metal ions has been traditionally quantified using either Langmuir, Freundlich, Langmuir–Freundlich isotherms, or different alternative models. These isotherms were developed under chemical assumptions that are not generally met in biosorption processes.
\n\t\t\tThe main reason for their extended use is that they describe satisfactorily experimental data. They can be used for predictions, although they do not take into account external parameters, such as the pH or ionic strength. Langmuir equation
\n\t\t\tis the simplest and the one used by the most of authors. In this equation, qeq is the amount of metal ion sorbed at equilibrium, Ceq the equilibrium concentration of metal ion in solution and b is the Langmuir constant related to the energy of sorption, which reflects quantitavely the affinity between the biomass and the metal ion. The parameter qmax represents the maximum capacity of the biomass to absorb a given metal ion and it is usually determined by fitting the isotherm experimental data to the equation model. The qmax values are quite almost expressed as milligrams of sorbed metal ion respect to the weight in grams of dry sorbent.
\n\t\t\tThe qmax values reported in an our recent paper (Nurchi & Villaescusa, 2008), based on the survey of last ten years of literature, lie in the ranges 2.81-285.7 mg/g for Cd2+, 11.7-32.00 mg/g for Cu2+, 8.45-73.76 mg/g for Pb2+, 1.78-35 mg/g for Zn2+, 7.9-19.56 mg/g for Ni2+, 17.2-126.9 mg/g for Cr(VI), and 3.08 mg/g for Cr3+. These quantities look more similar when expressed in molar concentrations (0.025-2.5 mmol/g for Cd2+, 0.185-0.50 mmol/g for Cu2+, 0.04-0.36 mmol/g for Pb2+, 0.027-0.53 mmol/g for Zn2+, 0.13-0.34 mmol/g for Ni2+, 0.33-2.44 mmol/g for Cr(VI), and 0.06 mmol/g for Cr3+) and the maximum quantity of metal ion sorbed by a gram of sorbent is of the order of 0.5 mmoles (values five times higher are found for Cd2+ and Cr(VI), which could be considered a reasonable result if we consider the large variability in materials and experimental conditions (particle size, pH, temperature, etc.).
\n\t\t\tIn order to better characterize the behavior of a given sorbent, the use of chemical (mmol/g) instead of technical (mg/g) units has to be recommended whenever comparisons have to be made. The results obtained in this way actually contain information on the number of coordinating sites, which can be of great utility to make provisional forecasts of the binding capacity of different metal ions, without restraints due to their atomic mass.
\n\t\t\tIn literature different variables (particle size, temperature, pH, exchange and so on), and different kinetics and thermodynamic models (Langmuir, Freundlich,...) are taken into account. In the following sections 5 and 6 we will discuss the effect of temperature and pH on the sorption process. In order to design sorption processes, it is important to predict the rate at which a pollutant is removed from an aqueous solution. The rate constant and reaction order must be determined experimentally. It is usually necessary to carry out experimental studies varying several parameters such as metal ion and sorbent concentration, agitation speed, particle size, and temperature. Fitting the experimental results allows determining the kinetic mechanism, e.g. film diffusion, kinetic sorption, diffusion sorption or a combination of these processes. The kinetic models most used in biosorption studies were widely discussed in an intersting review by Ho et al., 2000.
\n\t\tThe sorption of metal ions by biomass occurs via functional groups on its surface by one or more mechanisms. All the sorbents derived from different by-products of agriculture share a common network of lignin and cellulose, and differ for the presence of functional groups which characterize each single biomass. As said before, identification of the functional groups is crucial for understanding the mechanism that governs the sorption process. Indeed, each functional group presents its own coordinating abilities toward the different metal ions. These coordinating abilities can be rationalized in term of the hard/soft character both of the binding group and of the metal ion. In order to highlight the importance of each different binding group in the mechanism of metal ion adsorption, the percent incidence drawn out from 1997 to nowadays literature is presented in Fig. 1.
\n\t\t\tIncidence of the different binding groups on biomass surface involved in metal ion complexation.
Potentiometric titrations, chemical treatments of the sorbent, alkaline and alkaline-earth metal ion release and spectroscopic techniques are the procedures widely followed to reveal the binding groups. A brief survey of these methods is presented in the next sections.
\n\t\t\tPotentiometric titrations measure the acid-base properties of the sorbent and the ionic exchange properties with regard to H+ and OH- ions. The presence of acid and basic sites determines the sorbent amphoteric properties and, depending on the pH, the functional groups can be either protonated or deprotonated. Active site concentrations are generally determined by acid-base potentiometric titration of the adsorbent and related modeling. Acidity constants found in the literature can be considered as mean values, which are representative of the class of the functional groups. Potentiometric titrations can also be used to determine the pH at the point zero charge (pHpzc) of biomass. pHpzc is the pH at which the sorbent surface charge takes a zero value as the charge of the positive surface sites is equal to that of the negative ones.
\n\t\t\t\tThe knowledge of pHpzc allows one to hypothesize on the ionization of functional groups and their interaction with metal species in solution; at solution pH’s higher than pHpzc the sorbent surface is negatively charged and could interact with metal positive species while at pHs lower than pHpzc the solid surface is positively charged and could interact with negative species. Carboxylic groups were found to be the most involved, in the majority of cases, where potentiometric titration was used to elucidate the functional groups on biomass responsible for metal ions sorption. This fact is in part expected on the basis of their easiest deprotonation in the 2 - 6 pH range which is the most suitable for metal sorption.
\n\t\t\tThe contribution of each functional group can be evaluated by chemical treatment. It consists in carrying out chemical reactions that selectively block different functional groups on the sorbent surface. The most common chemical modifications are esterification of carboxylic and phosphate groups, methylation of amines, and modification of mercapto groups. Carboxylic groups can be alkylated by reaction with methanol or ethanol in acidic media, while amines by reaction with formaldehyde and formic acid. Alkylation of both functional groups prevents their participation in metal biosorption, thus reducing the biosorption efficiency.
\n\t\t\t\tChemical treatments were also used to selectively extract different compounds, such as fats or polyphenols, in order to improve metal sorption. A report on the application of these methods can be found in a work of Nurchi at al., 2010.
\n\t\t\tVegetal biomaterial can be viewed as a natural ion-exchange material that primarily contains weak acidic and basic groups on its surface. One of the common procedures to investigate whether ion-exchange is the mechanism responsible for metal sorption is to determine the concentration of alkaline and alkaline-earth metal ions or protons (when the sorbent is pretreated with acid) released from the sorbent to the solution after metal uptake.
\n\t\t\t\tThe determination of the concentration of ions released into the solution (M: Na+, K+, Ca2+, Mg2+, H+) allows the balance of the concentration of the absorbed toxic metal ion (M*), through a charge balance, not explicitly reported in equation (2).
\n\t\t\t\tOn the solid material the appearance of the sorbed metals, associated with the disappearance of alkaline and alkaline-earth metal ions, can be followed by Scanning Electron Microscopy (SEM) coupled with energy dispersive X-ray analysis (EDAX). This technique greatly contributes to indicate that ion exchange takes place between alkaline and alkaline-earth metal ions on the sorbent and the toxic metal ions in the solution.
\n\t\t\tUseful information on the role of functional groups on metal sorption can be reached by non-destructive spectroscopic methods, observing the modifications induced by the metal on the spectra of the pure adsorbent.
\n\t\t\t\tFTIR is one of the most used techniques. Infrared Spectroscopy belongs to the group of molecular vibrational spectroscopies which are molecule-specific, and give direct information about the functional groups, their kind, interactions and orientations. Its sampling requirements allow the gain of information from solids, and in particular from solid surfaces. Even if historically IR has been mostly used for qualitative analysis, to obtain structural information, nowadays instrumental evolution makes non-destructive and quantitative analysis possible, with significant accuracy and precision. The shift of the bands and the changes in signal intensity allow the identification of the functional groups involved in metal sorption. Using this technique, carbonyl, carboxylic, aromatic, amine, and hydroxyl groups has been found to be involved in metal uptake by different biosorbents.
\n\t\t\t\tDRIFTS occurs when light strikes on the surface of a material and is partially reflected and transmitted. The light that penetrates the material may be absorbed or reflected out again. The diffuse reflectance (radiation reflected from an absorbing material) is thus composed of surface-reflected and bulk re-emitted components, and contains information relative to the structure and composition of the sample. Even if DRIFTS has been not of large use, it has found interesting applications on verifying the enhancement of cadmium sorption capacity by juniper wood when carbonyl groups were substituted by sulfonic groups and on determining that Cr3+, Cu2+ and Zn2+ were sorbed onto the organic polymeric fraction of olive mill wastewater by ion exchange between alkaline and alkaline-earth metal ions and protons bound to carboxylic groups.
\n\t\t\t\tXAS specifically examines the local structure of elements in a sample. The structure of a material is deduced on theoretical basis, but usually the interpretation of XAS spectra is founded on databases of known structures. This technique is useful in the case of heterogeneous samples and a wide variety of solid materials can be examined directly and non-destructively. Also the structure of amorphous phases can be easily achieved, as the local structure does not depend on long-range crystalline order. The application of XAS varies from the trace element concentration up to that of major elements. So it is useful to speciate trace elements adsorbed on the surface of biomass. X-ray absorption spectroscopy consists in the absorption of high energy X-rays by an atom in a sample. This absorption takes place at the energy corresponding to the binding energy of the electron in the sample. The interaction of ejected electrons with the surrounding atoms produces the observed spectrum. (XAS) and extended X-ray absorption fine structure (EXAFS) were used to ascertain the ligands involved in metal binding and the coordination environment for Cr3+ bound to alfalfa shoot biomass by Tiemann et al., 1999, and by Gardea-Torresday et al., 2002.
\n\t\t\t\tXPS, introduced by the Nobel Prize winner Siegbahn in 1949, is the main technique used for qualitative and quantitative elemental analysis of surfaces. It provides significant information on the chemical bonding of atoms. The absorption of high-energy electromagnetic radiation (X-ray or UV) by surfaces leads to the emission of photoelectrons; those generated in the outermost layers emerge from the surface into the vacuum and can be detected. The measure of the kinetic energy of the emitted photoelectrons allows the determination of the binding energies of electrons and the intensity function (number of photoelectrons vs. kinetic energy), and quantitative results are obtained from the knowledge of the number of atoms involved in the emission process.
