The cargo transportation in the world is mostly dominated by road transport, using long combination vehicles (LCV’s). These vehicles offer more load capacity, which reduces transport costs and thus increases the efficiency and competitiveness of companies and the country. But the tradeoff of LCV’s is their low lateral stability and propensity to roll over, which has been the focus of many studies. Most vehicle stability models do not consider the longitudinal aspects of the vehicle and the road, such as the stiffness of the chassis, the gravity center location, and the longitudinal slope angle of the road. But, the use of three-dimensional models of vehicles allows a more rigorous analysis of vehicle stability. In this context, this study aims to develop a three-dimensional mechanism model representing the last trailer unit of an LCV under an increasing lateral load until it reaches the rollover threshold. The proposed model considers the gravity center movement of the trailer, which is affected by the suspension, tires, fifth-wheel, and the chassis. Davies method has proved to be an important tool in the kinetostatic analysis of mechanisms, and therefore it is employed for the kinetostatic analysis of the three-dimensional mechanism of the trailer.
Part of the book: Numerical and Experimental Studies on Combustion Engines and Vehicles