The content of fatty acids for certain types of vegetable oils.
\r\n\t
",isbn:"978-1-83969-452-3",printIsbn:"978-1-83969-451-6",pdfIsbn:"978-1-83969-453-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"a6e1a11c05ff8853c529750ddfac6c11",bookSignature:"Dr. René Mauricio Barría",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10734.jpg",keywords:"Neonatal Intensive Unit, Neonatal Diagnostic Techniques, Neonatal Nurses, Neonatologists, Newborn Diseases, Premature Diseases, Breast Feeding, Kangaroo-Mother Care Method, Neonatal Survival, Limit of Viability, Minimal Handling, Neonatal Stress",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 5th 2021",dateEndSecondStepPublish:"March 5th 2021",dateEndThirdStepPublish:"May 4th 2021",dateEndFourthStepPublish:"July 23rd 2021",dateEndFifthStepPublish:"September 21st 2021",remainingDaysToSecondStep:"5 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"The principal investigator and academic expert in epidemiological methods and evidence-based health with an emphasis on children's health. His research interests lie in the areas of Maternal-Child Health, Neonatal Care, and Environmental Health. From 2010 until 2017 he was Director of the Evidence-Based Health Office and currently serves as Director of the Nursing Institute at the Universidad Austral de Chile.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",middleName:null,surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría",profilePictureURL:"https://mts.intechopen.com/storage/users/88861/images/system/88861.jpg",biography:"R. Mauricio Barría, DrPH, is a Principal Investigator and Associate Professor at the Faculty of Medicine at Universidad Austral de Chile. He was trained as an epidemiologist and received his MSc in Clinical Epidemiology from Universidad de la Frontera in Temuco, Chile, and his DrPH from Universidad de Chile in Santiago, Chile. His research interests lie in the areas of Maternal-Child Health, Neonatal Care and Environmental Health. He is skilled in epidemiological studies designs with special interest in cohort studies and clinical trials. Since 2010 until 2017 he was Director of the Evidence-Based Health Office and currently serves as Director of the Nursing Institute at the Universidad Austral de Chile. He has published several articles related to the care and health of the newborn and is a reviewer of several international journals.",institutionString:"Austral University of Chile",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Austral University of Chile",institutionURL:null,country:{name:"Chile"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"345821",firstName:"Darko",lastName:"Hrvojic",middleName:null,title:"Mr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"darko@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5821",title:"Selected Topics in Neonatal Care",subtitle:null,isOpenForSubmission:!1,hash:"711594f833d5470b73524758472f4d96",slug:"selected-topics-in-neonatal-care",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/5821.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8728",title:"Update on Critical Issues on Infant and Neonatal Care",subtitle:null,isOpenForSubmission:!1,hash:"52c4dbe7c0deb54899657dc4323238d6",slug:"update-on-critical-issues-on-infant-and-neonatal-care",bookSignature:"René Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/8728.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6191",title:"Selected Topics in Breastfeeding",subtitle:null,isOpenForSubmission:!1,hash:"3334b831761ffa52e78de6fc681e33b3",slug:"selected-topics-in-breastfeeding",bookSignature:"R. Mauricio Barría P.",coverURL:"https://cdn.intechopen.com/books/images_new/6191.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55567",title:"Meat Product Reformulation: Nutritional Benefits and Effects on Human Health",doi:"10.5772/intechopen.69118",slug:"meat-product-reformulation-nutritional-benefits-and-effects-on-human-health",body:'Meat and meat products are a class of food products that are commonly included in human diet, due to the intake of good quality nutrients, diverse forms of presentation and highly appreciated sensorial characteristics. On the other hand, a number of studies have been published on the negative impact of meat consumption upon health. In 2007, a report of the World Cancer Research Fund described a connection between the intake of processed red meat and the risk of colorectal cancer. Although this connection has not been fully clarified yet, it is presumed that cancer precursors could be excess fat, protein and iron, heat-processing compounds (heterocyclic amines) and various substances added during the technological process (sodium chloride and nitrates). The same report recommended the intake of less than 500 g cooked red meat per week [1].
Similarly, the intake of processed red meat was associated to an increased occurrence of cardiovascular disease and diabetes mellitus, but the triggering mechanisms of these conditions have yet to be fully understood. In order to meet the consumers’ demands, as consumers have become increasingly concerned with the ingredients of the food products purchased, the present research in the field approaches the topic of reformulating the meat products, impacting upon obtaining functional products. The technological strategies used to reformulate meat products and obtain functional products are based on improving the fat content, incorporating proteins of vegetable origin, prebiotics and vegetable fibres: increasing the mineral content, including vitamins, antioxidants and vegetable compounds with a functional role [2], and reducing the exogenous compounds harmful to health.
Reformulated meat products have been created to help consumers, who are constantly requiring nutritionally improved meat products, that is, with a lower content of fats, cholesterol, sodium chloride and nitrites, as well as a higher content of compounds beneficial to human health. The influence of the meat product composition on human health has long been well known, but the scientific foundation of the physiological role of bioactive compounds in modulating specific functions in the body is not yet fully understood.
Reformulating meat products may be achieved in the following manners [3]:
Increasing the concentration of a meat product (macronutrient or micronutrient) up to a desired level
Adding a component normally not existing in meat
Partial or total replacement of a macronutrient which may trigger nutritional deficiencies with a nutritionally beneficial component
Reducing the nutritionally harmful components
Improving component bioavailability or stability
Combinations of the above
Depending on its concentration, circulation or accumulation in the human body, cholesterol may be desired or not in diet. Due to the association of cholesterol-rich diet with coronary heart disease, in the most situations, food containing the high level of cholesterol is avoided. Meat (especially red meat) and meat products are among this food. On the other hand, meat and meat products provide beneficial compound for the human body: high-quality proteins, high bioavailable iron, vitamin B12, zinc and selenium. In this context, there have been developed some possibilities to reduce the level of cholesterol in meat and meat products: lecithin treatment; short-path and path molecular distillation; supercritical carbon dioxide extraction; extraction by saponin, using cholesterol oxidase; etc. Some of these methods are costly, non-selective and not enough studied. The addition of cholesterol-lowering compounds, such as phytosterols and soy proteins, is more suitable for this purpose [4].
Sodium chloride (currently named salt) is widely used in meat products due to a series of technological benefits (increases the proteins’ water-binding capacity, improves texture and shelf life). Because of the negative health impact of sodium consumption (high blood pressure) [5], several strategies for lowering salt content in meat products have been reported [6]: the use of salt substitutes (potassium chloride, magnesium chloride, calcium chloride, calcium ascorbate [7]), the use of flavour enhancers (monosodium glutamate or yeast extract) and the use of novel processing technologies (high-pressure processing and power ultrasound). These strategies have their limitations and may be combined.
Nitrite has numerous functions in meat products [8, 9]: prevents lipid oxidation, gives products the specific colour and provides antimicrobial activity. Their reduction implies the addition of other antioxidants (either natural or artificial), colourants or preservatives. In the manufacture of meat products, phosphates are used in order to increase the water-holding capacity, leading to a good texture and poor cooking loss. Due to their implication in setting of chronic diseases like diabetes, obesity or cardiovascular disease, phosphates are tending to be replaced by sodium citrate, carageenans or proteins of different origins (porcine blood, soybean and milk) [10, 11].
Meat is known as an essential source of macro- and micro-nutrients indispensable to human diet as protein, fat, minerals and vitamins. While the minerals can be achieved only by exogenous sources in the body, the enrichment of meat products with minerals is important. Several studies demonstrated the beneficial cumulated effects of low fat or low salt and minerals (as potassium, calcium and magnesium) added in meat matrix on the plasma cholesterol in humans [12]. Triki et al. [13] had reformulated sausages by partially replacing the NaCl content by adding a mixture of KCl, CaCl2 and MgCl2. They have found that the product mineral profile was improved providing 10–15% of the recommended daily allowance (RDA) of potassium, 8–10% of the calcium RDA and 10–20% of the magnesium RDA. One of the most essential trace minerals is selenium being involved in regulating various physiological functions. In human metabolism, selenium deficiency is associated with decreased immune function resulting in increased susceptibility to some chronically diseases [14, 15]. The enrichment of meat with selenium could be reached by two ways: adding selenium in different meat matrices or by feeding the animals with fortified food [16]. Essential amino acids are integral part of meat and meat products. The umami taste could be intensified by the presence of sweet amino acids, such as glycine, alanine and serine [17]. A large increase in free amino acid quality occurs during long maturation and the curing of meat products. Other researchers have found that amounts of hydrophobic amino acids released during the fermentation or maturation process were significantly higher than other amino acids.