\n\t\t\t\t\t\n\t\t\t\t\t\tAshkenazy et al., 1997, using X-Ray photoelectron spectroscopy (XPS) pointed out the involvement of nitrogen in lead sorption and the lead-oxygen interaction at the carboxyl group on the basis of the decrease in nitrogen concentration and of the shift of oxygen peak. The same technique confirmed that chromium was sorbed onto grape stalks in both its trivalent and hexavalent forms, and allowed the ascertainment of the oxidation state of chromium bound on pine needles. Furthermore it was used to explain the increase of cadmium and lead sorption onto baker’s yeast after modification of sorbent surface by cross linking cysteine.
\n\t\t\t\tSEM is a useful technique in the study of both the natural sorbent morphology and its modification derived from sorbate interactions. SEM is an electron microscope, which provides images of the sample surface by scanning it with a high-energy beam of electrons. The electron interactions with the atoms of the sample produce signals that contain information about topography, morphology, and composition of the sample surface. The samples must be electrically conductive, at least on their surface, for conventional SEM imaging. Nonconductive samples are coated with an ultra-thin layer of electrically-conducting material; this coating prevents the accumulation of static electric charges on the sample surface during electron irradiation. Magnification of the imaging can be controlled over a range of up to 6 orders of magnitude from about x25 to 250,000 times. When coupled with energy dispersive X-ray analysis (EDAX), the atom concentrations on the sorbent surface can be determined. This enables the confirmation of a mechanism of ion exchange, generally investigated by determining the concentration of alkaline and alkaline-earth metal ions released from the sorbent after metal sorption.
\n\t\t\t\tIn studies on heterogeneous material, requiring long equilibration times, it is hard to perform reliable calorimetric measurements. Thus, only carrying out experiments at variable temperature can give information on how this parameter affects the sorption of metal ions. From the limited extent of studies at variable temperature, only controversial conclusions can be reached. Most studies have been carried out at a fixed room temperature (20 or 25 °C). Some studies point out a low temperature influence or, at least, in a limited temperature range, giving evidence that ion exchange is the mechanisms responsible for the sorption process. Nevertheless, Kapoor and Viraraghavan, 1997, remarked that biosorption reactions are normally exothermic, which indicates that sorbent capacity increases with decreasing temperature. Conversely, Romero-González et al., 2005, found that the sorption capacity of Agave lechuguilla leaves for Cr(VI) sorption increased on increasing the temperature from 10 to 40 °C, justifying this endothermicity with Cr(VI) reduction to Cr(III). Malkoc and Nuhoglu, 2007, confirmed the endothermicity of Cr(VI) sorption on tea factory waste, metal uptake increasing as temperature increas from 25 °C to 60 °C. The favorable temperature effect was attributed to a swelling effect within the internal structure of the sorbent enabling the large metal ions Cr(VI) to penetrate further.
\n\t\tAs we have already discussed in section 4.3, one of the mechanisms involved in the sorption of positively charged metal species is ion-exchange. Vegetal biomaterials (constituted principally by lignin and cellulose as major constituents and by a non negligible portion of fatty acid, bearing functional groups such as alcohol, ketone and carboxylic groups that can be involved in complexation reactions with metallic cations) can be viewed as natural ion-exchange materials. These materials primarily contain weak acid and basic groups on the surface, whose ionization degree strongly depends on the pH of the solution. Several authors have performed potentiometric titrations to investigate acid-base properties on the surface of biosorbents and to determine the number of active sites for metal ion sorption.
\n\t\t\tThe strong pH dependence of the sorption parameters can depend on several factors, which can be simplified as follows:
\n\t\t\tbehaviour and speciation of metal ions;
dependence of the acid-base characteristics of the adsorbing material on the pH;
dependence of the interaction metal ion-sorbent on the pH.
As far as point 1 is concerned, we report a statement made by Baes and Mesmer, 1976, in their classical book on the hydrolysis of cations: “soluble hydrolysis products are important when cation concentrations are very low and can profoundly affect the chemical behaviour of the metals; the formulas and charges of the hydrolysis products formed in such systems can control such important aspects of chemical behaviour as:
\n\t\t\tsorption of the dissolved metals in mineral and soil particles;
tendency of metal species to coagulate colloidal particles;
solubility of the hydroxide (or oxide) of the metals;
extent to which the metals can be complexed in solution or extracted from solution by natural agents;
oxydizability or reducibility of the metals to another valence state.”
Based on these considerations, we demonstrate the influence of pH on sorption taking as an example the behaviour of one of the most important toxic metal ion, lead, in presence of different coordinating groups. Firstly we take into account the hydrolysis of this metal ion at two different concentrations, 100 mg/L and 0.05 mg/L, i.e. at concentration in strong polluted water and at concentration equal to EU recommended value for drinking water (Fig. 2). At 100 mg L-1, the species Pb(OH)+ (pH> 6) and the polynuclear species Pb3(OH)4\n\t\t\t\t2+ and Pb6(OH)8\n\t\t\t\t4+(pH >7) are formed before hydroxide precipitation occurs at pH~9.5; at 50 µg L-1, Pb2+ do not form precipitates and only the mononuclear species are formed instead of the polynuclear ones observed at 100 mg L-1. Metal ion hydrolysis equilibria, as well as hydroxide precipitation, can help explain the dependence of metal ion sorption on the pH. In most cases, the observed pH dependence lies in a range in which the metal ion is completely insensitive to the acidity of the medium. In metal ion sorption, pH effects are commonly accounted for by charge variations on the sorbent surface: protonation of basic sites or dissociation of acidic groups. According to the majority of authors a negative charge favours metal ion sorption by an ionic exchange mechanism or by electrostatic interactions, i.e. the sorption is completely determined by the acid-base behaviour of the functional groups on the surface of the adsorbing material.
\n\t\t\tThe real behaviour is certainly far more complex and can be rationalised in terms of metal ion coordination by surface binding groups. The presence of phenolic, carboxylic, catecholic, amino, and mercapto groups on the surface is well known. As a working hypothesis we can imagine that the different binding groups on the solid particles, dispersed in the metal ion solution, behave as different ligands. With this simplifying assumption, we can consider our system as set of solution equilibria. In this assumption we can treat our system as solution equilibria between various ligands competing for a metal ion or for various metal ions. For example, a carboxylic group near a phenolic group on the surface can be assumed to behave as a salicylate ligand, limited to form only 1:1 chelates being anchored to a solid surface.
\n\t\t\tIn the example showed in Fig. 3, we took into consideration three different coordinating groups as possible ligands for lead: COOH, hard, NH2, intermediate, and SH, soft donors. Furthermore, we also considered all the possible combination of them to obtain bidentate ligands, COOH-COOH; COOH-NH2, COOH-SH, NH2-NH2, NH2-SH, and SH-SH.
\n\t\t\tSpecies distribution diagrams for Pb2+ hydrolysis at two different total concentration 100 mg/L (solid lines) and 0.05 mg/L (dashed lines).
Formation curves for complex formation between Pb2+ and various ligands, bearing the coordinating groups reported on the plots, calculated for 0.001 M solutions in both Pb2+ and ligand.
Starting from the distribution curves, obtained using the literature constants for lead complexes with different ligand bearing the above mentioned coordinating groups, some conclusions can be drawn. The soft metal Pb2+ ion prefers the soft SH group, which became completely coordinated in 4-6 pH range. No data is available in literature for a single NH2-Pb interaction. The carboxylic group forms a weak complex in the pH range corresponding to its deprotonation. The addition of a second group (COOH or SH) to the starting SH favours lead coordination, while the addition of a NH2 group has an adverse effect. Two vicinal COOH groups allow lead complexation at low pH values and act much better than a single COOH group, even if the per cent of complex formation is still much lower than that reached by SH groups. Regarding the coordinating properties related to the amino group, the complex formation, taking place at basic pH > 7, does not prevent the hydroxide formation.
\n\t\tThe numerous studies on metal sorption by biomass are extremely spread: the investigation of the mechanism involved in metal ion sorption is performed by different techniques, methods and approaches that are related to the equipment availability in the researcher’s laboratories and to the researcher education. The use of highly sophisticated and extremely expensive techniques, as mentioned in the above sections, enables one to obtain structural information on the sorbent morphology and indirect knowledge of the implied sorption mechanisms, by comparing some physical properties of the material before and after metal sorption. Even if little importance is given to the classical chemical methods, such as potentiometry and alkaline and alkaline-earth metal ion release, these on the contrary offer several advantages, such as the easy availability in all laboratories, the fact that they are fast, cheap, and friendly-used. The main benefit of these methods is the attainment of quantitative results, which allow the evaluation of the amount and the kind of functional groups involved and the amount of exchanged metal ions.
\n\t\t\tWe hope that the achievements obtained from this enormous quantity of research works can lead in the coming years to a real outlet of practical applications, even if a lack of protocol or systematic approach in this kind of studies has to be remarked. Furthermore, the reached level of knowledge acquired should allow the classification of biomass on the basis of structural coordinating groups on its surface, essential to forecast their behavior toward the different toxic metal ions. Thank to this information, it will be possible to depict the strength of interaction and the pH range more useful for metal removal.
\n\t\t\tThe application of biosorption for effluent detoxification will have a strong ecological impact, joining the advantage of recycling waste biomass and of purifying contaminated waters from toxic metal ions.
\n\t\tThe authors express their gratitude to Professor Guido Crisponi for his help in writing this chapter, with encouraging discussions and useful suggestions.
\n\t\tFrom the ancient time, dental caries has existed, even from the time when the only way to eat and drink was hunting and gathering. According to the World Health Organization, 60–90% of schoolchildren worldwide have experienced caries, with the disease being most prevalent in Asian and Latin American countries (WHO, 2008). Dental caries is a multifactor disease which appears when demineralization of the hard tissues of the teeth occurs by organic acids formed by bacteria in dental plaque through the anaerobic metabolism of sugars derived from the diet.
\nCalcium is lost from the tooth surface, and demineralization occurs only when sugars or other fermentable carbohydrates are ingested in which results fall in dental plaque pH caused by organic acids that increase the solubility of calcium hydroxyapatite in the dental hard tissues.
