The similarity and difference between the female and male heterogametic system.
\r\n\tsandwiches, etc.
\r\n\r\n\tListeria monocytogenes causes one of the most serious and life-threatening diseases (listeriosis), usually caused by eating food contaminated with Listeria monocytogenes. An estimate of 1,600 people get sick (especially at risk-groups including pregnant women, newborns, old people (65 years old and above), people with weakened immune systems, etc.) and about 260 die (Listeria is the third leading cause of death from foodborne illness in the U.S.) each year, in the U.S. from Listeriosis.
\r\n\t
\r\n\tThe main goal of the book is to provide accurate and updated information on Listeria monocytogenes so governments (decision-makers), food industry, consumers, and other stakeholders can implement appropriate preventative measures to control Listeria monocytogenes. This book will cover several topics including the prevalence of Listeria monocytogenes in developed countries, the prevalence of Listeria monocytogenes in developing countries, the prevalence of Listeria monocytogenes in ready-to-eat food, detection of Listeria monocytogenes in Food, control of Listeria monocytogenes in food-processing facilities, etc.
Sex is characterized by a set of features that ensure sexual reproduction. We distinguish the primary definition of sex—the emergence of one of two types of gonads (organs somatic of nature), their sexual differentiation into final system, and the development of two types germ cells. In different groups of vertebrates, different mechanisms of sex determination are realized. We consider hypothetical schemes of such a process in birds using the example of Gallus gallus domesticus [1]. On the one hand, chicken is an important model object of fundamental genetics, especially embryogenetics [2], and on the other hand, it has significant practical importance for humans: 210 million tons of meat and 1482 billion eggs per year [2, 3]. Both males and females are fattened in broiler production. There is currently no economically worthwhile use of the male of egg breeds. Therefore, the 1-day cockerels are destroyed, and this applies to 330 million chickens annually in the European Union alone [1, 4, 5]. This raises ethical issues, and understanding the principles of gender genetics, as well as gender selection algorithms in early embryos, is extremely important from a fundamental and applied point of view.
\nIn birds, females are heterogametic. Embryos with two Z chromosomes in birds develop as males, and those with ZW chromosomes develop as females (\nFigure 1\n).
\nA hypothetical scheme of primary sex differentiation in Gallus gallus. Initially gonads are undifferentiated. They consist of an outer cortex and underlying medullary layer. Primordial germ cells (PGCs) are visible on 3.5 day and are located mainly in the cortex. On the 5.5–6th day (stage 28–30), bilateral testes appear in ZZ embryos, and in ZW embryos, the left gonad gives ovary and the right one regresses (adapted from [1]).
At present, two hypotheses about sex determination in birds compete. One of these hypotheses considers the number of Z chromosomes as a key sex-determining factor, while the other hypothesis supposes the presence in W chromosome of the key gene controlling ovarian development or suppressing the appearance of testes. A decrease in the expression of doublesex and mab-3-related transcription factor 1 (DMRT1) protein in ovo as a result of RNA interference of this gene leads to the feminization of embryonic gonads in genetic males. In the feminized left gonad, a decrease in the expression of the SRY-box transcription factor 9 (SOX9) gene and an increase in the expression of the cytochrome P450 aromatase (CYP19A1) gene were observed. This observation confirms the hypothesis of the presence of dose compensation in the DMRT1 gene. In feminized right gonad, the expression of the corresponding genes is very different, indicating differential sensitivity to DMRT1 between the left and right gonads. Germ cells in feminized gonads are distributed as in the ovaries. All this indicates that the DMRT1 gene is necessary for the development of testes [6]. But there is no clear evidence that this gene controls the primary sex determination (the appearance of testis or ovary).
\n\n\nFigure 2\n presents a hypothetical scheme of genetic control of primary sex differentiation in Gallus gallus. The gonad appears on the 3.5th day (stage 22) as thickening on the surface of mesonephros. It consists of the epithelial layer of somatic and germ cells and medullary cordate layer (epithelial cords), which is mixed with mesenchymal cells. On the 6.5th day (stage 30), the first genes that determine sex are activated.
\nThe simplified gene regulatory network controlling primary sex determination of chicken. Black (from male genes) and gray (from female genes) arrows represent positive (→) and negative () interactions, and dashed arrows indicate indirect or proposed interactions between Z and Z chromosomes and between Z and W chromosomes (adapted from [9]).
Into the modern scheme of the genetic control of sex determination in birds (practically within the hypothesis of dose compensation), an epigenetic mechanism was added ([7, 8], \nFigure 2\n).