Within of the framework of the Nutritional Optimizing of Some Meat Products with Valorization of Plants Riched in Bioactive Compounds (OPTIMEAT) project, the P2 Partner (‘Dunarea de Jos’ University of Galati) has investigated two possibilities for reformulating meat products:
Lipid reformulation by adding a vegetable ingredient made up of nuts and nut oil, sea buckthorn oil or sunflower seed oil
Proteic reformulation by adding a vegetable ingredient made up of soy proteic isolate and juice of red beetroot or dry tomatoes
The main components used in the project are presented below.
Walnuts (Juglans regia L.) are common all over the world. Known under various names, such as Persian nut, white nut, English nut or common nut, it is used to be cultivated in the Eastern Balkans and the Western Himalayan range, but at present it can be found all over Europe. Worldwide, there are many types of nuts, such as almonds, peanuts, earth nuts, cashew nuts, macadamia nuts, pistachios and pecan nuts.
It may be said that adding walnuts has positive implications in the creamy consistency of frankfurters as compared to traditional products where pork fat has a tougher consistency. There are also alterations in the fat-protein-fibre interactions supporting the gel formation process, which is essential in frankfurter manufacture. Thus, adding walnuts increases product consistency and at the same time the nutritional value of the product, becoming a viable alternative for this product [18–23]. The nutritional profile of products in which animal fat was replaced by walnuts is by far healthier and richer than that of the traditional products. By adding walnuts to products, an increase in the nutritional value and the quantity of biologically active compounds beneficial to human health can be observed. It may be observed that the number of studies in the field is relatively low, and the existing ones mention the need for further research, more detailed and on other products, and also in comparison to other products available on the market. Also, it is recommendable to study the stability and shelf life of these new products. The results of the academic studies are very valuable and recommend the use of walnuts in optimising the nutritional characteristics in meat products.
Several studies using tomatoes and their derivatives were reported in improving meat products. Deda et al. [24] analysed the influence of adding tomato paste in pork frankfurters, reaching the conclusion that it enhances the colour and attractiveness of the final product. Similar results were obtained by Eyiler and Oztan [25] for adding tomato powder. Calvo et al. [26] studied the implications of adding tomato skins to raw-dried sausages, while Savadkoohi et al. [27] added extracts from tomato skins and seeds to frankfurters and beef ham. All these studies evinced the improved colour of the meat products obtained, as well as the improved texture and water-bonding ability. These effects are due to the high content of lycopene and beta carotene, as well as soluble fibres contained in tomatoes.
The bioavailability of lycopene depends on the following factors: the components of the food matrix, the physical state of lycopene, the size of particles before and after chewing, the intensity of digestive processes and the presence of fibres [28, 29]. Red tomatoes contain 95% lycopene as a trans-isomer (the most stable form of lycopene) [30, 31].
In addition to the beneficial effects on human health, tomato-derived products may contribute to reducing the added synthetic colourings in meat products, such as hamburgers, fresh sausages, salami or frankfurters, at the same time improving the nutritional profile by the content of bioactive components [24, 25, 32–34]. Certain synthetic colourings are considered responsible for allergic reactions or harmful side effects, and that is why consumers associate the presence of natural colourings with healthy and qualitative food products.
Proteins from plants are used in meat industry for technological reasons, such as cutting costs and nutritional reasons and lately their health-promoting properties [39]. Soy beans contain the average 40% of protein and 20% of fat. By removing fat at low temperatures, the soy protein isolate is obtained, which is highly used in food industry. The predominant proteins in soy protein isolate are β-conglycinin and glycine. Their structure was thoroughly investigated by various methods, leading to the conclusion that glycine contains a multitude of disulphide groups, which is why its ability of foaming and emulsification is slow, as compared to β-conglicynin [35].
Proteic ingredients are the main vegetable component used in manufacturing meat products, for technological purposes—cutting costs—as well as for nutritional benefits, reducing the cholesterol level, increasing the proteic components and improving the amino acid profile. In meat industry, soy proteins are used in obtaining meat pasta to increase emulsion stability by forming a protein matrix that includes water and fat droplets [36]. Specialised literature in the field shows that adding soy proteins in products containing meat pasta has beneficial effects: Matulis et al. [37] reported a less rubbery texture of frankfurters with a low-fat content and Rahardjo et al. [38] reported lower cooking losses and improved texture of pork sausages. Das et al. [39] analysed the effects of adding soy (as pasta or textured granules) on the quality and storability of the nugget-type products made of goat meat. The findings of the study were that adding soy improves the appearance, texture and water-retaining capacity while slowing down fat oxidation during frozen storage. The data published by Youssef and Barbut [40] show that using soy proteins in obtaining meat paste improves the water-bonding ability, emulsion stability, appearance and texture while decreasing thermal treatment losses. The authors mentioned above analysed the microstructure of the samples obtained, concluding that adding soy proteins lowers the aggregation degree of meat proteins and reduces the size of fat droplets.
Although the influence of the soy protein addition on meat products has been thoroughly studied, their use is limited by the negative influence on taste, smell and colour. Under these circumstances studies are needed regarding the percentage of soy protein isolate that may be added to meat products in order to improve their quality.
Red beetroot juice contains important quantities of antioxidants [41] together with micronutrients such as potassium, magnesium, folic acid, iron, zinc, calcium, phosphorus, vitamin B6, soluble fibres and pigments (betalains—compounds of betacyanins and betaxanthins). Specialists have been increasingly interested in red beetroot juice due to the content of phenolic compounds [42, 43]. Red beetroot juice mainly contains pigments called betalains, a class of compounds derived from betalamic acid, mainly composed of betacyanin and betaxanthin. In addition to these, red beetroot juice also contains small amounts of gallic, syringic and caffeic acid, as well as flavonoids [44]. Betalains are used in food industry as natural colourings, but a series of health benefits were also found, antioxidant and anti-inflammatory [45, 46], inhibiting lipid peroxidation [47] and increased resistance to lipoprotein oxidation in low density [48].
Vegetable oils play an important role in the human diet and are an important energy source. The main constituents of oils are fatty acids, classified as saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). Polyunsaturated fatty acids determine the regulation at an optimum level of lipids, mainly low density lipid (LDL) cholesterol in the human body [49–51]. Table 1 shows the fatty acid percentage for oils expressed from sunflower seeds, soy, palm and walnuts.
Fatty acids (%) | Sunflower seed oil | Soy oil | Palm oil | Walnut oil |
---|---|---|---|---|
Saturated fatty acids | 8.51 ± 1.91 | 18.26 ± 0.67 | 46.34 ± 0.40 | 9.18 ± 1.09 |
Monounsaturated fatty acids | 45.5 ± 16.89 | 23.28 ± 1.99 | 41.46 ± 0.56 | 23.22 ± 2.87 |
Polyunsaturated fatty acids | 46.10 ± 14.92 | 57.86 ± 1.20 | 11.84 ± 0.92 | 63.45 ± 4.66 |
The content of fatty acids for certain types of vegetable oils.
The partial or total replacement of animal fat in meat products by vegetable oils may be seen as an efficient strategy of nutritional improvement and a means of increasing oxidative stability.
In pharmacology, bioavailability is defined as the ratio between the amount of active substance and the speed at which it is yielded and absorbed into the body, then reaches its point of action and manifests its biological effect. By definition, if the medicine is intravenuously administered, its bioavailability is 100%.