\nLifestyle or dental health habits are the factors that should be connected to dental diseases. Dietary and daily habits, familial and physiological well-being, socioeconomic status and lifestyle, awareness and education, and area where they live are the factors that should be taken into consideration when discussing oral health. The higher the socioeconomic status is, the more the people are exposed to the availability of junk foods and susceptible to its frequent consumption. Those from lower economic group and rural area are not as much exposed to such food habits, and they do not buy them because they are expensive for their pocket. Many adolescents fail to brush their teeth effectively and tend to consume cariogenic foods even though they have basic knowledge of dental health. Children who have caries eat snacks between meals, more than those children without dental caries do. The basic means of avoiding these primary public health measures are compiled with the use of topical fluorides and fluoridated water. When it comes to nutrition perspective, one of the main things is to have balanced diet and adherence to the dietary guidelines and the dietary reference intakes.
\nDental caries occurs due to the demineralization of enamel and dentin (the hard tissues of the teeth) by organic acids formed by bacteria in dental plaque through the anaerobic metabolism of sugars and other fermentable carbohydrates derived from the diet [1]. Organic acids increase the solubility of calcium hydroxyapatite in dental hard tissues, and demineralization process of the tooth surface occurs due to calcium loss.
\nTeeth are most susceptible to dental caries soon after they erupt, and therefore the peak ages for dental caries are 2–5 years for the deciduous dentition and early adolescence for the permanent dentition [2]. The age of adolescences is when permanent teeth begin to grow and get their full position in the dental arch. This is a crucial age for the development of several oral diseases. Dental caries, periodontal disease, and orthodontic problems such as overcrowding of the teeth or malocclusions are bringing changes and altering the facial profile and esthetic appearance.
\nCertain psychological factors like self-confidence and social outlook of the individuals can also be affected, and they can leave permanent effect on the psychology of the child if not appropriately treated.
\nNeglecting the general problems, the lack of awareness and expertise is one of the reasons that most of the children at this age face these problems. Since the treatment of dental disease is very expensive especially in low-income countries, it would exceed the available resources for health care. The large financial benefits of preventing dental diseases should be emphasized to countries where current disease levels are high [3].
\nIt is undisputable that the development of dental caries is a result of poor diet, and it has been observed in humans and animals that frequent and prolonged exposure to carbohydrates and sugars results in an appearance of dental caries. Important bacteria in the development of dental caries are Streptococcus mutans and Streptococcus sobrinus. These bacteria produce organic acids from food sugars and help bacterial colonization of the tooth surface. The bacteria attached to teeth in dental plaque, found as a thin film on the surface of the enamel, utilize mono- and disaccharides (e.g., glucose, fructose, and sucrose) to produce energy, and acid is the by-product of this metabolism.
\nConsequently, the acidity of dental plaque may decrease to a point where the demineralization of the tooth begins. Demineralization occurs at a low pH when the oral environment is undersaturated with mineral ions, relative to a tooth’s mineral content. The enamel crystal, which consists of carbonated apatite, is dissolved by organic acids (lactic and acetic) that are produced by the cellular action of plaque bacteria in the presence of dietary carbohydrates. The “white spot lesion” is the initial stage that occurs just below the enamel surface and produces a visual whitening of the tooth. At this stage of mineral loss, the lesion may not progress any further or could even regain minerals (i.e., remineralize) if the cariogenic environment diminishes. The prevention measures that can remineralize the initial carious lesion are as follows: decreasing the carbohydrate source to the bacteria, treating the tooth with fluoride, reducing the levels of cariogenic bacteria, or reducing the bacterial ability to produce acid.
\nThe initial lesion will continue to lose mineral if the procedure of disease suppression is not initiated and the acidic challenge is unabated. The progressive dissolution of enamel and loss of enamel surface structure eventually give rise to a frank carious lesion [4]. Sugary food products and their everyday consumptions exert our teeth. The reasons behind dental caries are the exposure to junk foods, colas, sweets, and other dietary products which are easy to access and abundantly available for children to consume. That is why dental caries is like a sort of non-transmittable and nonfatal sickness [5].
\nSome authors emphasize the importance of the dental biofilm and dietary sugars as essential primary etiological factors causing the appearance of the caries; moreover, one of them cannot cause caries in the absence of the other.
\nThe main direct impact of the diet is mediated through its effect on the pH of the dental biofilm. Foods high in fermentable carbohydrates (mainly sugars) cause a low biofilm pH, while foods high in proteins and fats favor a more neutral biofilm pH. High-protein foods increase the urea concentration of saliva, which can be converted by ureolytic bacteria to ammonia; this raises the biofilm pH and is associated with decreased caries risk. Dietary factors can have an indirect effect by modifying the composition and metabolic activity of dental biofilm.
\nThe major dietary factor affecting dental caries prevalence and progression is sucrose [6]. A low consumption example is from a study of the Hopewood House in Australia, conducted between 1947 and 1952. As a matter of fact, children living in this closely supervised environment consumed food that was virtually free of sugar and white flour products. Data collected from these children revealed an extremely low dental caries prevalence, compared to children attending other Australian schools [7].
\nHigh sugar consumption’s effect is best revealed from the report of the classic Vipeholm study [8]. This study examined three factors leading to these stages as follows: the timing of sugar ingestion, the effects of the frequency of sugar consumption, and finally the consistency of the sugar on dental caries rates. According to the results, the degree of the sugar’s consistency was more important than the addition of sugar to the diet and especially if it was consumed between meals, or products, which are sticky, in a form that stayed longer in the mouth such as toffees. These products have a bigger cariogenicity impact than foods that are eliminated quickly from the oral cavity. Therefore, frequent ingestion of foods such as hard candies and throat lozenges that contain fermentable carbohydrates can be extremely harmful to the teeth. The conclusions from this study, conducted a half century ago, are still well regarded today:
If sugar is taken with meals, then only a small caries increase is noted.
A marked increase in caries increment is shown if sugar is consumed as snacks between meals.
If you consume sticky candies containing sugar, then the caries activity will be at the highest form.
Caries activity may vary greatly among individuals.
By eliminating sugar-rich foods, caries activity will be declined.
The detrimental effects of sugar in causing tooth decay are shown in the two major studies of public health importance, and those are the classic Vipeholm study in Sweden and Hopewood House study in Australia. Children generally consume diets which are rich in sugar like sweets, candies, cakes, colas, etc. That is why a lot of awareness has been raised since this food has a negative effect on oral health, and that is the appearance of dental caries. Nowadays, the household food that we generally eat contains certain amounts of sugar. That is why these two studies are of huge public health importance when conducting preventive dental health programs especially in schools where the drawbacks of consuming such diet containing sugars can be addressed.
\nA direct relationship between dental caries incidence and sugar (carbohydrates) intake is indisputed. The caries will not be developed if there are no fermentable carbohydrates in the food [9].
\nFree sugars as defined by the World Health Organization present as monosaccharides and disaccharides added to food, and sugars are naturally present in honey, syrups, and fruit juices. Fermentable carbohydrates are free sugars, glucose polymers (syrups and maltodextrins), fermentable oligosaccharides, and highly refined starches. They are added to food in industrialized countries and are as acidogenic as sucrose. However, sucrose and starches today present as the main carbohydrates in modern society diet. Sucrose is the most cariogenic sugar which is a highly soluble substrate transformed into intracellular (IPS) and extracellular polysaccharides (EPS). It diffuses easily into the dental plaque accumulation and induces a lower pH [10]. Starch is a carbohydrate that can cause very small amounts of caries, unlike real sugar. It is found in fruits and vegetables and can be consumed raw or cooked. Starchy foods such as rice, potatoes, pasta, and bread have very low cariogenicity, and this is why they can cause less caries than sucrose. Starch can be sorted out to mono- and disaccharides and metabolized by bacteria, so it is retained on the teeth long enough to be hydrolyzed by salivary amylase.
\nSince the original Miller’s study, Stephan in both of his researches (1940, 1944) about the relationship between caries and sugar showed that fermentable carbohydrates can transform into acid in dental plaque. A direct relationship between caries incidence and the frequency of consumption of sweets was also presented [11], and these findings supported those of the Vipeholm study [12].
\nSucrose is freely diffusible in dental biofilm and metabolized by oral bacteria Streptococcus mutans [13]. Bacteria metabolize sucrose to soluble and insoluble extracellular polysaccharide glucan by enzyme glucosyltransferases (GTFs). Few mechanisms are involved in the role of extracellular glucans as the major caries associated factor. Glucan enables the bacteria to adhere firmly to the teeth [, 14], and in dental plaque, they contribute to the structural integrity of dental biofilms [15].
\nSeveral studies showed that the presence of insoluble glucan enhanced the demineralization potential of S. mutans. Glucan altered the diffusion properties of plaque and allowed deeper penetration of dietary carbohydrates [16, 17].
\nThere are several important and critical cariogenic factors to be considered when evaluating starch and caries relationship. They are the size and frequency of tooth exposure, the bioavailability of the starches, the microbial flora of dental plaque, the pH-lowering capacity of dental plaque, and the flow rate of saliva. Starchy foods with higher amounts of sucrose are as cariogenic as а sucrose. Some cooked and processed starches are dissolved by salivary amylase, and they release glucose and maltose metabolized by oral bacteria to acids. In Rugg-Gunn [18] study, the relationship between starches and dental caries was proved, and several conclusions were made. Rice, potatoes, bread, and cooked staple starchy foods have low cariogenicity in humans. Uncooked starch has low cariogenicity, while heat-treated starch induces lesser caries than sugars. Foods with cooked starch and higher amounts of sucrose are as cariogenic as similar quantities of sucrose.
\nFresh fruits contain various sugars and may be capable of causing caries under some conditions. They have low cariogenicity, while citrus fruits have not been associated with dental caries. Increased consumption of fresh fruit in the diet is decreasing the level of dental caries in a population [19]. Although excessive exposure to fructose may produce dental caries, fresh fruits are likely to be much less cariogenic than most sucrose-rich snack foods consumed by children. One hundred percent fruit juice has also been associated with caries, but the relationship is less clear. Children consuming more than 17 oz. 100% juice are more likely to have caries, than children consuming water or milk [20]. Conversely, in a cohort of low-income African-American children, 100% fruit juice was found to be protective of caries. The fact that 100% fruit juice contains about the same amount of sugar as the average sugar-sweetened beverages made it important to understand its role in caries [21]. Animal studies revealed that all fruits cause less caries than sucrose but dried fruits may potentially be more cariogenic since the drying process breaks down the cellular structure, releasing free sugars that tend to have a longer oral clearance.