\nSex reversal is the phenomenon whereby organisms developing at sex-specific conditions hatch the opposite sex. This can be caused by factors acting as estrogen promoters or inhibitors, increasing or decreasing the number of female offspring, through controlling aromatase [10]. Synthetic aromatase inhibitors (an enzyme catalyzing the synthesis of estrogens) can cause steady inversion of sex from female to male. In this case, the left gonad becomes an ovotestis, or a testis, and the right gonad becomes a testis. In most experiments injection of aromatase inhibitors in ovo is carried out on the 3rd or 4th day of incubation [11, 12]. The proportion of individuals with sex inversion and two testes is increased with an earlier introduction of the inhibitor at the beginning of incubation [13]. However, females with inversed sex have got testes with an abnormal development and with an abundance of abnormal spermatozoa in the seminiferous tubules. The experimental results suggest that the abnormal development of the testes in the sex-reversed female chicken is jointly regulated by sex-related genes and long noncoding RNAs (lncRNA); Wnt (the term wnt is an amalgam of wingless (Wg) and int) and transforming growth factor beta/the bone morphogenetic protein signaling pathways (TGFβ/BMP signaling pathways) play an essential role in regulating developmental pathways during embryogenesis, including a very important role in the differentiation of gonads and in maintaining their function in chickens [14]. Unfortunately at the moment there is no clear concrete data on these issues. It was previously noted that the earliest expression of aromatase in birds is detected only on the 5th day of embryonic development in the medullary layer of the ovary. It is also worth noting that the appearance of aromatase has recently been demonstrated already in the mother’s body, after oogenesis in the theca of early follicles [15]. The effect of estrogens on female gonadogenesis follows from the classical scheme of primary sex determination in Gallus gallus. At the same time, in experimental males injection of estradiol results in reversible feminization [16].
\nIn recent study Morris et al. described the gonads and endocrine profile of a gynandromorphic chicken. Its right side had male features, and the left side had female features. Almost all cells (96%) on the right side had a ZZ karyotype, and the left side had a mixture of cells with ZZ and ZW karyotypes. Moreover, the number of cells with the ZW karyotype was much smaller than with the ZZ karyotype. A reduced percentage of cells with the ZW karyotype (23%) did not affect the manifestation of female traits. Based on these observations, Morris et al. concluded that even a small percentage of ZW cells is sufficient for female differentiation. They also confirm the hypothesis of the existence of cell autonomy, on which sexual differentiation in birds depends [17].
\nThus, comparing the results of experiments on the inversion of sex and the search for a sex-determining gene in chickens, it can be assumed that the primary determination of the sex of birds is determined by the estrogens content in the early stages of embryogenesis. The role of DMRT1 is associated with the correct regular inclusion of spermatogenesis genes.
\nA heterogametic sex is a genetically determined sex that corresponds to the presence in the cells of the body of two different sex chromosomes or one, in a double dose leading to the formation of an alternative sex. Heterogametic individuals give two groups of gametes (according to the content of different sex chromosomes). In animals with a heterogametic male sex, the letters X and Y are used to designate sex chromosomes. Individuals, normally carrying a pair of sex chromosomes X and Y or one chromosome X, are males, and two chromosomes X are females. This group includes mammals, most species of insects, and many other groups. If the heterogamous sex is female, then other designations for sex chromosomes are used—Z and W. Individuals with the genotype ZZ are males; ZW are females. Heterogamous female sex is characteristic of Lepidoptera insects, reptiles, and birds. In these species, sex is not determined during fertilization, but during meiosis. There is no full dose compensation. Female heterogametic systems are very different from the male heterogametic systems. For example, dosage compensation is incomplete in birds. Z-linked genes are higher expressed in males (with two Z chromosomes) than in females (with one Z chromosome), and only a subgroup of genes have the same dose of expression between the sexes. Two male hypermethylated (MHM) regions (MHM1 and MHM2) were found on the Z chromosome with extreme differences in DNA methylation between male and female chicken [18, 19]. Most of the samples analyzed showed a limited effect of MHM1 on transcription of DMRT1. The role of DMRT1 in determining sex in chickens, which may depend on developmental stage and tissue, needs further evaluation [19]. The similarity and difference between the female and male heterogametic system are shown in \nTable 1\n.
\n\n | Female heterogametic system | \nMale heterogametic system | \n
---|---|---|
System of sex chromosomes | \nZW/ZZ | \nXX/XY | \n
Gender carrying with two types of gametes | \nFemale | \nMale | \n
Type of gametes that determines gender | \nEggs | \nSpermatozoids | \n
An event that leads to sex determination | \nMeiosis (first division) | \nFertilization | \n
Moment of sex determination regarding fertilization | \nLong before fertilization | \nIn the moment of fertilization | \n
Type of gametes in which material is stored for the development of a heterogametic sex | \nEggs | \nEggs | \n
Role of eggs before fertilization | \nStorage of substances necessary for the development of zygotes, including various types of RNA, during egg maturation | \nStorage of substances necessary for the development of zygotes, including various types of RNA, during egg maturation | \n
Role of sperm in egg fertilization | \nStart of development, introducing genetic material associated with the Z chromosome | \nStart of development, introducing genetic material associated with the Y chromosome | \n
Possible involvement of sex chromosomes in the storage of substances | \nPossible involvement of Z or W chromosomes | \nOnly the X chromosome is involved | \n
Dose compensation | \nIncomplete for Z (male) | \nComplete for X (female) | \n
Feature of the alternative sex chromosome (W or Y) | \nAlmost completely consists of repeats, completely heterochromatic | \nAlmost completely consists of repeats, completely heterochromatic | \n
Origin of alternative sex chromosome (W or Y) | \nMaternal | \nPaternal | \n
The similarity and difference between the female and male heterogametic system.