As far as food supplements are concerned, since their administration is most often than not oral, the bioavailability is the ratio between the amount of ingested substance and the amount of the absorbed substance [52]. The nutrients existing in food are not absorbed and used by the body in their entirety. Among the factors responsible for this phenomenon, there are a number of nutrient-related factors (chemical formula, the presence of inhibitors or enhancers, the possibility of interacting with other components) and a number of factors related to the organism using that nutrient (duration of intake, volume of enzymatic secretion, activity of intestinal microflora, state of health, eating style, etc.) [53].
Fat-soluble vitamins (e.g. A, D and E) as well as the ω-3 fatty acids, carotenoids, conjugated linoleic acid (CLA) or curcumin are micronutrients with a hydrophobic behaviour which may play a potential functional role when included in the diet or a food product. Many studies showed that due to the hydrophobic behaviour of these micronutrients, bioavailability is slow or variable [54]. The factors contributing to decreasing bioavailability are grouped into three categories – bioaccessibility, absorption and transformation. Bioavailability refers to the low release into the food matrix, low solubilisation in the gastrointestinal fluids as well as interaction with other insoluble components. Deficient absorption is due to the transportation through the stomach membrane or inhibiting active transporters. Transformation refers to the multiple chemical or metabolic processes in which micronutrients may participate.
Bioactive compounds have various characteristics such as structure and molecular weight, polarity and physical state. They may be introduced directly in a food matrix or indirectly by means of a transportation system. The transportation system focuses on maintaining or improving the bioavailability of the bioactive components and has to possess the following characteristics: protection against chemical or biological spoilage (especially for oxidation and hydrolysis), control of the release of the bioactive component (depending on pH, temperature and other factors) as well as the compatibility between the bioactive component and other parameters of the food matrix [55]. The bioavailability of bioactive compounds is generally low and depends on the components of food matrix. Some processes like ingestion, diffusion, solubilisation, movement across intern membrane and enters in the lymphatic system and circulation affect the bioavailability of bioactive compounds.
The bioactive compounds from the selected sources (described in Subchapter 1.3) have some benefits to human health:
ω-3 Fatty acids (from walnuts)—anti-inflammatory activity, reduces the risk of cardiovascular disease [56].
Sterols and stanols (from nuts and vegetable oils)—reduce the total cholesterol level, protection against certain types of cancer, anti-inflammatory activity and improve blood pressure [41, 57, 58].
Lycopene (from tomatoes)—antioxidant, reduces the risk of cardiovascular disease and protection against certain types of cancer [59, 60].
Isoflavones (from soy proteic concentrate)—reduce the risk of cardiovascular disease [61].
Nut consumption as a trend is on the increase, especially due to the major nutritional components (proteins, unsaturated fatty acids and fibres), as well as micronutrients (sterols, vitamins, minerals, fatty acids and phenolic compounds) [61–63] and antioxidants [64]. As expected, the consumption of nuts is on the increase owing to their antioxidant properties, mainly responsible for the lowering of LDL cholesterol and associated triglycerides, leading to better results than traditional low-calorie diets, in which the consumption of oils or carbohydrates is replaced by nuts. As the consumption of nuts by Mediterranean population is higher as compared to other areas, the mortality rate caused by heart disease or cancer is low [65].
Walnuts are well known for their nutritional value and the high content of bioactive compounds, such as antioxidants, vitamins, essential amino acids and minerals [66, 67]. It is a common knowledge that free radicals are the main factors causing human illnesses, with implications in the pathology of cancer, atherosclerosis or inflammatory disease [68], and that is why regular intake of nuts and thus of antioxidants is essential. J. regia Linn may be used in traditional medicine in preventing or treating helminths, diarrhoea, sinus ailments, gastritis, arthritis, asthma, eczema, dermatitis and the various endocrine diseases, such as diabetes, anorexia, thyroid problems, infectious diseases and cancer. Walnuts are also well known for their rich content of unsaturated fatty acids, vitamin E, fibres, magnesium and potassium [69]. As compared to other nut types (macadamia nuts, pistachios, almonds, cashew nuts, earth nuts, pecans, etc.), which mainly contain monounsaturated fatty acids (MUFA), walnuts are rich in omega-6 and omega-3 polyunsaturated fatty acids (PUFA), which play an essential role in daily diet [70].
These properties qualify walnuts as unique in each consumer’s diet. Many studies showed that walnut intake may protect the human body against cardiovascular disease [71] and work as blood pressure regulator by their content of magnesium and potassium, respectively. Replacing saturated fats in daily diet with other mono- or polyunsaturated fatty acids (MUFA or PUFA) decreases the concentration of LDL cholesterol in the plasmatic liquid. The chemical and mineral components may differ according to the variety of genotype conditions, ecological, technical and cultural conditions, climate conditions.
Walnuts are tremendously beneficial to the human body because of their chemical composition; they are also a rich source of fatty acids (mainly the linoleic acid, followed by the oleic, linolenic, palmitic and stearic acids) [70, 72] and tocopherols [70, 73]. In addition, they contain other components beneficial to human health, such as proteins, vegetable fibres, sterols [70], melatonin [74], folates, tannins and polyphenols [75].
Walnuts were selected as potential functional component in reformulating meat products due to the composition of the lipid fractions, especially ω-3 and ω-6 acids and ϒ-tocopherol. Numerous studies [76–79] show that reformulating meat products by adding walnuts in various ratios leads to reducing the risk of cardiovascular disease. Although the action mechanism is not yet fully understood, this effect is due to the high content of lipids (62–68% of the dry substance) and the high ratio of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA).
Selecting tomatoes as a source of bioactive compounds was based on lycopene, the main pigment in the carotenoid class contained by tomatoes. This carotenoid was studied by many researchers, who found proof in favour of its antioxidant and cancer-preventing properties [80–84]. Together with lycopene, tomatoes are an important source of vitamins A and C, as well as a high content of carotenoids. The role of these antioxidants is to neutralise free radicals and to prevent the decay of cells and membranes, swelling and the occurrence of diseases like atherosclerosis, asthma, diabetes and cancer [85]. Tomatoes also contain high amounts of potassium, niacin, vitamin B6, folates and riboflavin.
Soy protein isolate has a series of nutritional benefits due to the lower energy value and cholesterol content (when used as fat replacements), the higher protein content, the balanced amino acid profile and the incorporated bioactive compounds [86, 87]. Certain vegetable proteins (sunflower, walnuts) were used in meat systems to balance the lysine/arginine ratio [88]. Soy proteins have been focused on by meat specialists for numerous reasons, such as they ensure a balance in amino acid composition, contain beneficial bioactive components decreasing the cholesterol level in the bloodstream and reduce the risk of cardiovascular disease, and have excellent technological properties like jellification, emulsification and the ability to retain water and fats [35, 89]. Soy proteins are well known for their preventative and therapeutic effect in heart disease, cancer and osteoporosis [90]. Clinical studies on the bioavailability of the soy isoflavone forms (such as food supplements, additives or soy food products) were performed in various geographical areas [91, 92]. However, it may be stated that data are inconclusive for a definite conclusion because of the different dietary habits of the individuals included in the studies, the composition of isoflavones and the amount and quality of the meals under study.
The studies carried out by Wootton-Beard and Ryan [93] showed that red beetroot juice is an important source of antioxidants and polyphenols, which were quantified by various biochemical methods before and after in vitro digestion. McDougall and Stewart [94] proved that polyphenols inhibit α-glycosidase resulting in the stimulation of insulin secretion, thus reducing the absorption of glucose into the bloodstream. Polyphenols increase the glutathione level and the level of antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase), being capable of reducing the oxidative stress which is the cause of dysfunctions in the case of cardiovascular disease, diabetes and autoimmune diseases. Being natural products, polyphenols may act on various paths in order to prevent chronic inflammation and are more efficient than synthetically obtained anti-inflammatory medication [95].
Many types of vegetable oils are considered as food products with multiple benefits to human health. Especially, cold-expressed oils are a great source of bioactive lipids, phenolic compounds with an antioxidant role, which may contribute to improving human health [96]. Antioxidants play an important role in maintaining the stability of vegetable oils and reduce oxidative stress in vivo.