\nFlavored drinks, especially aerated beverages like cola, have a much greater cariogenic potential due to high sugar content and regular consumption. Children are frequently offered with these drinks because of their high acceptance, low cost, and parent’s belief of being very nutritious [22]. Different campaigns and various forms of advertising by the media changed public health knowledge, and people started to become aware and understand about the bad effect of this kind of food.
\nMilk is most frequently consumed by schoolchildren. In milk а sugar named lactose is not fermented as the other sugars, so it is less cariogenic because the phosphor proteins inhibit enamel dissolution and the milk antibacterial factors may interfere with the oral microbial flora.
\nCheese can lead to protection against creating caries as it stimulates salivary flow and raises the calcium, phosphorus, and protein content of plaque.
\nThe sugar alcohols like sorbitol, mannitol, and xylitol are kind of sweeteners that are metabolized by bacteria at much slower rate than glucose or sucrose, which is not metabolized at all. According to certain clinical studies, xylitol chewing gum has the ability to reverse initial white spot lesions on teeth.
\nWhen dental decay happens there is high probability of losing a tooth. That leads to a reduced ability to eat a varied diet. It is in particular associated with a low consumption of fruits, vegetables and non-starch polysaccharides (NSP) in the persons diet [23]. NSP intakes of less than 10 g/day and fruits and vegetable intakes of less than 160 g/day have been reported in edentulous subjects. Therefore, tooth loss may impede the achievement of dietary goals related to the consumption of fruits, vegetables, and NSP. Tooth loss has also been associated with loss of enjoyment of food and confidence to socialize. So, basically, it is clear that dental diseases have a detrimental effect on the quality of life both in childhood and older age [24].
\nAn important issue for the appearance of dental caries in older children as well as infants is not only the total quantity but also the form of the carbohydrate as well as the frequency of consumption since the refined carbohydrates exert their effect in the appearance of dental caries by serving as a substrate for caries-producing streptococci, which as a small piece of it adheres to the teeth for almost an hour. In the case of sugars that are not in sticky form, a specified amount consumed at one time is likely to be less conducive to the formation of dental caries than the same amount consumed in small portions throughout the day. There is considerable evidence that between-meal snacks cause the development of dental caries. Foods that must be avoided between meals are the following: sugar, honey, corn syrup, candies, jellies, jams, sugared breakfast cereals, cookies, cakes, chewing gum, and sweetened beverages, including flavored kind of milks, carbonated drinks, sweetened fruit juices, and fruit or fruit-flavored drinks. Finally, eating frequency, particularly constant grazing or sipping of foods and beverages, is also caries promoting. In a recent study in a diverse sample of children aged 2 to 6 years, eating frequency was associated with severe early childhood caries [25].
\nReduction of dental caries can be achieved with the help of fluoride or in other words dietary fluoride drinking water, which also has rich sources. The ingested fluoride becomes incorporated into enamel during tooth formation and increases the resistance of the tooth to decay. However, the main protection from dietary fluoride is the localized intraoral effect. Fluoride promotes the remineralization of damaged enamel with resistant fluorapatite and also inhibits bacterial metabolism of sugars. As we can see, the benefits to the exposure of teeth to fluoride are therefore beneficial lifelong. It may be added to an optimum concentration of 1 mg/L as a caries preventive measure if natural water supplies are low in fluoride; Murray et al. [26] have reviewed the published data on the effect of water fluoridation on caries and have concluded that on average water fluoridation reduces dental caries by 50%. In a study of 5-year-old children, Carmichael et al. have demonstrated that water fluoridation is effective in reducing dental caries across social classes and, in terms of the number of teeth saved per child, the benefits are greatest in the lower social classes [27].
\nAccording to UK national surveys, it has been indicated that those from lower social classes have higher levels of dental diseases and poorer oral hygiene practice and are less likely to visit the dentist [28]. In these cases, dental caries is not eliminated even though the benefit of fluoride is reducing caries. Fluoride repairs the damage caused by acids produced by plaque bacteria but does not remove the cause of caries, i.e., dietary sugars. The process of prevention requires both a reduction in sugar intake as well as optimum exposure to fluoride. Very extensive and comprehensive research by the National Health Survey concluded that a preventive dentistry program is water fluoridation.
\nDietary advice by dental health professionals should be consistent and not conflict with the advices from other health professionals, based on the evidence in the various professional fields and based on the national dietary guidelines. The advices may be more readily accepted from the people when the oral healthcare professionals can make unequivocally clear that the advice benefits caries prevention. If not, the person may not understand why the dental professional interferes with his diet and not accept the advices. However, this does not dismiss the dental professional from also explaining the benefits for general health on limiting or reducing the intake of sugars. Under the premise that it benefits oral health, the dental health professional can make stronger restrictions than the general guidelines as long as they do not harm general health. Generally speaking a diet that is beneficial to both general and dental health is one that is low in free sugars, saturated fat, and salts, as well as high in fresh fruits, vegetables, nuts and seeds, and wholegrain carbohydrates with modest amounts of legumes, fish, poultry, and lean meat and plenty of fluids preferably water and milk and, thus, modest with sugar sweetened beverages [29].
\nThe teeth and oral mucosa are cleaned with the help of saliva, which is a mixed glandular secretion. Saliva by itself is consisted of three glands, and they are as follows: submandibular, sublingual, and finally the parotid. It also has hundreds of small glands inside the oral mucosa and submucosa as well as gingival cervical fluid.
\nThe maintenance of healthy teeth and oral tissues could be achieved only with the help of saliva’s presence. If there were a severe reduction of the saliva’s production, then there would be a very fast deterioration of oral health as well as the patient’s life. The results from such a condition could lead to eating difficulties like: swallowing difficulties, bad oral hygiene, dental caries that progresses very fast, mucosa’s burning sensation, difficulty in talking, wearing denture, oral infections like Candida, and ulceration of oral mucosa.
\nDry mouth is a problem, which appears in huge proportions. Xerostomia or in other words dry mouth is very common for people with Sjogren’s syndrome, as a result of radiotherapy in the head and neck in cancer treating and especially in the case of older generations when they are prescribed with drugs. The saliva’s role in oral health is huge especially taking into consideration the sicknesses that appear because of decreased quantity or quality of saliva. That is why it is very important to early diagnose and prevent this condition.
\nSaliva is considered as the most easily available diagnostic fluid for noninvasive collection and analysis because through it we can diagnose caries susceptibility, systemic, physiological, and pathological, and we can monitor the level of hormones, drugs, antibodies, microorganisms, and ions.
\nIn this research, we will try to present the main functions of saliva, the anatomy and histology of salivary glands, the physiology of saliva formation, the constituents of saliva, and the use of saliva as a diagnostic fluid, including its role in caries risk assessment.
\nSaliva has several functions which are very protective, but it has also other functions presented in Figure 1. Salivary function can be organized into five major categories that serve to maintain oral health and create an appropriate ecologic balance: (1) lubrication and protection, (2) buffering action and clearance, (3) maintenance of tooth integrity, (4) antibacterial activity, and (5) taste and digestion [30].
\nFunctions of saliva.
\nFigure 2 presents the changes in plaque pH following as a result of sucrose rinse. The graphs are named as Stephan’s curve according to the name of the scientist who was the first one who described it in 1944. By using antimony probe microelectrodes in a series of experiments, he also measured changes in plaque pH.
\nStephan’s curve illustrating the changes in plague pH over time following a sucrose rinse.
The unstimulated plaque pH in Figure 2 is approximately 6.7. After the process of sucrose rinse, the plaque pH within a few minutes is reduced to less than 5.0. When the enamel is below the critical pH 5.5, then there is demineralization of the enamel. For about 15–20 min, plaque pH stays below the critical pH and does return to normal for about 40 min. In the presence of saliva and other fluids that are supersaturated with the help of hydroxyapatite and fluorapatite, the enamel itself could be remineralized only when the plaque pH recovers to a level above the critical pH.
\nThe buffering capacity, the degree of access to saliva, the velocity of the salivary film, and the saliva’s urea content are the ones that determine the variation of the shape of Stephan’s curve among individuals and the rate of recovery of the pH plaque.
\nThe major buffer in stimulated saliva is the carbonic acid/bicarbonate system. As the bicarbonate ion concentration gets higher, also the buffering capacity of saliva increases.
\nNowadays for the study of bacteria, proteins, and genes, there are very high-level techniques where they apply saliva in order to spread out the field of oral diagnostics in the process of learning and understanding the oral diseases, systemic diseases, as well as metabolism. Saliva by itself presents an opportunity for the identification of biomarkers for the diseases like dental caries, periodontal diseases, and oral diseases, but all this should be easily done with careful collection and handling.
\nThere have been developed a series of caries risk assessment tests based on saliva’s measurements. These tests measure the capacity of salivary buffering and salivary mutans streptococci and lactobacilli. The increased risk of developing caries comes because of high levels of mutans streptococci, i.e., >105 colony-forming units (CFUs) per mL of saliva. Individuals with high levels of lactobacilli (>105 CFUs per mL saliva) are the ones who consume frequently carbohydrates, and because of that they have an increased risk of caries.
\nAs an answer to the question what is buffering capacity, one could answer that it is the host’s capability to neutralize reduction pH’s plaque constructed by acidogenic organisms. Useful caries indicators for monitoring, preventive measures, and profiling patient’s disease are the salivary tests.
\n\nTable 1 lists some salivary variables measured for caries risk assessment in dentistry, which are more used for measurement than the other types.
\nFluid/lubricant | \nIt coats hard and soft tissue. Helps to protect against mechanical, thermal, and chemical irritation and tooth wear. Assists smooth air flow, speech, and swallowing. | \n
Ion reservoir | \nSolution supersaturated with respect to tooth mineral facilitates remineralization of the teeth. Acidic proline-rich proteins and statherin in saliva inhibit spontaneous precipitation of calcium phosphate salts. | \n
Buffering action and clearance | \nHelps to neutralize plaque pH after eating, thus reducing time for demineralization. | \n
Mechanical function of cleaning the tooth surface | \nClears food and aids swallowing. | \n
Antimicrobial activity | \nSpecific (e.g., sIgA) and non-specific (e.g. lysozyme, lactoferrin, and myeloperoxidase) anti-microbial mechanisms help to control the oral microflora. | \n
Digestion | \nThe enzyme α-amylase is the most abundant salivary enzyme; it splits starchy foods into maltose, maltotriose, and dextrins. | \n
Protective remineralization (promoted by fluoride) | \nSaliva also inhibits caries by protective remineralization. This is promoted by fluoride ions in saliva. | \n
Salivary variables measured for caries risk assessment.