The genome can differentiate tissue-specific. An excellent example of this is the presence of the germline-restricted chromosome (GRC) in the genome of some songbirds. It is absent in somatic cells. GRC is inherited through the female germline and eliminated from the somatic cells during early embryogenesis. Also it was found that GRC contains genes that are paralogous to genes on autosomes and the Z chromosome. More than 38 GRC-linked genes were found in a large number of copies. There are no mobile elements on GRC. The GRC is enriched in genes that are highly expressed in gonads and are involved in the development of female gonads. Germline-restricted chromosomes are probably widespread in the highly dynamic evolutionary history of songbirds, which leads to significant differences between the genome of germline cells and the genome of somatic cells. This is a new mechanism for minimizing the genetic conflict between germ line cells and somatic cells [20, 21].
\nChicken W chromosome has a length of about 7.08 Mb and contains 28 genes. It was shown that the decay of genes specific for the W chromosome is not random, and therefore it was suggested that the content of the surviving genes associated with the W chromosome was under high evolutionary pressure due to absence of recombination. There are no genes on the W chromosome that determine sex. In the evolution of bird karyotypes, the W chromosome has undergone extensive degradation and accumulation of repetitive DNA [22, 23]. Notably, the most common W chromosome-specific repeats XhoI, EcoRI, SspI, and newly described (GGAAA)n are compacted in densely packed chromomeres and do not transcribe at the lampbrush stage. XhoI, EcoRI, and SspI were shown to lack any significant homology between Galliformes, Ciconiiformes, and Passeriformes. Komissarov et al. suggested independent accumulation of specific DNA repeats, which occurred after initial divergence of Z and W chromosomes (\nFigure 3\n, [23]).
\nChicken W lampbrush chromosome diagram with localized repeat blocks. Chromomeres are numbered from the free end of the W chromosome to the chiasma region. Loop-related repeats are indicated by thin arrows. Non-transcribed repeat locations are marked with thick arrows (adapted from [23]).
The determination of the function of repeating sequences on Y or W chromosomes is in its infancy, but it is clear that these sequences play a functional role in gene regulation and chromatin structure [23]. Banded krait minor (Bkm) satellite repeat in the W chromosome consists of tandem arrays of GATA nucleotides. Tissue-specific protein that binds specifically to Bkm repeats, known as Bkm-binding protein (BBP), is involved in the coordinated decondensation of the heterogametic sex chromosomes in germ cells. It is known that GATA repeats play a conservative role of insulators [24, 25].
\nThe transcriptome of sex-inversed chickens has a wide variety of lncRNA classes compared to the transcriptome of ordinary males. lncRNAs are classified as a separate class of non-protein-coding genes. These genes do not encode proteins and do not have open reading frames; their functional constraints differ from those for protein-encoding genes or genes where most of the nucleotide sequence is necessary for a function similar with tRNA. Despite this, relatively few lncRNAs have been studied in detail. They present high sequence divergence between species. Nonetheless, similar or equivalent lncRNAs perform the same functions in different organisms [26]. The W chromosome is necessary for the appearance of the ovary. Individuals containing it are always females (\nTable 2\n) [27, 28]. A specific factor, called F or ZUF (Z upregulated factor), is involved in gene dose compensation in determining sex. This W-specific factor can control gene expression from the single Z chromosome of the heterogametic sex [27]. Unlike mammals, we never see birds with differences in the number of Z and W chromosomes; it seems that there are no bird equivalent to women with XO with one X chromosome and men with XXY chromosomes. Perhaps such changes are lethal in birds.
\nPloidy | \nSex chromosomes | \n\nZUF\n | \nZ dosage | \nZ/A ratio | \nPhenotype | \n
---|---|---|---|---|---|
Normal | \n|||||
2A | \nZZ | \n— | \n1*2Z = 2 | \n1,00 | \nM | \n
2A | \nZW | \n+ | \n2*1Z = 2 | \n1,00 | \nF | \n
Aneuploid | \n|||||
2A | \nZO | \n— | \n1*1Z = 1 | \n0,50 | \nM (dead) | \n
2A | \nZZZ | \n— | \n1*3Z = 3 | \n1,50 | \nM (dead) | \n
2A | \nZZW | \n+ | \n2*2Z = 4 | \n2,00 | \nF (dead) | \n
2A | \nZWW | \n+ | \n2*1Z = 2 | \n1,00 | \nF | \n
Triploid | \n|||||
3A | \nZZZ | \n— | \n1*3Z = 3 | \n1,00 | \nM | \n
3A | \nZZW | \n+ | \n2*2Z = 4 | \n1,33 | \nF/M | \n
3A | \nZWW | \n+ | \n2*1Z = 2 | \n0,67 | \nF (dead) | \n
The number of Z chromosomes and phenotype of aneuploid chickens [27].
ZUF = Z upregulated factor.
There is some experimental evidence that sexual cleavage in birds may not be random [29, 30]. This corresponds to the previously reported effects of hormonal manipulations on the offspring. It appears that there is a critical level of corticosterone needed to manipulate the sex of the offspring and that this level must be achieved within a relatively short time (\nFigure 4\n, [31, 32, 33, 34]).
\nThe proposed scheme of biosynthesis of important steroid hormones (adapted from [34]).
Proposed preovulatory mechanisms for a primary sex ratio bias in birds include (1) asynchronous sex-specific follicular development, (2) segregation distortion or meiotic drive, and (3) selective resorption of postmeiotic and preovulatory follicle (\nFigure 5\n).