Meat and meat products many times are comprehended by the consumers like unhealthy. A chance for meat industry to change this perception may be represented by functional or reformulated meat products [1]. To answer the consumers’ needs, the reformulated meat products have been developed. According to Jiménez-Colmenero et al. [88], the consumers may approve the reformulated products if they are promoted like ‘healthier’ products. To satisfy these needs, the meat industry is encouraged to make new meat products. However, it is a provocation to convince the consumers [97] (as well as the media, nutritionists and legislative authorities) that meat is a suitable carrier for functional ingredients [1, 98, 99]. It is significant to present to the consumer that reformulated meat products can be performed in a manner which will meet all the relevant qualities which consumers look for in traditional meat products [91].
Functional foods represent a good opportunity for the meat industry, in order to improve the quality of meat, and create meat products with health beneficial properties. Meat and meat products are excellent foods for delivering bioactive compounds without changing dietary habits. Some bioactive compounds from fruits and vegetables (walnuts, tomatoes, soy protein isolate, red beetroot juice and vegetable oils) appear to play an important role in the prevention of specific diseases like cardiovascular diseases, cancers and diabetes mellitus. These compounds are able to reduce the oxidative stress, which has been associated to the occurrence of chronic diseases, and maintain the health. Nowadays, the consumers demand natural and healthy food products, including meat products, with better nutritional properties. Promoting health through nutrition is an important objective of nutrition and public health programmes in a large number of European countries.
This work was supported by the CNCSIS-UEFISCDI Romania as National Project II No. 115/2012—Nutritional Optimizing of Some Meat Products with Valorization of Plants Riched in Bioactive Compounds (OPTIMEAT).
Asthma is a Greek word which means “labored breathing.” Asthma is a common disease which is characterized by reversible airway inflammation, chronic airway blockage, hyperresponsiveness, wheezing, and cough arising spontaneously and in reaction to nonspecific environmental factors. It affects an approximately 358 million people worldwide, causing a significant burden on healthcare systems. The highest prevalence of asthma has been found in the United Kingdom (15%) followed by Australia (14.7%), Canada (14.1%), and the United States (10.9%). In Asia the highest incidence of asthma has been recorded in Japan (6.7%), followed by Iran (5.5%), Pakistan (4.3%), Bangladesh (3.8%), and India (3%) and lowest in China (2.1%) [1]. It is a complex multifactorial disorder with various predisposing factors in environment and genes in which genetics of the individual plays a vital role [2]. Genome-wide studies have reported different loci that are associated with asthma. Asthma is associated directly with genes such as heterogeneity in Fc epsilon receptor 1 (FcєR1) on 11th and q region of 5th chromosome 11, while some other gene polymorphisms have no direct link with asthma.
\nAsthma usually starts in infancy or young age. Wheezing in early childhood does not always lead to asthma in late childhood. As a matter of fact, wheezing in infancy is commonly related to those children whose airways are relatively small than normal children. They will likely wheeze when they have viral bronchitis. On the other hand, pulmonary function starts off at normal range in children who frequently progress to asthma. After asthma development, their lungs will not develop due to continuous inflammation of their disease.
\nAfter genetics, another factor is the environment in which atopy is the most critical cause of asthma. Most of the asthmatic persons have had skin allergy in childhood followed by nasal allergy which leads to asthma. This series of events is called allergic march. Other factors in environment such as construction designs of houses, pollution, dust mites, molds, pet denders, particles of cockroach waste, tobacco smoke, inhalation of cold and dry air, food and infection are trigger factors to cause asthma. Today, our residence and daily activities have changed such as homes are more heated as well as isolated. Taking a bath and showers more frequently leads to more moisture inside the homes. These changes have made our house environment friendlier for house dust mites. Diet has also changed such as seasonal fruits and vegetables switched to artificially ripened fruits. This simulated ripening of fruits may alter their chemical structure and antigenicity [3]. Air pollutants that have been rising due to vehicular traffic are ozone, particulates, and nitrogen oxide. Air pollutant affects asthma by increasing IgE production, imposing oxidative stress on airways directly and indirectly, functioning as a vector for allergens, and enhancing release of IL-4 and histamine from basophils [4] (Figure 1).
\nThe role of atopy and other environmental factors in asthma.
There is a close relationship between infections and asthma exacerbation. Increased exposure to infection of respiratory viruses is protective against asthma development. This is called hygiene hypothesis. Different researches on children revealed protective effect of infections in farming communities. Infants who drink unpasteurized milk or are taken to the animal house have a reduced chance of allergy and asthma, but there is no protective effect of infections if children are exposed only after 1 year of age. Once asthma is developed, viral diseases can exacerbate its symptoms because viruses increase airway inflammation linked with asthma. Bacterial and parasitic infections can minimize the risk of allergy by reducing IgE sensitization and weakening the airways’ response to allergen [5].
\nAsthma is a complex heterogeneous disease with variety of phenotypes. A disease phenotype gives information about clinical and morphological characteristics of disease, triggers, and therapy response but does not describe about pathogenesis of disease. Due to this reason, the classification of asthma has been further clarified with the development of endotypes, which is based on pathological mechanisms and treatment responses of asthma.
\nThere is an overlap in this classification. Each endotype of asthma can have several phenotypes, just as a specific phenotype may be linked with more than one endotype [6]. These phenotypes have distinct subtypes based on symptoms, triggers, age at onset of disease, severity of disease, and underlying inflammation. Traditionally, asthma has been classified into extrinsic/atopic and intrinsic/nonatopic asthma. Atopic asthma starts in children who have family members with history of allergy and good treatment response. Atopic asthma usually begins after allergen exposure. On the other hand, intrinsic asthma is developed in adult age, and family history is absent in this type of asthma. Intrinsic asthma is a nonallergic type of asthma caused by cold, humidity, strong smells, infections (viral-induced asthma), and chemicals in smoke and cigarette. Nonallergic asthma occurs in 10–33% of asthmatic patients [7].
\nAsthma can also be divided into early-onset and late-onset asthma according to age of presentation of disease. Symptom-based asthma includes chronic asthma, acute severe asthma, brittle asthma, nocturnal asthma, and exercise-induced asthma. On the basis of frequency and severity of symptoms, the Global Initiative for Asthma (GINA) has classified asthma into intermittent, mild persistent, moderated persistent, and severe persistent asthma [8]. The American Thoracic Society and European Respiratory Society have also classified asthma into refractory asthma and “difficult/therapy-resistant asthma” based on the medication plan to achieve good control on asthma [9]. The World Health Organization (WHO) divided severe asthma into untreated severe asthma, difficult-to-treat asthma, and treatment-resistant severe asthma [10]. Based on etiology and underlying inflammation, asthma has also been classified into eosinophilic and non-eosinophilic (neutrophilic and paucigranulocytic) asthma [11].
\nEosinophilic asthma is a specific phenotype of asthma that is defined by inflammation of the basement membrane in the airway mucosa and high eosinophil levels in sputum and blood compared with non-eosinophilic asthma where no typical thickening of the basement membrane has been seen. Repeated asthma exacerbations are more noticeable in patients of eosinophilic than non-eosinophilic asthma [12]. Even though the exact incidence of eosinophilic asthma is not known, among patients with severe asthma who show about 5–10% of the asthmatic people, sputum eosinophilia (≥2%) or blood (≥300 cells/μl) can be observed in 32–40% of population which are linked with recurrent asthma exacerbations, as well as disease severity [13]. A subgroup of patients of eosinophilic asthma maintains constant airways and sputum eosinophilia even with conventional corticosteroid therapy called steroid-resistant eosinophilic asthma. In different studies, the levels of eosinophil in sputum are high in asthmatics with severe disease [14].
\nEosinophilic asthma has three distinct presentations. The first phenotype of eosinophilic asthma is termed as allergen-exacerbated asthma in whom patients show allergen sensitization (atopy), accompanied with allergic rhinitis, present with exacerbated symptoms on allergen exposure and common in early-onset asthma [7, 15]. The second phenotype of eosinophilic asthma comprises those individuals in whom the eosinophilic inflammation is a prominent pathology, but these patients are nonatopic and can present at any age especially in adult age. This phenotype is called idiopathic eosinophilic asthma [7, 16]. Aspirin-exacerbated respiratory disease is the third phenotype of eosinophilic asthma with distinct features comprised of the presence of severe rhinosinusitis with nasal polyps and aspirin sensitivity. Like idiopathic eosinophilic asthma, aspirin-exacerbated respiratory disease is also presented in adulthood and nonatopic patients. However, different studies have documented that a small number of patients who developed asthma early in life showed 36% tissue eosinophilia, in comparison with the late-onset asthma which had 63% eosinophil level [17].