While either measuring unstimulated or stimulated saliva’s flow rates, we should bear in mind the conditions of saliva’s collection process. When measuring unstimulated flow, which is usually at rest, repeated measurements should be assessed during the same day as a result of circadian rhythm and also because chewing (mechanical) and citric acid (gustatory) produce different results.
\nThe best way of measuring unstimulated or stimulated saliva is using commercial kit. When it comes to buffering capacity of unstimulated saliva which is lower or stimulated saliva, they are very easily measured at the chairside. In order to do bacteriological tests as chewing dislodges the flora into the saliva, then the best way is to use paraffin wax-stimulated saliva samples. From stimulated saliva samples, you can culture mutans streptococci and lactobacilli. Their measurements could also be facilitated with the help of commercially available chairside tests. However, when it comes to fluoride, calcium, and phosphate biochemical measurement, then these must be done with the help of special laboratory facilities that are not available to practitioners.
\nAs an answer to the question what is unstimulated whole saliva, one could answer that it is the mouth’s secretion mixture with tastants or chewing in the absence of exogenous stimuli. It is composed of parotid, submandibular, and sublingual secretions as well as the minor mucous glands, but it also contains desquamated epithelial cells, gingival crevicular fluid, leucocytes (mainly from the gingival crevice), bacteria, and possibly food residues, blood, and viruses.
\nThe collection of saliva from the patient is done in that way that the patient spits out saliva in regular intervals of time without swallowing it, and there is another way when the patient keeps his or her head down and mouth just a bit open so that saliva can drip down from the mouth into a beaker during a time interval. However, one should bear in mind that when saliva is spit down, the number of desquamated epithelial cells as well as bacteria are increased. The difference between the secreted amount by the different salivary glands and the evaporated volumes is the measured flow rate. The unstimulated salivary flow rates in healthy individuals and the average value for whole saliva is about 0.3–0.4 mL/min. Patients say that they have dry mouth (xerostomia) only when saliva is almost completely absent. Objective evidence of hyposalivation is considered a flow rate of <0.1 mL/min.
\nDentists should also measure salivary flow as part of their regular examination so that when patients complain of dry mouth, they will have the tests. The usual problems are related to swallowing difficulty that often leads to individuals with very little saliva but without discomfort and others with saliva flow rates within the normal range who feel that their mouth is drowning in saliva.
\nStimulated saliva is produced in response to a mechanical, gustatory, olfactory, or pharmacological stimulus, contributing to around 40–50% of daily salivary production. Several studies of stimulated salivary flow rates have been done in healthy populations and show a wide variation among individuals. The salivary flow (SF) index is a parameter allowing stimulated and unstimulated saliva flow to be classified as normal, low, or very low (hyposalivation). In adults, normal total stimulated SF ranges 1–3 mL/min, and low ranges 0.7–1.0 mL/min, while hyposalivation is characterized by a stimulated SF <0.7 mL/min. Many factors influence the stimulated salivary flow rate which, for whole saliva, has an average maximum value of about 7 mL/min.
\nEating is a strong stimulus for the secretion of saliva by the major salivary glands. Large volumes of saliva are secreted before, during, and after eating via the gustatory-salivary reflex, masticatory-salivary reflex, olfactory-salivary reflex, and esophageal-salivary reflex. The action of chewing, in the absence of any taste, will stimulate salivation to a smaller degree than maximum gustatory stimulation with citric acid. Mastication also serves to mix the contents of the mouth, thus increasing slightly the distribution of the different types of saliva around the mouth. Mechanical stimulation of the fauces (the gag reflex) leads to increased salivation.
\nAcid is the most potent of the five basic taste stimuli, the other four being salty, bitter, sweet, and umami. A study performed with different concentrations of citric acid revealed that 5% citric acid stimulated an average maximum salivary flow rate of about 7 mL/min. The citric acid was continuously infused into the mouth, and the teeth were covered with a paraffin film to protect them against the acid. For a clinical evaluation of the residual secretory capacity in patients with hyposalivation, a 3% citric acid solution can be applied to the patient’s tongue at regular intervals so that the degree of stimulation is relatively standardized. If a gustatory stimulus is held in the mouth without movement, salivary flow decreases to nature of stimulus gland size, mechanical unilateral stimulation, gustatory vomiting, pharmacological olfaction, food intake smoking, and gag reflex.
\nDawes [31] has stimulated the flow of saliva alters its composition and noted that the rate of salivary flow increases the concentration of protein, sodium, chloride, and bicarbonate and decreases the concentration of magnesium and phosphorus. Perhaps of greatest importance is the increase in the concentration of bicarbonate, which increases progressively with the duration of stimulation. The increased concentration of bicarbonate diffuses into the plaque, neutralizes plaque acids, increases the pH of the plaque, and favors the remineralization of damaged enamel and dentin.
\nBuffer solutions are solutions that maintain an approximately constant pH when small amounts of either acid or base are added or when the solution is diluted. These solutions own the capacity of resisting changes of pH when either acids or alkalis are added to them. There are three possible buffer systems in saliva—the carbonic acid/bicarbonate system, the phosphate system, and the proteins.
\nBicarbonate is one of the most important systems in saliva, which is produced by dental plaque, and its concentration could be from less than 1 mmol/L in unstimulated parotid saliva to a very high flow rate of 60 mmol/L which is elicited by chewing gum thus having a bicarbonate concentration of about 15 mmol/L. The level of bicarbonate ions in unstimulated saliva is too low to be an effective buffer. For those who suffer from the gastroesophageal reflux disease, the bicarbonate in saliva will help them in the clearance process of acid from the esophagus.
\nThe carbonic acid/bicarbonate system is one of the components of the saliva that modifies the creation of caries. It does this by changing the environmental pH and possibly the virulence of bacteria that cause decay. Tanzer et al. [32] tasted the efficacy of a sodium bicarbonate-based dental power and paste with the addition of fluoride on dental caries and on Streptococcus sobrinus or Streptococcus mutans recoveries in rats. These authors observed that the caries reductions in these studies ranged from 42 to 50% in the rats treated with bicarbonate dentifrices when compared with rats treated with water [33, 34].
\nThe concentration of phosphate in non-stimulated saliva is about 5–6 mmol/L, compared to a level of about 1 mmol/L in plasma; there is still too little phosphate in saliva to act as a significant buffer. The pH of unstimulated saliva is less than the pK2 value of 7.2 for phosphate so that most of the phosphate is present as H2PO4\n− and cannot accept another hydrogen ion until the pH is close to 2.1, the pK1 for phosphate.
\nIn saliva’s plasma there is about one-thirtieth protein concentration as well as few amino acids with acidic or basic side chains which present an important buffering effect at the usual pH of the oral cavity.
\nWhen the bicarbonate concentration increases, the salivary pH increases too. Henderson and Hasselbalch give the equation of the relationship between the pH and the bicarbonate concentration, which is pH = pK + log[HCO3\n−]/[H2CO3], in which the pK (about 6.1) and [H2CO3] (about 1.2 mmol/L) are virtually independent of the flow rate. The latter is in equilibrium with the pCO2 which, in saliva, is about the same as that in the venous blood. If we try to measure the pH of saliva, then it is very obligative to avoid exposure of the saliva to the atmosphere because the pH will be artificially elevated and CO2 will be released. At very low flow rates, the pH of parotid saliva can be as low as 5.3, rising to 7.8 at very high flow rates. Because of the low bicarbonate concentration, patients with hyposalivation will have a low salivary buffering capacity and a low salivary pH (Figure 3).
\nThe effects of flow rate on the concentrations of some components of saliva.
The importance of salivary urea was acknowledged early in dental literature [35, 36]. The pH-raising effect of intraoral urea application was first described by Stefan [37]. This author found that in both in vivo and in vitro, urea could raise plaque pH up to pH 9 and that the addition of 40–50% urea to carbohydrates largely overcame the pH-lowering effect for up to 24 h. The value of salivary urea ranges from 2 to 6 mmol/L.
\nUrea possesses the capability to inhibit the metabolism and multiplication of bacteria in the saliva, which indirectly neutralizе the acids in the oral environment and maintain the salivary acidobasic balance due to its buffer capacity [37, 38].
\nLess aciduric oral bacteria (Streptococcus sanguinis and Streptococcus gordonii) associated with dental health have the ability for alkali generation by hydrolyzing urea or arginine to ammonia. Production of ammonia is a mechanism that influences the balance remineralization-demineralization of the tooth, maintains neutral pH in oral cavity, and prevents the appearance of a cariogenic microflora [39, 40].
\nUrea can be used as a constituent of chewing gums for neutralized acids. Imfeld [41] explored the effect of sugar-free chewing gums containing various amounts of urea on the pH recovery in dental plaque.
\nAfter rinsing the mouth with 10 or 50% (w/v) sucrose solution, the respondents chewed the gum with different content of urea (10, 20, 30 mg) for 10 min. Increased value of salivary or plaque pH was found in the first minutes of chewing, and the effect of urea continued and lasted over 10 min. The higher concentrations of urea in chewing gum resulted in a faster leveling of the pH. As a result, the highest values of pH in the examined groups were observed in cases where they were treated with chewing gum containing 30 mg urea. With the use of such chewing gum, the salivary pH value does not fall below the level which is risky for the occurrence of dental caries, and there is a positive effect of chewing on the salivary flow that also affects neutralizing the acids in saliva or plaque [42, 43]. For the purpose of demonstrating the effect it can have on unstimulated saliva, a mathematical model of the influence of salivary urea on dental plaque was constructed. Data from study indicated that urea present in unstimulated saliva has a significant effect on plaque pH by elevating and counteracting the fall of plaque pH in the fasting state. The correlation of higher salivary urea concentrations and low salivary caries activity was registered in patients with chronic renal disease. These patients, who have elevated salivary urea concentration, have a reduced incidence of dental caries [44].