\nThe suggested mechanisms of bias of the primary sex ratio in birds. (1) The first mechanism implies the existence of factors within the follicles prior to meiosis. (2) Meiotic drive suggests that factors during meiosis I cause nonrandom segregation of sex chromosome. (3) Third mechanism involves sex-specific follicle abortion and subsequent resorption after meiosis and before ovulation (adapted from [35]).
There are hypotheses that explain sex ratio bias (SR bias). These are sex-specific fertilization and sex-specific embryo mortality. Now they are not relevant. Hormonal fluctuations caused by external factors that the female encounters alter the normal process of meiosis I (MI, the first meiotic division), blocking the segregation of the first polar body (PB) (\nFigure 6\n, [32]). But not only maternal hormones and other components of the yolk might affect the result. Temperature is another factor responsible for differential embryonic mortality in birds.
\nExclusion of the first polar body (PB) as a possible mechanism of deviation from the primary SR bias in birds (adapted from [32]).
Gonadal sex determination refers to the decision to differentiate as a testis or an ovary [29], such that sex determination occurs chronologically before sex differentiation and glucocorticoids (GCs) could interfere with both processes. For instance, in avian species, corticosterone may influence sex chromosome segregation at the first meiotic division, thereby acting directly on sex determination. This is possible because, in birds, females are the heterogametic sex (ZW chromosomes) and have therefore a high degree of control over the sex ratio of the offspring they produce (\nFigure 7\n, [10, 34]). Future studies regarding sex ratio bias in birds should focus on the cellular and molecular mechanisms of sex ratio bias by examining the gene and protein expression during meiosis using genomics and proteomics techniques.
\nMechanism of influence of glucocorticoids (GCs) on determination and differentiation of sex in vertebrates (adapted from [10]).
For birds, the DMRT1 gene is considered as the sex-determining gene. The main argument is the change in the sex of male after turning it off with the use of interfering RNA on the 1st day of incubation [6]. There is also the possibility of changing the sex by introducing an aromatase inhibitor, usually on day 5.5 or even at the very beginning of incubation in the direction of the female → male [11, 12, 13]. According to recent data, aromatase appears already in the layer of early follicles [14]. The unstable alteration of males into females after injection of estrogen is worth mentioning [16]. The indispensable presence of the W chromosome in females suggests that synthesis of estrogens is induced by genes located on this chromosome. It can be assumed that this process is triggered by the inclusion of a number of factors using lncRNA. The primary sex determination is the onset of testis or ovary before differentiation (\nFigure 8\n).
\nStages of gonadal sex determination: the stage of initiation, maintenance, and stabilization. The sex reversal can only occur at stages of initiation and maintenance. The complete sex alteration can only occur at the stabilization stage (adapted from [36]).
\nDmrt1 is unusual in that it is expressed by both Sertoli cells and germ cells. Deletion or inactivation of DMRT1 gene in human resulted in XY male-to-female sex reversal. DMRT1 is required for a stable testis phenotype. It is well known that retinoic acid (RA) signaling between Sertoli cells and germ cells is essential for adult mammalian spermatogenesis. In the absence of DMRT1, RA signaling may also activate genes that can drive male-to-female transdifferentiation. Gonad sex identity may be able to switch at adult stage in some fish species. In mammals the gonadal phenotype remains stable for the rest of life. In birds the function of DMRT1 is not primary sex determination, but maintenance of already formed testis [37]. The appearance of gonads in birds is most likely determined by sex hormones and to the greatest extent by estrogen under the control of W chromosome. The role of the DMRT1 gene is to maintain and develop testis.
\nIt can be assumed that the W chromosome causes the appearance of ovaries through the control of estrogen synthesis and their interaction with the corresponding receptors. The W chromosome seems to have no specifically female genes. Over the years, it was believed that the main function of RNA is to act as an intermediary in the process of reading a protein sequence from the gene encoding it. Therefore, one of the biggest surprises in modern biology was the discovery that protein-coding sequences comprise less than 2% of the total genome; then it has been found that at least 90% of the human genome is actively transcribed. It should be noted that lncRNA are transcripts that do not encode protein and have a length of more than 200 nucleotides. However, despite debates, the proof that certain lncRNA clearly play first-line roles in development, pluripotency, dosage compensation, establishment of chromatin structure, genome maintenance, and as tumor suppressors or oncogenes is not contested [38, 39]. It assumes that the development of testis in male of chicken is co-regulated by sex-related genes and long noncoding RNA, and Wnt and TGFβ/BMP signaling pathways have a very important role in gonadal differentiation. It is desirable to pay attention to noncoding RNAs, their connection with the W chromosome and their role in bird sex determination.
\nThis research was supported by a grant 17-04-01321A Russian Foundation for Basic Research (RFBR).
\nThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be considered as a potential conflict of interest.
Orthodontic treatment in the present day does not just require to meet the demands of creating the functional harmony in occlusion and improving the aesthetic outlook of but is should also be completed in the most efficient duration that is accepted by the patient and the orthodontist. We live in a fast-paced world where the treatment duration has clearly made the field of orthodontic treatment to revolve around it. Accelerated orthodontic tooth movement is not something that has recently emerged; it has been studied and tried out for many years. In an attempt of producing faster tooth movement during orthodontic treatment, there are numerous methods of accelerating tooth movements that have been introduced over the years which range from surgical means to the use of laser therapy. Now let us look at each method explained in this chapter.