\nAsthma is a complex disease characterized by different pathological mechanisms including inflammation, hyperresponsiveness, remodeling, and angiogenesis of airways (Figure 2).
\nPathogenesis of eosinophilic asthma. Asthma arises from interaction between genetic and environmental factors including allergens and viruses. Allergens or viruses can be caught by dendritic cells (DCs) located in the epithelium, which process and present antigen to naive (Th0) T helper cells. This allergen activates Th0 to Th2 cells which produce IL-4 and IL-13. These cytokines activate B cell for class switching to IgE immunoglobulin. Further, Th2 cells also secrete IL-5, which activates and recruits eosinophil. IgE-dependent degranulation of mast cells secretes both immediate and newly formed mediators like leukotriene, prostaglandin cytokines, etc. other important cells contributing to asthma pathobiology are type 2 innate lymphoid cell (ILCs2), producing IL-13 and IL-5 which cause eosinophil recruitment and expansion in nonallergic eosinophilic asthma.
Eosinophilic airway inflammation is the main pathophysiological mechanism of eosinophilic asthma. Eosinophilic asthma develops from complex immunologic and pro-inflammatory mechanisms, mainly driven by T helper 2 (Th2) cells, which is a part of adaptive immunity release interleukins (IL-5, IL-4, and IL-13). Besides being orchestrated by mechanisms of adaptive immunity, Th2-mediated airway eosinophilia can be also linked with innate immunity, which relied on intercellular connection comprising of dendritic cells, bronchial epithelial cells, and innate lymphoid cells. As a result, airway eosinophilia arises due to the biological activity of both type 2 helper T (Th2) and type 2 innate lymphoid (ILC2) cells, which are critically participating in the pathogenic process of type-2 inflammation in eosinophilic allergic and nonallergic asthma [18]. These mechanisms are linked with increased IgE expression. In eosinophilic asthma patients, eosinophils collect in the respiratory tract. Differentiation of Th2 lymphocytes needs the association of various promoting elements, including costimulatory molecules and interleukins released by dendritic cells and inflammatory cells.
\nEosinophilic allergic asthma is caused by aeroallergen like pollen and house dust mite which have proteolytic characteristics and also have small amount of bacterial components like lipopolysaccharides (LPS) [19]. Thus, on entrance into the respiratory epithelial membrane, allergens can attach with the Toll-like receptor (TLR), a receptor which is involved in innate immunity. Upon TLR activation, epithelial cells produce cytokines including thymic stromal lymphopoietin (TSLP), IL-25, and IL-33 which are capable of developing adaptive immune response of Th2 type. Moreover, TLR activation also evokes the secretion of chemokines such as CCL2 and CCL20, which increase the maturation of dendritic cells [20]. These dendritic cells move into the lumen of airways, take aeroallergens, and break them in the cytoplasm, leading to the generation of peptide fragments of allergen. These fragments are presented by class II HLA molecules on dendritic cells that move to regional lymph nodes where these antigen fragments are presented to T lymphocytes [21].
\nAfter activation of T-cell receptors by antigenic peptides, sensitization and stimulation of adaptive immune system take place. Stimulation of naive T lymphocytes needs the attachment of their costimulatory molecules (CD28, ICOS, and OX40) with their ligand present on dendritic cells (CD80/B7.1, CD86/B7.2, ICOS ligand, and OX40 ligand). Differentiation of T lymphocytes is critically dependent on the cytokine environment [22]. Th2 polarization requires high levels of IL-4 and low concentration of IL-12. IL-4 is secreted by mast cells and basophils. GATA3 is the main transcription factor present in type 2 helper T cells that promote the production of Th2-type cytokines including IL-4, IL-5, IL-9, and IL-13. These interleukins cause eosinophils and mast cells’ maturation and recruitment, promoting immunoglobulin class switching to IgE production. As a result, cytotoxic products released by degranulation of eosinophils induce airway epithelial injury, mucus hyperproduction, bronchial hyperresponsiveness, impaired ciliary movement, and an increase in smooth muscle size [23].
\nThe late-onset type of eosinophilic asthma that is usually nonallergic arises in the absence of stimulation of Th2 lymphocytes. Recent researches suggest that the main role in the development of eosinophilic nonallergic asthma is played by ILC2s which is activated by IL-25, by IL-33, and by prostaglandin D2 (PGD2) [24]. Consequently, these two distinct pro-inflammatory routes driven by either Th2 lymphocytes or innate ILC2s produce IL-5 which is mainly involved in eosinophilic inflammation of airways in asthma.
\nChronic inflammation of airways in asthma leads to more rapid contraction of smooth muscles of airways than in normal person in effect of broad range of stimuli, a condition termed airway hyperresponsiveness [25]. Airway hyperresponsiveness is a result of eosinophil infiltration mediated by T lymphocyte-secreted factor called eosinophil chemotactic factor (ECF-L). Hyper responsiveness of the air ways is caused by the decrease in function of neuronal M2 muscarinic receptor on parasympathetic nerves in the lungs due to eosinophil’s major basic protein which is a protein released from granules of eosinophils. Schwartz et al. reported a direct relationship between eosinophil count in the airways, sputum and peripheral blood, and airway hyperresponsiveness [26].
\nAirway remodeling is the permanent cellular and structural modification in the airways primarily due to repair mechanisms in reaction to chronic inflammation. In a broad term, the airway is modified so that it acts in a different manner when allergens or nonspecific factors like exercise, cold air, perfume, and smoke are induced into the patient and it leads to irreversible change of lung functions [27]. There are various changes in structural and physiological characteristics which are different in every asthmatic patient. Most noticeable structural change is thickening of basement membrane of airway which is due to accumulation of type III collagen produced by myofibroblast. These myofibroblastic cells are stimulated and controlled by growth factors secreted by the epithelial cells and various cytokines (transforming growth factor-β (TGF-β), IL-10, and IL-17) released by T lymphocytes and eosinophils that have profibrotic responses while at the same time downregulating the function of T and B lymphocytes [28].
\nPreviously, it was thought that the airways’ epithelial membrane is an innocent sufferer, becoming injured and lost due to the effect of toxic agents secreted by eosinophils and other inflammatory cells. But now, it has been reported that growth factors and interleukins (IL-8) secreted by the cells of epithelial membrane perform an active role in remodeling. Metalloproteases and epidermal growth factors released from matrix on inflammation stimulate these chemokines. On chemokine activation, neutrophils and other immune cells attracted to the area of damage cause structural alterations in the airways. Other structural changes including mucus metaplasia and increased angiogenesis have also been observed in asthmatic patients [29].
\nThere is a rise in the number of blood arteries in the medium and small respiratory airway submucosa. It may help in physiological changes in airways of patients with asthma, including asthma due to exercise. Several studies have been documented that vascular endothelial growth factor (VEGF) may contribute in angiogenesis. High expression of VEGF has been observed due to hypoxia and several cytokines and growth factors such as epidermal growth factor, TGF-β, IL-1α, and IL-6. VEGF expression is decreased by other interleukins including IL-10 and IL-13 [30].
\nEosinophils are granulocytes in blood produced in the bone marrow with other white blood cells making about 1–3% of white blood cells. Eosinophil plays multiple functions and is an important component of allergic and asthmatic type 2 immune responses. Allergens on exposure starts a group of processes by Th2 cytokine-producing cells, resulting in eosinophils’ attraction to the airway through the action of IL-5, and eotaxin research reported that Clara cells of the airway epithelium are the main source of eotaxin in the lung [30].