\nSaliva contains a supersaturated solution of calcium and phosphate, which neutralizes acids. Some epidemiological studies have revealed that humans with relatively high Ca and P in their plaque experience correspondingly lower caries. Higher Ca concentration of plaque is associated with low caries incidence. The process of undersaturation of the saliva with respect to tooth mineral content is a result of decreasing total phosphate concentration at high flow rates which would be bad for the teeth.
\nHowever, if the flow rate increases, then the saliva’s pH increases together with the bicarbonate concentration, and therefore high pH is altered. In the proportions of four different phosphate species (H3PO4, H2PO4\n−, HPO4\n2−, and PO4\n3) together with the fall in total phosphate concentration, there is a fall in H2PO4\n− and a slight increase in HPO4\n2− but a dramatic increase in PO4\n3−, all as a result high pH. It is the PO4\n3− that is an important ionic species with respect to the solubility of tooth mineral. So, although the total level of phosphate falls with increasing flow rate, the concentration of PO4\n3− actually increases as much as 40-fold when flow rate increases from the unstimulated level to high flow rates. The three components (Ca2+, PO4\n3−, and OH−) increase with salivary flow if taking into consideration the components of the ion product determining the solubility of tooth mineral in saliva. The saliva is more effective in reducing demineralization and promoting remineralization of the teeth if the flow rate is higher as well as the potential for calculus formation.
\nIt can be concluded that tooth decay is a disease of great importance for general health. As a result, strategies to reduce the risk for dental caries are extremely important. The strategies may involve decreasing the growth or activity of bacteria especially S. mutans. To do so, people need to change their daily diet. Parents should advise children to avoid eating between meals, especially food containing carbohydrate.
\nDiet and oral microflora are connected to caries along with host factors such as salivary composition and flow.
\nDiet rich in fermentable carbohydrates is responsible for causing caries. Sucrose is one of the most cariogenic sugars, and glucose and fructose have also been shown to be less cariogenic. The cariogenic potential of carbohydrate-containing foods depends on their stickiness characteristics, frequency, and amount.
\nThe saliva with its components plays an important role in maintaining oral, especially dental, health. Saliva is a natural factor that protects against demineralization. Apart from the activity of human saliva in diluting, clearing, neutralizing, and buffering acids, it also reduces demineralization and enhances the remineralization process.
\nSaliva performs its mechanical cleaning and protective functions though several physical and biochemical mechanisms. Saliva has buffer capacity which neutralizes acids in the mouth. The carbonic acid/bicarbonate system is the most important buffer in stimulated saliva.
\nThe urea contributes to maintaining the acidobasic balance of saliva and thus affects the incidence of caries.
\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}},{id:"101208",title:"Prof.",name:"Abdel Karim",middleName:"Mohamad",surname:"El Hemaly",slug:"abdel-karim-el-hemaly",fullName:"Abdel Karim El Hemaly",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101208/images/733_n.jpg",biography:"OBGYN.net Editorial Advisor Urogynecology.\nAbdel Karim M. A. El-Hemaly, MRCOG, FRCS � Egypt.\n \nAbdel Karim M. A. El-Hemaly\nProfessor OB/GYN & Urogynecology\nFaculty of medicine, Al-Azhar University \nPersonal Information: \nMarried with two children\nWife: Professor Laila A. Moussa MD.\nSons: Mohamad A. M. El-Hemaly Jr. MD. Died March 25-2007\nMostafa A. M. El-Hemaly, Computer Scientist working at Microsoft Seatle, USA. \nQualifications: \n1.\tM.B.-Bch Cairo Univ. June 1963. \n2.\tDiploma Ob./Gyn. Cairo Univ. April 1966. \n3.\tDiploma Surgery Cairo Univ. Oct. 1966. \n4.\tMRCOG London Feb. 1975. \n5.\tF.R.C.S. Glasgow June 1976. \n6.\tPopulation Study Johns Hopkins 1981. \n7.\tGyn. Oncology Johns Hopkins 1983. \n8.\tAdvanced Laparoscopic Surgery, with Prof. Paulson, Alexandria, Virginia USA 1993. \nSocieties & Associations: \n1.\t Member of the Royal College of Ob./Gyn. London. \n2.\tFellow of the Royal College of Surgeons Glasgow UK. \n3.\tMember of the advisory board on urogyn. FIGO. \n4.\tMember of the New York Academy of Sciences. \n5.\tMember of the American Association for the Advancement of Science. \n6.\tFeatured in �Who is Who in the World� from the 16th edition to the 20th edition. \n7.\tFeatured in �Who is Who in Science and Engineering� in the 7th edition. \n8.\tMember of the Egyptian Fertility & Sterility Society. \n9.\tMember of the Egyptian Society of Ob./Gyn. \n10.\tMember of the Egyptian Society of Urogyn. \n\nScientific Publications & Communications:\n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Asim Kurjak, Ahmad G. Serour, Laila A. S. Mousa, Amr M. Zaied, Khalid Z. El Sheikha. \nImaging the Internal Urethral Sphincter and the Vagina in Normal Women and Women Suffering from Stress Urinary Incontinence and Vaginal Prolapse. Gynaecologia Et Perinatologia, Vol18, No 4; 169-286 October-December 2009.\n2- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nFecal Incontinence, A Novel Concept: The Role of the internal Anal sphincter (IAS) in defecation and fecal incontinence. Gynaecologia Et Perinatologia, Vol19, No 2; 79-85 April -June 2010.\n3- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nSurgical Treatment of Stress Urinary Incontinence, Fecal Incontinence and Vaginal Prolapse By A Novel Operation \n"Urethro-Ano-Vaginoplasty"\n Gynaecologia Et Perinatologia, Vol19, No 3; 129-188 July-September 2010.\n4- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n5- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n6- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n7-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n8-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n9-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n10-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n11-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n12- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n13-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n14- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n15-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n\n16-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n17- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis\n\n18-Maternal Mortality in Egypt, a cry for help and attention. The Second International Conference of the African Society of Organization & Gestosis, 1998, 3rd Annual International Conference of Ob/Gyn Department � Sohag Faculty of Medicine University. Feb. 11-13. Luxor, Egypt. \n19-Postmenopausal Osteprosis. The 2nd annual conference of Health Insurance Organization on Family Planning and its role in primary health care. Zagaziz, Egypt, February 26-27, 1997, Center of Complementary Services for Maternity and childhood care. \n20-Laparoscopic Assisted vaginal hysterectomy. 10th International Annual Congress Modern Trends in Reproductive Techniques 23-24 March 1995. Alexandria, Egypt. \n21-Immunological Studies in Pre-eclamptic Toxaemia. Proceedings of 10th Annual Ain Shams Medical Congress. Cairo, Egypt, March 6-10, 1987. \n22-Socio-demographic factorse affecting acceptability of the long-acting contraceptive injections in a rural Egyptian community. Journal of Biosocial Science 29:305, 1987. \n23-Plasma fibronectin levels hypertension during pregnancy. The Journal of the Egypt. Soc. of Ob./Gyn. 13:1, 17-21, Jan. 1987. \n24-Effect of smoking on pregnancy. Journal of Egypt. Soc. of Ob./Gyn. 12:3, 111-121, Sept 1986. \n25-Socio-demographic aspects of nausea and vomiting in early pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 35-42, Sept. 1986. \n26-Effect of intrapartum oxygen inhalation on maternofetal blood gases and pH. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 57-64, Sept. 1986. \n27-The effect of severe pre-eclampsia on serum transaminases. The Egypt. J. Med. Sci. 7(2): 479-485, 1986. \n28-A study of placental immunoreceptors in pre-eclampsia. The Egypt. J. Med. Sci. 7(2): 211-216, 1986. \n29-Serum human placental lactogen (hpl) in normal, toxaemic and diabetic pregnant women, during pregnancy and its relation to the outcome of pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:2, 11-23, May 1986. \n30-Pregnancy specific B1 Glycoprotein and free estriol in the serum of normal, toxaemic and diabetic pregnant women during pregnancy and after delivery. Journal of the Egypt. Soc. of Ob./Gyn. 12:1, 63-70, Jan. 1986. Also was accepted and presented at Xith World Congress of Gynecology and Obstetrics, Berlin (West), September 15-20, 1985. \n31-Pregnancy and labor in women over the age of forty years. Accepted and presented at Al-Azhar International Medical Conference, Cairo 28-31 Dec. 1985. \n32-Effect of Copper T intra-uterine device on cervico-vaginal flora. Int. J. Gynaecol. Obstet. 23:2, 153-156, April 1985. \n33-Factors affecting the occurrence of post-Caesarean section febrile morbidity. Population Sciences, 6, 139-149, 1985. \n34-Pre-eclamptic toxaemia and its relation to H.L.A. system. Population Sciences, 6, 131-139, 1985. \n35-The menstrual pattern and occurrence of pregnancy one year after discontinuation of Depo-medroxy progesterone acetate as a postpartum contraceptive. Population Sciences, 6, 105-111, 1985. \n36-The menstrual pattern and side effects of Depo-medroxy progesterone acetate as postpartum contraceptive. Population Sciences, 6, 97-105, 1985. \n37-Actinomyces in the vaginas of women with and without intrauterine contraceptive devices. Population Sciences, 6, 77-85, 1985. \n38-Comparative efficacy of ibuprofen and etamsylate in the treatment of I.U.D. menorrhagia. Population Sciences, 6, 63-77, 1985. \n39-Changes in cervical mucus copper and zinc in women using I.U.D.