\nWe can categorise the methods of accelerated tooth movement into the following categories:
Pharmacological methods
Surgical methods
Physical methods
Orthodontic forces cause a fluid movement in the periodontal ligament space and distortion of the matrix and cells. There is release of molecules which initiate bone remodelling for tooth movement [1]. There are a number of researches on pharmacological agents that act as biomodulators for increased orthodontic tooth movement. These are examples of such biomodulators:
Prostaglandin E2 and Prostaglandin E1
Misoprostol
1,25-Dihydroxycholecalciferol
Parathyroid hormones
Intravenous immunoglobulins
Prostaglandin E2 (PGE2) is an arachidonic acid metabolite is an often-tested substance to increase orthodontic tooth movement [2]. Animal studies have shown PGE2 to increase tooth movement and facilitate bone resorption [3, 4, 5, 6]. Camacho and Velásquez Cujar conducted a study that showed that it required repeated injections due to its short half-life [7]. Particular synthases that are required for the synthesis of PGE2 could be targeted to control the production of the prostaglandins [8].
\nAnother prostaglandin that has been reported to speed up orthodontic tooth movement is Prostaglandin E1 (PGE1). Prostaglandin E1 (PGE1) has also been seen to be induced by mechanical stress and cause bone remodelling, Patil and his co-workers had shown that even minimal amounts of PGE1 injection had significant increase in tooth movement [9]. Due to the hyperalgesia that accompanies with the local injection of PGE1, an analogue of it which is misoprostol was tried out. It was seen that it was effective in increasing orthodontic tooth movement (Figure 1) [10].
\nInjection of a biomodulator in the periodontium.
The parathyroid hormone (PTH) acts directly on osteoblasts and on osteoclasts indirectly by binding to the PTH type 1 receptor on osteoblasts. This causes the expression of insulin like growth factor 1. There is promotion of osteoblast survival, osteoblastogenesis and receptor activator for nuclear factor κ B ligand (RANKL) which induces osteoclast activation [2]. PTH facilitates bone remodelling in intermittent treatment by enhancing activities of osteoblasts and osteoclasts [11].
\nCalcitriol or 1,25-dihydroxycholecalciferol which is the most active metabolite of vitamin D acts in a similar fashion to PTH by facilitating osteoblastic proliferation and function [12]. Calcitriol facilitates alveolar bone remodelling which leads to increase in tooth movement while force application [6, 13].
\nRecently intravenous immunoglobulin (IVIg) preparations which are used in immunodeficient patients as replacement therapy. These preparations have been shown to induce COX-2 mediated PGE2 and cytokine production [14, 15]. Future potential of these preparations could be used to modulate orthodontic movement via PGE2 synthesis.
\nBichmalyr in 1931, put forward a surgical technique with orthodontic appliances for rapid correction of severe maxillary protrusion. First, wedges of bone were removed to reduce the volume for which the roots of the maxillary anterior teeth would require for retraction. Kӧle further looked into this technique in 1959 by including special movements like crossbite correction and space closure. He believed that he was able to move bony blocks using the crowns of teeth as handles as the blocks were connected by only less-dense medullary bone [16]. Currently there are few surgical methods being practiced, they are:
Periodontally accelerated osteogenic orthodontics
Piezocision
Micro-osteoperforations
In 2001, Wilcko et al. had introduced a method which combines corticotomy surgery and alveolar bone grafting which is referred to as accelerated osteogenic orthodontics or recently termed as periodontally accelerated osteogenic orthodontics (PAOO) [16]. This procedure which enables rapid tooth movement is due to a healing event that was described by Frost [17] and termed as regional acceleratory phenomenon (RAP).
\nRAP is the acceleration of the normal regional healing process from the original injury. It usually occurs after osteotomy, bone-grafting procedure, arthrodesis and fractures and there might be involvement and activation of precursor cells required for healing at the injury site. RAP can increase both soft and hard tissue healing processes by two- to tenfold [17]. It usually starts in the first few days of injury, peaks at the first or second month and may last for 3–4 months [16].
\nOrthodontic treatment can be started 1 week before or within 2 weeks after the surgery. Surgery begins with flap reflection and decortication with low-speed round burs. Bone graft is then laid over these areas of corticotomies. The flaps are then closed and sutured [18]. Several studies have been done related to corticotomies, an example is one by Uzuner and her co-workers where they showed that canine retraction assisted by corticotomy had reduced duration of retraction by 20% ratio [19]. PAOO has shown to have reduced treatment time, produce lower cortical bone resistance leading to reduced root resorption, enhancement of post-orthodontic stability, increased bone support since there is supplementation of the bone graft. However, PAOO still has risks since it is an invasive procedure and is expensive [20, 21, 22, 23, 24].
\nSince the corticotomy procedure is still invasive, Dibart et al. introduced a new minimally invasive method called piezocision. Piezocision involves microincisions which are confined to the buccal side that allows the use of piezoelectric knife and selective tunnelling which enables hard and soft tissue grafting [25]. Piezocision is usually done a week after orthodontic appliance placement. The procedure involves vertical incisions made buccally and interproximally. The mid portion of the incision between the roots enables the piezoelectric knife to be inserted. A piezotome is then inserted in the gingival openings that were made and piezoelectrical corticotomy of 3 mm is made. Hard or soft tissue grafts can then be added via a tunnelling procedure (Figure 2) [26].
\nPiezocision.