\nDuring asthma attack, eosinophils are stimulated to release proteins from granules including major basic protein, eosinophil peroxidase, eosinophil cationic protein, and eosinophil-derived neurotoxin, all of which are toxic to the epithelial cells of airway. Furthermore, eosinophils secrete plenty of inflammatory mediators like cytokines (interleukins IL-13 and IL-5), platelet-activating factor, growth factors (TGF-α and TGF-β), leukotrienes, thromboxane, and prostaglandins. The secretion of all these mediators results in enhancement of the inflammatory process, airways’ epithelium cell injury, airway hyperresponsiveness, mucus hypersecretion, and airway remodeling and bronchospasm [31]. Eosinophils control the allergen-dependent Th2 pulmonary immune responses activated by dendritic cells and T cells as well as decrease Th1 responses [32].
\nAlthough various bioactive proteins such as IL-3 and granulocyte-macrophage colony-stimulating factor affect the life cycle of eosinophils, eosinophils react mainly to IL-5. Th2 cells, ILCs2, mast cells, natural killer T (NKT) cells, and eosinophils produce IL-5 within respiratory air passage of sufferer with eosinophilic asthma. In asthmatic patients, the bone marrow responds to environmental irritant by rising eosinophil production, and in asthmatics presenting both acute and late asthmatic reactions, this event is related with increased IL-5 mRNA proportion than persons having only early bronchial reactions. Apart from the effect of IL-5 on the bone marrow, it has also been observed that IL-5 enhances eosinophil maturation in airways of allergic patients [33].
\nIL-5 can also promote eosinophilic infiltration in bronchial airways due to synergetic effect of IL-5 with other chemoattractants of eosinophils such as eotaxins. The IL-5 role in eosinophil recruitment within the bronchial airways is due to its antiapoptotic action on eosinophils [34]. IL-5 exerts its effect by attachment with IL-5 receptor expressed on eosinophils and basophils. IL-5 receptor is composed of an IL-5-specific α subunit (IL-5Rα) and a nonspecific βc chain that react with IL-5, IL-3, and GM-CSF [35]. The level of IL-5Rα is expressed three times higher on eosinophils than basophils [36].
\nIL-33 is the newly discovered member of cytokine of IL-1 group. Schmitz et al. described IL-33 as a promoter of various type 2-related responses, including cytokine (IL-4, IL-5, and IL-13) and IgE production. In addition to type 2-related response, ST2, the IL-33 receptor, is present on several types of cells engaged in type 2 effector function, including Th2 cells, mast cells, basophils, eosinophils, and ILC2s [37]. Studies in asthma described the supporting role of IL-33 on monocyte development and eosinophil differentiation from the bone marrow [38].
\nMast cells are the source of the Th2 cytokines including IL-4 and IL-5 that regulate antibodies’ class switching to IgE and eosinophil production, respectively. Mast cells have been observed in higher frequency in asthmatic airways and stimulated by allergen exposure. On activation, mast cells degranulate and secrete their mediators such as histamine and leukotrienes, causing bronchospasm and acute bronchoconstriction by allergen. On the other hand, leukotriene is an essential mediator in airway inflammation and remodeling specifically in symptoms induced by exercise in intrinsic asthma. The granule proteases including tryptase are also released by mast cells. Tryptase is involved in airway remodeling and releases pro-inflammatory chemokine from intracellular matrix [39].
\nInnate lymphoid cells (ILCs) are newly discovered immune cells that have lymphoid morphology but deficient in antigen receptor. Type 2 innate lymphoid cells (ILC2) are non-B/non-T cells that release IL-5 and IL-13 on activation by IL-25 and IL-33 and expressed MHC class II high and CD11cdull on their surface. Several studies reported that ILC2 originates from common lymphoid progenitor cells and not from either myeloid or erythroid progenitors, confirming that these cells are of lymphoid origin. ILCs have three different types, ILC1s, ILC2s, and ILC3s, on the basis of identical cytokine profile associated with the helper T subsets Th1, Th2, and Th17, respectively [40]. ILC2s are known to produce type 2 cytokines including IL-4, IL-5, and IL-13 on exposure to allergen, IL-25 and IL-33, and are therefore probable new member in Th2 cell-independent innate type 2 responses. ILC2s can be stimulated by several cytokines especially epithelial cell-derived cytokines IL-25, IL-33, prostaglandin, and leukotriene which have been observed to start ILC2 reaction in both animals and humans [41].
\nEosinophilic asthma diagnosis is considered essential in primary, secondary, and tertiary treatments. Typically, general practitioner uses this diagnosis to determine the initialization of inhaled corticosteroids (ICSs). A patient with signs of eosinophilic inflammation is likely to respond to ICSs; however, patients should not be treated with ICSs in the absence of airway eosinophilia. In addition, it is essential to recognize if a patient has airway eosinophilia because those with chronic eosinophilia are susceptible to severe problems and airway remodeling in spite of inhaled or oral corticosteroid treatment. Therefore it must be completely examined [42]. Significantly, all available resources and information are used in all settings to better presume if a person has eosinophilic asthma.
\nEosinophilic asthma analysis depends on the confirmation of eosinophilic inflammation in airways of asthmatics, though there is no common diagnostic method. Many procedures can be utilized to diagnose airway eosinophilia in the airways that include induced sputum, bronchial biopsies, blood, and exhaled breath. Generally, airway biopsies or bronchoalveolar lavage (BAL) is principally observed for the analysis of airway inflammation. But for daily clinical use, this method is very invasive. Hence, to determine airway inflammation aseptically in an appropriate and cheap manner. The best recognized and the most common method for testing eosinophilic asthma is the identification of eosinophils in induced sputum [43].
\nThe histocytology of a biopsy sample of bronchial tissue could be a diagnostic test to determine the appearance of eosinophils in the submucosa and epithelial cells of air passage. But in daily clinical use, it is impossible to take patients’ biopsy due to an invasive method. The interaction between eosinophils is poor in different airway areas because BAL represents eosinophils in the peripheral air passage, while sputum wash and bronchial wash produce a variety of small and adjacent large air passages. Additionally, the analysis of bronchial submucosal and BAL eosinophils is not consistent, so it is difficult to relate results of these tests between laboratories. Roughly, if the tissue and BAL express sufficient amount of eosinophil, possibly they are also increased in sputum. This observation may not be true. More importantly, the number of eosinophils in sputum (airway luminal) is more associated with clinical guidelines for asthma control, like the worsening of symptoms than the numbers of eosinophils in tissue section. This association may not be surprising, provided that eosinophils are triggered as they pass through different areas and are further induced in the lumen of air passage than in tissues [44].
\nThe advance applications of methods to carefully and accurately induce and assess the sputum have allowed the possibilities to investigate the features of inflammatory process in airway in asthmatics. This brings attention to the heterogeneity of airway inflammation in asthma [45]. Currently, sputum analysis is essentially an extensive and aseptic method for testing the airway inflammation. The analysis of sputum with hypertonic solution of saline is reliable in asthmatics who have just 0.9 L forced expiratory volume in the first second (FEV1) and is effective in almost 80% of asthma patients [46]. The test for the collection, preparation, and determination of cell counts of sputum is easily characterized and organized, and its stability, responsiveness, and validity were explained. The normal values for sputum cell counts were determined, and on the basis of sputum examination, guidelines are available to improve the treatment. However, the eosinophil count in non-asthmatics is 1.2%, while 3% or more sputum eosinophil is usually believed as clinically important. Further investigation is required apart from the complete cell differentiation, probably the levels of biomarkers, like eosinophil-free granules, or the level of protein released from granules (e.g., eosinophil peroxidase) is precise and more significant [47].
\nEosinophilic counts in a peripheral blood are easily collected and mostly convenient, and still it is deficient in both accuracy and susceptibility. However, some asthmatics perhaps reveal that blood eosinophils rise in those patients who have peripheral eosinophilia. So a proposed association is found with acute asthma signs and decreased pulmonary activity as examined by FEV1 [48]. But in asthma, blood eosinophil counts were not recognized to safely associate with increased eosinophils in sputum. It was shown that eosinophils’ quantity (>300/μL) in blood had just 50% positive predictive value in finding the phenotype of an asthma that is on the basis of eosinophil in sputum (>2%). Altogether, these studies show that peripheral blood eosinophilia perhaps is a sign of severe condition in asthma but not constantly associated with sputum eosinophilia.
