A nanostructure is a system in which at least one external dimension is in the nanoscale, it means a length range smaller than 100 nm. Nanostructures can be natural or synthetic and determine the physicochemical properties of bulk materials. Due to their high surface area and surface reactivity, they can be an efficient alternative to remove contaminants from the environment, including heavy metals from water. Heavy metals like mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), and chromium (Cr) are highly poisonous and hazardous to human health due to their non-biodegradability and highly toxic properties, even at trace levels. Thus, efficient, low-cost, and environmentally friendly methodologies of removal are needed. These needs for removal require fast detection, quantification, and remediation to have heavy metal-free water. Nanostructures emerged as a powerful tool capable to detect, quantify, and remove these contaminants. This book chapter summarizes some examples of nanostructures that have been used on the detection, quantification, and remediation of heavy metals in water.
Part of the book: Trace Metals in the Environment