Piezocision can be used as an adjunct to treat a number of malocclusions and aid in rapid orthodontic treatment in adults. Since it is much more minimally invasive than corticotomy, it is having high degree of patient acceptance, short surgical time and has less postoperative discomfort [25, 26]. Dibart and coworkers in 2013 showed that there was an increase in the rate of tooth movement in their animal study and preliminary human studies are being conducted to correlate with the animal studies [26, 27].
\nTo further reduce the amount of invasive nature of surgical intervention, a method called micro-osteoperforation (MOP). It is procedure in which small pinhole-sized perforations are created within the alveolar bone surrounding the dentition. This initiates cytokine release to call in osteoclasts to increase bone resorption. Thus, acceleration of tooth movement occurs during orthodontic treatment. The site of perforation is within the attached gingiva and close to the target teeth on the mesial and distal aspect of the roots of the teeth which will be moved. The most favourable place for placement of the perforation is the buccal cortical plate but lingual plate can also be approached with a contra-angled appliance. Two to four perforations are ideal amounts with depths of 3–7 mm into the bone [28].
\nIn 2013, Alikhani et al. showed that MOP increased expression of cytokines for osteoclast differentiation, increased canine retraction, reduced orthodontic treatment by 62% with mild discomfort in patients [29]. In an animal study, Alikhani and co-workers found that the expression of inflammatory markers and bone resorption was significant. Their human clinical trial found distalisation was twice as much with MOP than the forces alone [30].
\nDespite all the attempts in making surgical methods being minimally invasive, they still remain as an invasive procedure. This had led to discoveries in other tools that can accelerate tooth movement during orthodontic treatment. The two most common physical methods used in the present day are:
Vibratory stimulus
Low level laser therapy
Low-intensity pulsed ultrasound
Bone has the ability to respond to the mechanical stimuli that is applied to it as a mechanism to withstand functional activity. Rubin et al. showed the rate of remodelling in mechanically loaded long bones have been increased following vibrations or low level mechanical oscillatory signals [31]. In 2008, Nishimura et al. did an animal study which gave an insight on how resonance vibration could be able to accelerate tooth movement through the expression of RANKL in the periodontal ligament [32].
\nA novel device that was introduced by OrthoAccel Technologies is the AcceleDent device. The device has an activator and a mouthpiece. The patient bites on the mouthpiece component when in use. The activator which is extraorally positioned generates and transmits vibrations to the teeth. It can provide 0.2 N of vibration at 30 Hz for 20 minutes. It was fabricated to work in tandem with existing bracket systems and not replace them. The device produces cyclic forces to move teeth within the alveolus via accelerated bone remodelling [33]. Pavlin and co-workers in 2015 showed low-level cyclic loading with AcceleDent increased the rate of orthodontic movement (Figure 3) [34].
\nAcceleDent device.
Another treatment modality to speed up orthodontic tooth movement is by the use of low-level laser therapy (LLLT). Laser irradiation on tissues has a biostimulating effect with not more than 1°C rise in local temperature. Biostimulation potency of laser irradiation utilised by treatment are called low-level laser therapy [35]. Other than accelerating tooth movement, LLLT can enhance stability of orthodontic mini-implants [36], reduce post-adjustment pain [37], and induce bone growth in midpalatal suture area following rapid maxillary expansion [38].
\nStudies done by Fujita et al. and Yamaguchi et al. showed that LLLT enhances osteoclastogenesis on the compressed side of teeth being moved. There was stimulation of RANKL and macrophage colony-stimulating factor [39, 40]. Coordination of bone remodelling had been facilitated by RANKL and osteoprotegerin following orthodontic force with LLLT. LLLT stimulates bone formation on the tension side [41]. Kim et al. observed osteopontin localisation in the periodontal tissue in their study subjects, indicating LLLT may stimulate osteogenesis as well in orthodontic treatment [42]. Although much findings show LLLT stimulates osteoblast and osteoclast function, further studies are still required to optimise the effect of LLLT on tooth movement (Figure 4) [43].
\nLow-level laser therapy.
Apart from physical agents, low-intensity pulsed ultrasound (LIPUS) has also been suggested. It uses mechanical energy which passes through the tissues as acoustic pressure waves [44]. This leads to biochemical changes at molecular and cellular levels. It can increase the healing of both soft tissue and hard tissue [45]. LIPUS is usually used at frequency pulses of 1.5 MHz with 200 μs pulse width, which is repeated at 1KHz a for 20 minutes a day with an intensity of 30 mW/cm2 [46].
\nRecent studies on LIPUS using animal models by Xue et al. showed that there is induction of alveolar bone remodelling. The remodelling occurred due to an increase in the gene expression of HGF/Runx2/BMP-2 signalling pathway with LIPUS. This led to an increase in the velocity of tooth movement during orthodontic treatment [47]. El-Bialy et al. observed that LIPUS may reduce the root resorption that was orthodontically-induced by deposition of dentin and cementum to create a preventive layer from root resorption [48].
\nOver the years, the methods of reducing treatment time has risen along with its’ demand. The options that are available on the orthodontist’s plate are numerous ranging from surgical means to photostimulation. Much studies will still need to be done for newer methods to emerge and obtaining a clearer understanding on the methods that already exist. At present, the clinician should use all the knowledge obtained for deciding which treatment option is best for the patient to meet the healthcare needs of the patient and achieving an optimum treatment outcome.