\nPFT evaluates volume and rate of airflow that breathe in and out. The FEV1 of exhalation is assessed and compared to the total air volume during forced expiration (forced vital capacity [FVC]). It is an early test for diagnosis of asthma to evaluate airway blockage, disease severity, and reversibility of symptoms. Reduced FEV1, blockage in airflow (lower level of FEV1/FVC), and concavity in FEV loop are expected in patients of asthma [49]. Other PFTs include bronchodilator responsiveness (BDR) test which is predictive of adult-onset asthma. Specific airway resistance (sRaw) analyses by body plethysmography may also be an indicator of early airflow blockage. Hastie et al. reported multiple parameters such as FeNO level, reduced FEV1, persistent airflow obstruction, total IgE, and blood eosinophil counts in diagnosing eosinophilic asthma [50].
\nEBC is a new, noninvasive test of identifying biological markers, predominantly secreting from the lower part of the airway. EBC is obtained at the time of quiet respiration, as a result of cooling and liquefaction of the air droplets that breathe out [51]. It is a distinct method in detecting molecular pathways related to the respiratory tract. Antus et al. reported lower EBC pH in asthmatic compared with control subjects [52]. Hydrogen peroxide (H2O2), an indicator of oxidative stress, was elevated in EBC of patients with asthma. Furthermore, EBC-H2O2 concentration is associated with asthma severity and prognosis [53]. Other biomarkers such as CysLTs (LTD4, LTE4, and LTC4), eicosanoids (8-isoprostane and prostaglandin E2), interleukins (IL-4), and high-sensitivity C-reactive protein (hs-CRP) are found in increased levels in asthma with exercise-induced bronchoconstriction. Serum hs-CRP and fractional exhaled nitric oxide (FeNO) concentration were significantly associated with EBC-hs-CRP levels in patients of asthma [54, 55].
\nNitric oxide synthase helps in the synthesis of nitric oxide, a reactive molecule that is shown on cells in airway epithelium. In asthma, FeNO analysis by breath assays is usually treated as an aseptic sign of airway inflammation. FeNO analysis is simple, rapid, and noninvasive in contrast to the bronchoscopy and sputum induction. Significantly, it was shown that FeNO quantification perhaps is helpful as a clinical instrument for administering the asthma and managing the disease, but different findings result in some controversy about FeNO efficacy [56]. In a study, more than 90 asthma patients were examined by Smith et al., and they identified that FeNO acts as an effective tool for the withdrawal of inhaled corticosteroid treatment. Tseliou et al. also studied that >19 parts per billion FeNO levels were due to sputum eosinophilia with 78% sensitivity and 73% reactivity in individuals who had mild to acute asthma, while few of them relied on prednisone. Differently, Nair et al. in a clinical trial performed with mepolizumab described that FeNO levels and sputum eosinophil percentages are not associated with asthmatics who relied on prednisone [57].
\nIgE plays an important part in allergic asthma. IgE antibodies produced by allergic patients are specific for antigens like pollens and house dust mite, attached with IgE-specific receptors on basophils and mast cells. The connection of IgE molecules stimulates the release of intermediates (arachidonic acid metabolites and histamine) and cytokines (IL-4, tumor necrosis factor alpha, and IL-5) that are important for early- and late-stage allergic response and the associated penetration of eosinophils in the airway. Different findings which have determined a relation between levels of IgE in serum, airway eosinophilic asthma, and anti-IgE treatment were explained, closely related with a remarkable decrease in tissue eosinophils. But in spite of these findings, it is not suggested to use IgE as a biomarker for eosinophilic inflammation. Latest meta-analysis by Korevaar and his fellows, they have described low validity and inadequacy for this biomarker in comparison with FeNO to find sputum eosinophilia [58]. The results were not valid, when comparing blood eosinophils with IgE. Hence, to find eosinophilic asthma, IgE appears to be less effective of all currently available biomarkers.
\nPeriostin is an interleukin-13-regulated matrix protein which is present outside the cells. It was described that periostin promotes the recruitment of allergen-induced eosinophils to the lungs, leading to eosinophil binding to fibronectin. Additionally, it was shown that periostin affects the durability of lung cancer cells due to Akt/PKB pathway; though it has not been examined, maybe it could improve the survival of eosinophils [59].
\nGenerally, periostin is available as an essential biomarker for the detection of eosinophil levels in air passage in asthma patients because of its function in the recruitment of eosinophils in tissue. Jia et al. conducted a study on different parameters that include age, BMI, gender, blood eosinophils, and levels of IgE, FeNO, and periostin in the serum of 59 acute asthmatic cases and demonstrated that airway eosinophilia was best determined by periostin in the serum. The level of periostin (>25 ng/mL) in serum had 93% positive predictive value and 37% negative predictive value for >3% eosinophils in sputum or tissue eosinophilia. In asthma the exact function of periostin is not observed. In addition to function in eosinophilia, animal models propose that perhaps periostin is associated with airway remodeling through growth factor-β switching and can also have supportive part in airway hyperresponsiveness induced by allergen [60].
\nThe present eosinophilic asthma treatment is introduced with common guideline-based therapy that consists of ICS and bronchodilators that have been thoroughly studied elsewhere [61]. Usually the eosinophil appearance has been linked with susceptibility to corticosteroids, while some eosinophilic asthma patients were identified with subsequent steroid refractory.
\nEosinophilic asthma treatment consists of elevated dose of ICS and oral corticosteroids. ICS are primarily used to decrease airway inflammation and mucus hypersecretion, beginning with the reduced strong dosage and increasing to high-dose ICS due to increased intensity. Several severe asthmatics become addicted to corticosteroids. Depending upon toxic corticosteroids for long-term maintenance, treatment perhaps impairs the individuals and may result in corticosteroid resistance [62].
\nPerhaps many methods which are considered for corticosteroid-resistant asthma have been described in addition to the activation of p38 mitogen-activated protein kinase and inflammatory genes controlled by transcription factor-kB. A p38 mitogen-activated protein kinase is significant to trigger GATA3 (the master Th2 cytokine transcription factor). Moreover, phosphoinositide 3-kinase (PI3K) controls inflammatory pathways and activates the PI3Kδ isozyme through oxidative stress that can reduce the corticosteroid susceptibility by decreased histone deacetylase 2 (an enzyme marked by theophylline). Further steroid refractory asthma can comprise elevated expression of the alternatively linked variant of the glucocorticoid receptor and elevated formation of macrophage migratory inhibitory factor that can arrest the anti-inflammatory outcomes of corticosteroids [63].
\nOther factors are under examination for the management of asthma comprised of antagonists focusing on thymic stromal lymphopoietin, IL-25, IL-33, GM-CSF, and chemokine receptor 3 that are expressed on eosinophils [61].
\nThe treatment of refractory eosinophilic asthma includes the drugs that specifically target T helper 2 cytokines as well as anti-IgE, anti-IL-5, and anti-IL-13 monoclonal antibodies [64].
\nAn IgG1 recombinant humanized monoclonal antibody against IgE is omalizumab. Omalizumab binds with IgE Fc portion, recognizing FcεR1, IgE high-affinity receptors on the top of basophils, and mast cells that result in the downregulation of receptor and suppress the release of inflammatory intermediates. An important function of IgE is to act in allergic response pathophysiology, while omalizumab impairs both early- and late-phase inhaled allergen responses in asthmatics [65]. The previous studies showed a remarkable decrease in eosinophils in airway tissue and induced sputum (8 at baseline in contrast to 1.5 posttreatment) in asthmatics that were treated with omalizumab. Later, it was reported that treatment for 16 weeks reduced the number of eosinophils in blood from 6.2 to 1.3% at baseline [66]. Thus total serum IgE is not applicable for eosinophilic asthma as a diagnostic marker. So, the levels of total IgE in serum should be applied for examining anti-IgE therapy.