�s. Population Sciences, 6, 35-41, 1985. \n40-Histochemical study of the endometrium of infertile women. Egypt. J. Histol. 8(1) 63-66, 1985. \n41-Genital flora in pre- and post-menopausal women. Egypt. J. Med. Sci. 4(2), 165-172, 1983. \n42-Evaluation of the vaginal rugae and thickness in 8 different groups. Journal of the Egypt. Soc. of Ob./Gyn. 9:2, 101-114, May 1983. \n43-The effect of menopausal status and conjugated oestrogen therapy on serum cholesterol, triglycerides and electrophoretic lipoprotein patterns. Al-Azhar Medical Journal, 12:2, 113-119, April 1983. \n44-Laparoscopic ventrosuspension: A New Technique. Int. J. Gynaecol. Obstet., 20, 129-31, 1982. \n45-The laparoscope: A useful diagnostic tool in general surgery. Al-Azhar Medical Journal, 11:4, 397-401, Oct. 1982. \n46-The value of the laparoscope in the diagnosis of polycystic ovary. Al-Azhar Medical Journal, 11:2, 153-159, April 1982. \n47-An anaesthetic approach to the management of eclampsia. Ain Shams Medical Journal, accepted for publication 1981. \n48-Laparoscopy on patients with previous lower abdominal surgery. Fertility management edited by E. Osman and M. Wahba 1981. \n49-Heart diseases with pregnancy. Population Sciences, 11, 121-130, 1981. \n50-A study of the biosocial factors affecting perinatal mortality in an Egyptian maternity hospital. Population Sciences, 6, 71-90, 1981. \n51-Pregnancy Wastage. Journal of the Egypt. Soc. of Ob./Gyn. 11:3, 57-67, Sept. 1980. \n52-Analysis of maternal deaths in Egyptian maternity hospitals. Population Sciences, 1, 59-65, 1979. \nArticles published on OBGYN.net: \n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n2- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n3- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n4-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n5-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n6-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n7-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n8-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n9- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n10-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n11- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n12-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n13-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n14- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis",institutionString:null,institution:{name:"Al Azhar University",country:{name:"Egypt"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",middleName:null,surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",country:{name:"Egypt"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:1683},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"10454",title:"Technology in Agriculture",subtitle:null,isOpenForSubmission:!0,hash:"dcfc52d92f694b0848977a3c11c13d00",slug:null,bookSignature:"Dr. Fiaz Ahmad and Prof. Muhammad Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/10454.jpg",editedByType:null,editors:[{id:"338219",title:"Dr.",name:"Fiaz",surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10502",title:"Aflatoxins",subtitle:null,isOpenForSubmission:!0,hash:"34fe61c309f2405130ede7a267cf8bd5",slug:null,bookSignature:"Dr. Lukman Bola Abdulra'uf",coverURL:"https://cdn.intechopen.com/books/images_new/10502.jpg",editedByType:null,editors:[{id:"149347",title:"Dr.",name:"Lukman",surname:"Abdulra'uf",slug:"lukman-abdulra'uf",fullName:"Lukman Abdulra'uf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10572",title:"Advancements in Chromophore and Bio-Chromophore Research",subtitle:null,isOpenForSubmission:!0,hash:"4aca0af0356d8d31fa8621859a68db8f",slug:null,bookSignature:"Dr. Rampal Pandey",coverURL:"https://cdn.intechopen.com/books/images_new/10572.jpg",editedByType:null,editors:[{id:"338234",title:"Dr.",name:"Rampal",surname:"Pandey",slug:"rampal-pandey",fullName:"Rampal Pandey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10581",title:"Alkaline Chemistry and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4ed90bdab4a7211c13cd432aa079cd20",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10581.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10697",title:"Raman Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ab2446daed0caa4d243805387a2547ee",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"c935253773c8ed0220e7b8a6fd90c4c6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10702",title:"Polyimide",subtitle:null,isOpenForSubmission:!0,hash:"325bb1a83145389746e590eb13131902",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10702.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"289",title:"Industrial Engineering",slug:"technology-industrial-engineering",parent:{title:"Technology",slug:"technology"},numberOfBooks:17,numberOfAuthorsAndEditors:346,numberOfWosCitations:124,numberOfCrossrefCitations:105,numberOfDimensionsCitations:236,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"technology-industrial-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9288",title:"Design and Manufacturing",subtitle:null,isOpenForSubmission:!1,hash:"29172b8e746a303c2c48f39292fd4c10",slug:"design-and-manufacturing",bookSignature:"Evren Yasa, Mohsen Mhadhbi and Eleonora Santecchia",coverURL:"https://cdn.intechopen.com/books/images_new/9288.jpg",editedByType:"Edited by",editors:[{id:"219594",title:"Ph.D.",name:"Evren",middleName:null,surname:"Yasa",slug:"evren-yasa",fullName:"Evren Yasa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8540",title:"Current Drying Processes",subtitle:null,isOpenForSubmission:!1,hash:"3ebb761607fa27f2d32dd269ee2f2c0f",slug:"current-drying-processes",bookSignature:"Israel Pala-Rosas",coverURL:"https://cdn.intechopen.com/books/images_new/8540.jpg",editedByType:"Edited by",editors:[{id:"284261",title:"Ph.D.",name:"Israel",middleName:null,surname:"Pala-Rosas",slug:"israel-pala-rosas",fullName:"Israel Pala-Rosas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!1,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:"new-trends-in-the-use-of-artificial-intelligence-for-the-industry-4-0",bookSignature:"Luis Romeral Martínez, Roque A. Osornio Rios and Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:"Edited by",editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9426",title:"Industry 4.0",subtitle:"Current Status and Future Trends",isOpenForSubmission:!1,hash:"f9d1cc5119410371683c26acc0239d22",slug:"industry-4-0-current-status-and-future-trends",bookSignature:"Jesús Hamilton Ortiz",coverURL:"https://cdn.intechopen.com/books/images_new/9426.jpg",editedByType:"Edited by",editors:[{id:"97704",title:"Dr.",name:"Jesús Hamilton",middleName:null,surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesús Hamilton Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7529",title:"Industry 4.0",subtitle:"Impact on Intelligent Logistics and Manufacturing",isOpenForSubmission:!1,hash:"3a750fbddad49434288a89b9eb40a893",slug:"industry-4-0-impact-on-intelligent-logistics-and-manufacturing",bookSignature:"Tamás Bányai, Antonella Petrilloand Fabio De Felice",coverURL:"https://cdn.intechopen.com/books/images_new/7529.jpg",editedByType:"Edited by",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9278",title:"Mass Production Processes",subtitle:null,isOpenForSubmission:!1,hash:"789ba305188dfbafa096787e75c14ffc",slug:"mass-production-processes",bookSignature:"Anil Akdogan and Ali Serdar Vanli",coverURL:"https://cdn.intechopen.com/books/images_new/9278.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",middleName:null,surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,isOpenForSubmission:!1,hash:"165b06fe031e98420855654b0a5e25c4",slug:"applications-of-design-for-manufacturing-and-assembly",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6736",title:"Abrasive Technology",subtitle:"Characteristics and Applications",isOpenForSubmission:!1,hash:"928e702841e3f565da642039ea0c31ce",slug:"abrasive-technology-characteristics-and-applications",bookSignature:"Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/6736.jpg",editedByType:"Edited by",editors:[{id:"110857",title:"Associate Prof.",name:"Anna",middleName:null,surname:"Rudawska",slug:"anna-rudawska",fullName:"Anna Rudawska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6245",title:"Pulp and Paper Processing",subtitle:null,isOpenForSubmission:!1,hash:"02d43c16cfb998c3a76fb4aab8d88403",slug:"pulp-and-paper-processing",bookSignature:"Salim Newaz Kazi",coverURL:"https://cdn.intechopen.com/books/images_new/6245.jpg",editedByType:"Edited by",editors:[{id:"93483",title:"Dr.",name:"Salim Newaz",middleName:null,surname:"Kazi",slug:"salim-newaz-kazi",fullName:"Salim Newaz Kazi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6652",title:"Heat and Mass Transfer",subtitle:"Advances in Modelling and Experimental Study for Industrial Applications",isOpenForSubmission:!1,hash:"7981cc291e9ee4ff4634384466570ec6",slug:"heat-and-mass-transfer-advances-in-modelling-and-experimental-study-for-industrial-applications",bookSignature:"Yong Ren",coverURL:"https://cdn.intechopen.com/books/images_new/6652.jpg",editedByType:"Edited by",editors:[{id:"177059",title:"Dr.",name:"Yong",middleName:null,surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6594",title:"Temperature Sensing",subtitle:null,isOpenForSubmission:!1,hash:"598e9ad9be0629fa35cf14915a8da943",slug:"temperature-sensing",bookSignature:"Ivanka Stanimirovi? and Zdravko Stanimirovi?",coverURL:"https://cdn.intechopen.com/books/images_new/6594.jpg",editedByType:"Edited by",editors:[{id:"3420",title:"Dr.",name:"Ivanka",middleName:null,surname:"Stanimirović",slug:"ivanka-stanimirovic",fullName:"Ivanka Stanimirović"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:17,mostCitedChapters:[{id:"34671",doi:"10.5772/35299",title:"The Micro Injection Moulding Process for Polymeric Components