\nLicense
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
\n\n',metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"Formats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Formats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:187},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"221",title:"Astrophysics",slug:"astrophysics",parent:{title:"Physics",slug:"physics"},numberOfBooks:3,numberOfAuthorsAndEditors:42,numberOfWosCitations:9,numberOfCrossrefCitations:12,numberOfDimensionsCitations:14,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"astrophysics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7357",title:"New Ideas Concerning Black Holes and the Universe",subtitle:null,isOpenForSubmission:!1,hash:"0c081ffdc6173f4c7d7d2d47231f61b9",slug:"new-ideas-concerning-black-holes-and-the-universe",bookSignature:"Eugene Tatum",coverURL:"https://cdn.intechopen.com/books/images_new/7357.jpg",editedByType:"Edited by",editors:[{id:"261441",title:"Dr.",name:"Eugene",middleName:"Terry",surname:"Tatum",slug:"eugene-tatum",fullName:"Eugene Tatum"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6768",title:"Cosmic Rays",subtitle:null,isOpenForSubmission:!1,hash:"1578350f18d0bc3abfbcf62278630739",slug:"cosmic-rays",bookSignature:"Zbigniew Szadkowski",coverURL:"https://cdn.intechopen.com/books/images_new/6768.jpg",editedByType:"Edited by",editors:[{id:"67836",title:"Prof.",name:"Zbigniew Piotr",middleName:null,surname:"Szadkowski",slug:"zbigniew-piotr-szadkowski",fullName:"Zbigniew Piotr Szadkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5918",title:"Trends in Modern Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"6fbfd7e2f33ac06d54517d3b52005231",slug:"trends-in-modern-cosmology",bookSignature:"Abraao Jesse Capistrano de Souza",coverURL:"https://cdn.intechopen.com/books/images_new/5918.jpg",editedByType:"Edited by",editors:[{id:"52362",title:"Dr.",name:"Abraao",middleName:"Jesse",surname:"Capistrano",slug:"abraao-capistrano",fullName:"Abraao Capistrano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"54849",doi:"10.5772/68113",title:"Superfluid Quantum Space and Evolution of the Universe",slug:"superfluid-quantum-space-and-evolution-of-the-universe",totalDownloads:1231,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Valeriy I. Sbitnev and Marco Fedi",authors:[{id:"93881",title:"Dr.",name:"Valeriy",middleName:null,surname:"Sbitnev",slug:"valeriy-sbitnev",fullName:"Valeriy Sbitnev"},{id:"200600",title:"Dr.",name:"Marco",middleName:null,surname:"Fedi",slug:"marco-fedi",fullName:"Marco Fedi"}]},{id:"60002",doi:"10.5772/intechopen.75426",title:"Cosmic Ray Muons as Penetrating Probes to Explore the World around Us",slug:"cosmic-ray-muons-as-penetrating-probes-to-explore-the-world-around-us",totalDownloads:735,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Paola La Rocca, Domenico Lo Presti and Francesco Riggi",authors:[{id:"18197",title:"Dr.",name:"Francesco",middleName:null,surname:"Riggi",slug:"francesco-riggi",fullName:"Francesco Riggi"},{id:"18200",title:"Dr.",name:"Paola",middleName:null,surname:"La Rocca",slug:"paola-la-rocca",fullName:"Paola La Rocca"},{id:"243971",title:"Dr.",name:"Domenico",middleName:null,surname:"Lo Presti",slug:"domenico-lo-presti",fullName:"Domenico Lo Presti"}]},{id:"54705",doi:"10.5772/68116",title:"The Impact of Baryons on the Large-Scale Structure of the Universe",slug:"the-impact-of-baryons-on-the-large-scale-structure-of-the-universe",totalDownloads:1147,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Weiguang Cui and Youcai Zhang",authors:[{id:"199688",title:"Dr.",name:"Weiguang",middleName:null,surname:"Cui",slug:"weiguang-cui",fullName:"Weiguang Cui"},{id:"205491",title:"Dr.",name:"Youcai",middleName:null,surname:"Zhang",slug:"youcai-zhang",fullName:"Youcai Zhang"}]}],mostDownloadedChaptersLast30Days:[{id:"60002",title:"Cosmic Ray Muons as Penetrating Probes to Explore the World around Us",slug:"cosmic-ray-muons-as-penetrating-probes-to-explore-the-world-around-us",totalDownloads:734,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Paola La Rocca, Domenico Lo Presti and Francesco Riggi",authors:[{id:"18197",title:"Dr.",name:"Francesco",middleName:null,surname:"Riggi",slug:"francesco-riggi",fullName:"Francesco Riggi"},{id:"18200",title:"Dr.",name:"Paola",middleName:null,surname:"La Rocca",slug:"paola-la-rocca",fullName:"Paola La Rocca"},{id:"243971",title:"Dr.",name:"Domenico",middleName:null,surname:"Lo Presti",slug:"domenico-lo-presti",fullName:"Domenico Lo Presti"}]},{id:"60664",title:"Galactic Cosmic Rays from 1 MeV to 1 GeV as Measured by Voyager beyond the Heliopause",slug:"galactic-cosmic-rays-from-1-mev-to-1-gev-as-measured-by-voyager-beyond-the-heliopause",totalDownloads:613,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"William R. Webber",authors:[{id:"114311",title:"Prof.",name:"William R",middleName:null,surname:"Webber",slug:"william-r-webber",fullName:"William R Webber"}]},{id:"60125",title:"Galactic Cosmic Rays and Low Clouds: Possible Reasons for Correlation Reversal",slug:"galactic-cosmic-rays-and-low-clouds-possible-reasons-for-correlation-reversal",totalDownloads:817,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Svetlana Veretenenko, Maxim Ogurtsov, Markus Lindholm and\nRisto Jalkanen",authors:[{id:"83636",title:"Dr.",name:"Maxim",middleName:null,surname:"Ogurtsov",slug:"maxim-ogurtsov",fullName:"Maxim Ogurtsov"},{id:"239574",title:"D.Sc.",name:"Svetlana",middleName:null,surname:"Veretenenko",slug:"svetlana-veretenenko",fullName:"Svetlana Veretenenko"},{id:"245213",title:"Dr.",name:"Markus",middleName:null,surname:"Lindholm",slug:"markus-lindholm",fullName:"Markus Lindholm"},{id:"245214",title:"Dr.",name:"Risto",middleName:null,surname:"Jalkanen",slug:"risto-jalkanen",fullName:"Risto Jalkanen"}]},{id:"54849",title:"Superfluid Quantum Space and Evolution of the Universe",slug:"superfluid-quantum-space-and-evolution-of-the-universe",totalDownloads:1226,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Valeriy I. Sbitnev and Marco Fedi",authors:[{id:"93881",title:"Dr.",name:"Valeriy",middleName:null,surname:"Sbitnev",slug:"valeriy-sbitnev",fullName:"Valeriy Sbitnev"},{id:"200600",title:"Dr.",name:"Marco",middleName:null,surname:"Fedi",slug:"marco-fedi",fullName:"Marco Fedi"}]},{id:"54580",title:"The Importance of Cosmology in Culture: Contexts and Consequences",slug:"the-importance-of-cosmology-in-culture-contexts-and-consequences",totalDownloads:2572,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Nicholas Campion",authors:[{id:"200410",title:"Dr.",name:"Nicholas",middleName:null,surname:"Campion",slug:"nicholas-campion",fullName:"Nicholas Campion"}]},{id:"54784",title:"Neutrino Interactions with Nuclei and Dark Matter",slug:"neutrino-interactions-with-nuclei-and-dark-matter",totalDownloads:1044,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Paraskevi C. Divari",authors:[{id:"200618",title:"Prof.",name:"Paraskevi",middleName:null,surname:"Divari",slug:"paraskevi-divari",fullName:"Paraskevi Divari"}]},{id:"67823",title:"A Heuristic Model of the Evolving Universe Inspired by Hawking and Penrose",slug:"a-heuristic-model-of-the-evolving-universe-inspired-by-hawking-and-penrose",totalDownloads:428,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-ideas-concerning-black-holes-and-the-universe",title:"New Ideas Concerning Black Holes and the Universe",fullTitle:"New Ideas Concerning Black Holes and the Universe"},signatures:"Eugene Terry Tatum",authors:[{id:"261441",title:"Dr.",name:"Eugene",middleName:"Terry",surname:"Tatum",slug:"eugene-tatum",fullName:"Eugene Tatum"}]},{id:"61639",title:"Exploration of Solar Cosmic Ray Sources by Means of Particle Energy Spectra",slug:"exploration-of-solar-cosmic-ray-sources-by-means-of-particle-energy-spectra",totalDownloads:526,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Jorge Perez-Peraza and Juan C. Márquez-Adame",authors:[{id:"92548",title:"Dr.",name:"Jorge",middleName:null,surname:"Perez-Peraza",slug:"jorge-perez-peraza",fullName:"Jorge Perez-Peraza"},{id:"248825",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Marquez Adame",slug:"juan-carlos-marquez-adame",fullName:"Juan Carlos Marquez Adame"}]},{id:"55093",title:"Relativistic Celestial Metrology: Dark Matter as an Inertial Gauge Effect",slug:"relativistic-celestial-metrology-dark-matter-as-an-inertial-gauge-effect",totalDownloads:875,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Luca Lusanna and Ruggero Stanga",authors:[{id:"113030",title:"Dr.",name:"Luca",middleName:null,surname:"Lusanna",slug:"luca-lusanna",fullName:"Luca Lusanna"},{id:"201395",title:"Dr.",name:"Ruggero",middleName:null,surname:"Stanga",slug:"ruggero-stanga",fullName:"Ruggero Stanga"}]},{id:"54917",title:"Deformed Phase Space in Cosmology and Black Holes",slug:"deformed-phase-space-in-cosmology-and-black-holes",totalDownloads:1023,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"E.A. Mena-Barboza, L.F. Escamilla-Herrera, J.C. López-Domínguez\nand J. Torres-Arenas",authors:[{id:"58258",title:"Dr.",name:"Eri",middleName:"Atahualpa",surname:"Mena",slug:"eri-mena",fullName:"Eri Mena"}]}],onlineFirstChaptersFilter:{topicSlug:"astrophysics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/31988/kaneez-fatima-shad",hash:"",query:{},params:{id:"31988",slug:"kaneez-fatima-shad"},fullPath:"/profiles/31988/kaneez-fatima-shad",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()