Manufacturing",slug:"the-micro-injection-moulding-process-for-polymeric-components-manufacturing",totalDownloads:10931,totalCrossrefCites:11,totalDimensionsCites:26,book:{slug:"new-technologies-trends-innovations-and-research",title:"New Technologies",fullTitle:"New Technologies - Trends, Innovations and Research"},signatures:"R. Surace, G. Trotta, V. Bellantone and I. Fassi",authors:[{id:"11409",title:"Dr.",name:"Irene",middleName:null,surname:"Fassi",slug:"irene-fassi",fullName:"Irene Fassi"},{id:"103804",title:"Dr.",name:"Rossella",middleName:null,surname:"Surace",slug:"rossella-surace",fullName:"Rossella Surace"},{id:"114909",title:"Dr.",name:"Vincenzo",middleName:null,surname:"Bellantone",slug:"vincenzo-bellantone",fullName:"Vincenzo Bellantone"},{id:"118566",title:"MSc.",name:"Gianluca",middleName:null,surname:"Trotta",slug:"gianluca-trotta",fullName:"Gianluca Trotta"}]},{id:"34672",doi:"10.5772/33302",title:"Recent Advances in Multi-Dimensional Packing Problems",slug:"recent-advances-in-multi-dimensional-packing-problems",totalDownloads:2957,totalCrossrefCites:4,totalDimensionsCites:19,book:{slug:"new-technologies-trends-innovations-and-research",title:"New Technologies",fullTitle:"New Technologies - Trends, Innovations and Research"},signatures:"Teodor Gabriel Crainic, Guido Perboli and Roberto Tadei",authors:[{id:"94832",title:"Prof.",name:"Roberto",middleName:null,surname:"Tadei",slug:"roberto-tadei",fullName:"Roberto Tadei"},{id:"95093",title:"Dr.",name:"Guido",middleName:null,surname:"Perboli",slug:"guido-perboli",fullName:"Guido Perboli"},{id:"119947",title:"Prof.",name:"Teodor Gabriel",middleName:null,surname:"Crainic",slug:"teodor-gabriel-crainic",fullName:"Teodor Gabriel Crainic"}]},{id:"36717",doi:"10.5772/36553",title:"Optical Measurements: Polarization and Coherence of Light Fields",slug:"the-state-of-the-art-ande-prospects-of-metrology",totalDownloads:2736,totalCrossrefCites:1,totalDimensionsCites:17,book:{slug:"modern-metrology-concerns",title:"Modern Metrology Concerns",fullTitle:"Modern Metrology Concerns"},signatures:"O. V. Angelsky, P. V. Polyanskii, I. I. Mokhun, C. Yu. Zenkova, H. V. Bogatyryova, Ch. V. Felde, V. T. Bachinskiy, T. M. Boichuk and A. G. Ushenko",authors:[{id:"108799",title:"Prof.",name:"Oleg",middleName:null,surname:"Angelsky",slug:"oleg-angelsky",fullName:"Oleg Angelsky"}]}],mostDownloadedChaptersLast30Days:[{id:"70465",title:"Industry 4.0: Current Status and Future Trends",slug:"industry-4-0-current-status-and-future-trends",totalDownloads:621,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"industry-4-0-current-status-and-future-trends",title:"Industry 4.0",fullTitle:"Industry 4.0 - Current Status and Future Trends"},signatures:"Jesús Hamilton Ortiz, William Gutierrez Marroquin and Leonardo Zambrano Cifuentes",authors:[{id:"283288",title:"Dr.",name:"Jesus Hamilton",middleName:null,surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesus Hamilton Ortiz"},{id:"308289",title:"Mr.",name:"Rafael",middleName:"Leonardo",surname:"Zambrano Cifuentes",slug:"rafael-zambrano-cifuentes",fullName:"Rafael Zambrano Cifuentes"}]},{id:"69320",title:"Big Data Analytics and Its Applications in Supply Chain Management",slug:"big-data-analytics-and-its-applications-in-supply-chain-management",totalDownloads:902,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"new-trends-in-the-use-of-artificial-intelligence-for-the-industry-4-0",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",fullTitle:"New Trends in the Use of Artificial Intelligence for the Industry 4.0"},signatures:"Saeid Sadeghi Darvazeh, Iman Raeesi Vanani and Farzaneh Mansouri Musolu",authors:[{id:"296039",title:"Dr.",name:"Iman",middleName:null,surname:"Raeesi Vanaei",slug:"iman-raeesi-vanaei",fullName:"Iman Raeesi Vanaei"},{id:"309983",title:"Ph.D. Student",name:"Saeid",middleName:null,surname:"Sadeghi Darvazeh",slug:"saeid-sadeghi-darvazeh",fullName:"Saeid Sadeghi Darvazeh"},{id:"310095",title:"Ms.",name:"Farzaneh",middleName:null,surname:"Mansouri Musolu",slug:"farzaneh-mansouri-musolu",fullName:"Farzaneh Mansouri Musolu"}]},{id:"69495",title:"A Methodology to Design and Balance Multiple Cell Manufacturing Systems",slug:"a-methodology-to-design-and-balance-multiple-cell-manufacturing-systems",totalDownloads:245,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mass-production-processes",title:"Mass Production Processes",fullTitle:"Mass Production Processes"},signatures:"Luis Valdivia and Pedro Palominos",authors:[{id:"304831",title:"Dr.Ing.",name:"Pedro",middleName:null,surname:"Palominos",slug:"pedro-palominos",fullName:"Pedro Palominos"},{id:"309996",title:"MSc.",name:"Luis",middleName:null,surname:"Valdivia",slug:"luis-valdivia",fullName:"Luis Valdivia"}]},{id:"62223",title:"Pulping and Papermaking of Non-Wood Fibers",slug:"pulping-and-papermaking-of-non-wood-fibers",totalDownloads:2289,totalCrossrefCites:5,totalDimensionsCites:8,book:{slug:"pulp-and-paper-processing",title:"Pulp and Paper Processing",fullTitle:"Pulp and Paper Processing"},signatures:"Zhong Liu, Huimei Wang and Lanfeng Hui",authors:[{id:"218005",title:"Prof.",name:"Zhong",middleName:null,surname:"Liu",slug:"zhong-liu",fullName:"Zhong Liu"},{id:"220665",title:"Prof.",name:"Lanfeng",middleName:null,surname:"Hui",slug:"lanfeng-hui",fullName:"Lanfeng Hui"},{id:"220666",title:"Dr.",name:"Huimei",middleName:null,surname:"Wang",slug:"huimei-wang",fullName:"Huimei Wang"}]},{id:"63861",title:"Digital Twin Technology",slug:"digital-twin-technology",totalDownloads:462,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"industry-4-0-impact-on-intelligent-logistics-and-manufacturing",title:"Industry 4.0",fullTitle:"Industry 4.0 - Impact on Intelligent Logistics and Manufacturing"},signatures:"Zongyan Wang",authors:[{id:"255874",title:"Dr.",name:"Zongyan",middleName:null,surname:"Wang",slug:"zongyan-wang",fullName:"Zongyan Wang"}]},{id:"51561",title:"Sustainable Drying Technologies for the Development of Functional Foods and Preservation of Bioactive Compounds",slug:"sustainable-drying-technologies-for-the-development-of-functional-foods-and-preservation-of-bioactiv",totalDownloads:1755,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"sustainable-drying-technologies",title:"Sustainable Drying Technologies",fullTitle:"Sustainable Drying Technologies"},signatures:"Ester Betoret, Laura Calabuig-Jiménez, Cristina Barrera and Marco\nDalla Rosa",authors:[{id:"182749",title:"Ph.D.",name:"Ester",middleName:null,surname:"Betoret",slug:"ester-betoret",fullName:"Ester Betoret"},{id:"190053",title:"MSc.",name:"Laura",middleName:null,surname:"Calabuig-Jiménez",slug:"laura-calabuig-jimenez",fullName:"Laura Calabuig-Jiménez"},{id:"190056",title:"Dr.",name:"Cristina",middleName:null,surname:"Barrera",slug:"cristina-barrera",fullName:"Cristina Barrera"},{id:"190058",title:"Prof.",name:"Marco",middleName:null,surname:"Dalla Rosa",slug:"marco-dalla-rosa",fullName:"Marco Dalla Rosa"}]},{id:"70417",title:"Impact of Industry 4.0 on Inventory Systems and Optimization",slug:"impact-of-industry-4-0-on-inventory-systems-and-optimization",totalDownloads:457,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"industry-4-0-impact-on-intelligent-logistics-and-manufacturing",title:"Industry 4.0",fullTitle:"Industry 4.0 - Impact on Intelligent Logistics and Manufacturing"},signatures:"Xue-Ming Yuan",authors:[{id:"301728",title:"Prof.",name:"Xue-Ming",middleName:null,surname:"Yuan",slug:"xue-ming-yuan",fullName:"Xue-Ming Yuan"}]},{id:"63362",title:"Pulping of Non-Woody Biomass",slug:"pulping-of-non-woody-biomass",totalDownloads:1106,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"pulp-and-paper-processing",title:"Pulp and Paper Processing",fullTitle:"Pulp and Paper Processing"},signatures:"Mayowa Akeem Azeez",authors:[{id:"197473",title:"Dr.",name:"Mayowa Akeem",middleName:null,surname:"Azeez",slug:"mayowa-akeem-azeez",fullName:"Mayowa Akeem Azeez"}]},{id:"59931",title:"Abrasive for Chemical Mechanical Polishing",slug:"abrasive-for-chemical-mechanical-polishing",totalDownloads:1532,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"abrasive-technology-characteristics-and-applications",title:"Abrasive Technology",fullTitle:"Abrasive Technology - Characteristics and Applications"},signatures:"Hong Jin Kim",authors:[{id:"235449",title:"Dr.",name:"Hong Jin",middleName:null,surname:"Kim",slug:"hong-jin-kim",fullName:"Hong Jin Kim"}]},{id:"62158",title:"Environmentally Friendly Method for the Separation of Cellulose from Steam-Exploded Rice Straw and Its High-Value Applications",slug:"environmentally-friendly-method-for-the-separation-of-cellulose-from-steam-exploded-rice-straw-and-i",totalDownloads:672,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"pulp-and-paper-processing",title:"Pulp and Paper Processing",fullTitle:"Pulp and Paper Processing"},signatures:"Guangjun Gou, Wei Wei, Man Jiang, Shengli Zhang, Tingju Lu,\nXiaoli Xie, Fanbin Meng and Zuowan Zhou",authors:[{id:"143059",title:"Prof.",name:"Zuowan",middleName:null,surname:"Zhou",slug:"zuowan-zhou",fullName:"Zuowan Zhou"},{id:"221027",title:"Mr.",name:"Guangjun",middleName:null,surname:"Gou",slug:"guangjun-gou",fullName:"Guangjun Gou"},{id:"221028",title:"Mr.",name:"Wei",middleName:null,surname:"Wei",slug:"wei-wei",fullName:"Wei Wei"},{id:"221029",title:"Dr.",name:"Man",middleName:null,surname:"Jiang",slug:"man-jiang",fullName:"Man Jiang"},{id:"221030",title:"Dr.",name:"Shengli",middleName:null,surname:"Zhang",slug:"shengli-zhang",fullName:"Shengli Zhang"},{id:"221031",title:"MSc.",name:"Tingju",middleName:null,surname:"Lu",slug:"tingju-lu",fullName:"Tingju Lu"},{id:"221032",title:"Dr.",name:"Xiaoli",middleName:null,surname:"Xie",slug:"xiaoli-xie",fullName:"Xiaoli Xie"},{id:"221033",title:"Dr.",name:"Fanbin",middleName:null,surname:"Meng",slug:"fanbin-meng",fullName:"Fanbin Meng"}]}],onlineFirstChaptersFilter:{topicSlug:"technology-industrial-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/320287/navin-mogha",hash:"",query:{},params:{id:"320287",slug:"navin-mogha"},fullPath:"/profiles/320287/navin-mogha",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()