\nThe therapy against IgE is effective to eosinophilic asthma treatment in spite of IgE levels. One reason for the observed paradox is that the no response of IgE levels may be associated with the downregulation of FcεR1 by anti-IgE on the surface of basophils, dendritic cells, and mast cells. A decrease in cells that express FcεR1 reduces the intermediate responses of allergen-induced IgE, suppressing the discharge of cytokine and the induction of eosinophil into the airway [67]. Moreover, anti-IgE treatment may assist to reduce the numbers of airway dendritic cells that result in the reduction of Th2 cell differentiation and Th2 cytokines that are required for the recruitment and survival of eosinophils. Thus total IgE in serum may not be related to clinical response or eosinophilic asthma, while omalizumab is useful in the treatment of asthma and decreases the airway eosinophils.
\nIt was studied by Noga et al. that omalizumab is also important as it may have proapoptotic effects on eosinophils [68]. The reduced number of mast cell mediators helps in the stability of eosinophil that may lead to eosinophil apoptosis in individuals that were tested with omalizumab. Particularly, omalizumab is also found as a corticosteroid-sparing drug in persistent eosinophilic pneumonia, a condition that is identified by symmetric lung penetration and the remarkable eosinophil recruitment in blood and BAL fluid [69]. Hence, the outcomes of anti-IgE therapy on lung eosinophilia give more understandings about allergic inflammation mechanisms, which can assist in improving the phenotype-specific analysis.
\nThe key function of IL-5 in tissues is to stimulate the growth, recruitment, activation, and differentiation of eosinophils. Initial studies described the elevated IL-5 expression in BAL fluid and bronchial biopsies in asthmatic patients. Moreover it was shown that following the allergen confront, IL-5 mRNA was regulated in bronchial mucosa, and the levels were associated with the disease activity. After anti-IL-5 treatment, airway hyperresponsiveness and airway eosinophil assembly after allergen challenge were reduced in animal models [70]. So, there is enough explanation for selecting IL-5 in asthmatics to particularly decrease the eosinophil migration, maturation, and stability that can cause many features of asthma pathogenesis.
\nAn IgG1-humanized noncomplement-fixing monoclonal antibody is mepolizumab that is specific for human IL-5. Mepolizumab prevents the binding of human IL-5 to the alpha chain of IL-5 receptor complex that is expressed with high affinity on the surface of eosinophil cell. It was shown that in the bronchial mucosa of atopic individuals, anti-IL-5 therapy causes maturational blockage of eosinophil progenitors in the bone marrow and reduces the eosinophil precursors (CD34+ IL-5Rα+) [71]. It is interesting that mepolizumab has different effects in different tissues which results in the complete reduction of eosinophils in sputum and blood exclusively 55% decrease in the bronchial mucosa. It was proposed by Flood-Page et al. that different levels of tissue infiltration could be due to the improved expression or downregulation of IL-5 receptor. Once assembled into the tissue, probably the survival of airway eosinophils depends on IL-3, GM-CSF, or eotaxins.
\nTwo latest findings demonstrate that there could be useful outcome of mepolizumab in certain groups of eosinophilic asthma patients. It was found that double-blind placebo-controlled research consists of 61 cases with a history of chronic acute exacerbations and refractory eosinophilic asthma; following 1-year monthly injections of mepolizumab, a remarkable decrease in exacerbations and recovery in symptom scores were observed in patients treated with mepolizumab [72].
\nReslizumab is an anti-IL-5 humanized monoclonal antibody (IgG4), also provided to the eosinophilic asthma patients that were poorly managed [73]. A latest study described a remarkable decrease of eosinophils in sputum, and the respiratory activity improved while relating with inactive drug following monthly 15 weeks of reslizumab therapy (3 mg/kg). The useful results of reslizumab were mostly marked in nasal polyp patients and in those patients who had a maximum level of eosinophils in sputum and blood. Significantly besides the level of eosinophils, the appearance of nasal polyposis can recognize asthma patients that were treated with anti-IL-5.
\nBenralizumab is an anti-IL-5Rα afucosylated humanized monoclonal antibody, identified on eosinophils and nowadays in Phase II clinical trials. In a prospective Phase II study, the result of one shot of benralizumab (1 mg/kg) that was given intravenously related to the monthly three shots (100 or 200 mg) given subcutaneously or placebo in adult patients of eosinophilic asthma was studied [74]. It was described that following final dose of benralizumab through intravenous and subcutaneous passage helped in the reduction of eosinophil levels in sputum and airway mucosa as well as complete eosinophil count arrest in peripheral blood and bone marrow for up to 28 days.
\nIL-4 and IL-13 are essential cytokines in the pathogenesis of atopic disease and allergic asthma. These are expressed by basophils, innate lymphoid cells, mast cells, and Th2 cells. IL-4 is important for various asthma characteristics that include mucus formation, switching of B-cell isotypes, and differentiation of Th2 cells. IL-4 and IL-13 transmit signal inside the cells by two different overlapped heterodimeric receptors which are part of IL-Rα [75]. Receptor attachment is triggered by a typical signaling pathway, signal transducer and activator of transcription 6 (STAT-6), that is important for the production of Th2 inflammation, an asthma feature. Significantly, eotaxins help in eosinophilic induction as well as rely on IL-4 or IL-13 for the stimulation of STAT-6. At present many drugs are under examination that use IL-4/IL-13/STAT-6 pathway.
\nPascolizumab is a human-based IL-4 monoclonal antibody that was considered in animal studies as well as Phase I and II clinical trials. Pascolizumab was strongly accepted in Phase I clinical trial with mild to moderate asthma in adult patients; anyhow following Phase II trial on a large scale was stopped because it was unsuccessful to express the clinical results in symptomatic individuals who were steroid immature [76].
\nAltrakincept is an artificial humanized antagonist IL-4Rα that inhibits the penetration of airway eosinophils and hypersecretion of mucus in a mouse model when managed during allergen challenges. One dose of the medicine improves the pulmonary activity and disease problems in Phase I and II trials [77].
\nPitrakinra is an antagonist, which targets the heterodimeric receptor of IL-4 and IL-13 cytokines, comprises the subunits IL-4Rα and IL-13Rα1. Pitrakinra suppressed the early-stage and late-stage reactions produced by allergen when managed by the subcutaneous or inhaled passage [78].
\nA humanized monoclonal antibody to the IL-4Rα subunit is dupilumab, currently described in a follow-up study analysis [79]. It was studied that 104 subjects with mild to acute persistent asthma and eosinophilia were separated to gain subcutaneously a single dose (300 mg) of dupilumab or placebo in a week for 12 weeks. In the treated group, this study developed a remarkable recovery in lung function related to the decrease in asthma inflammation as long-acting beta-agonists, and received steroids were absorbed. In addition, the significant modifications from basic standards in Th2-related indicators, as well as FeNO, IgE, chemokine ligand 17, and chemokine ligand 26 (eotaxin-3), were found in the group of dupilumab by 12 weeks. The levels of blood and sputum eosinophils were not dissimilar following dupilumab therapy, while there were less number of people who give sputum, so statistical examination was excluded. Generally, identifying the IL-4Rα signaling (that also stimulates IL-13 signaling) acts as a good therapeutic approach for eosinophilic asthma.
\nAn important part of IL-13 in airway eosinophilic induction in a way depends on the combined function of IL-5 and eotaxin in mouse models. Additionally, many studies demonstrate that IL-13 is important for corticosteroid protection in asthma. In a study on animals, IL-13 inhibition procedures have described reduction in airway hyperresponsiveness, inflammation caused by environmental immunogen, and remodeling of airways [80]. Thus nowadays, pharmaceuticals that target this cytokine are under examination in those who have refractory eosinophilic asthma due to steroids.
\nAnrukinzumab is a complete human IL-13-targeted antibody. In Phase II clinical trial, its effects have shown a decrease in late asthmatic responses produced by allergen after two doses (2 mg/kg) that were given subcutaneously for 2 weeks [80].
\nLebrikizumab is a humanized anti-IL-13 monoclonal antibody. In a latest study, lebrikizumab was investigated in 219 adults with weakly controlled asthma against long-acting beta-agonists and ICSs [81]. Consequently, the treated group after 12 weeks of therapy has improved FEV1, while high pretreatment with serum periostin levels has more good effects in patients. In post hoc examination, it was interesting that high FeNO and Th2 markers which include CCL13 (human monocyte chemoattractant protein-4), peripheral eosinophilia, CCL17, and total IgE levels were further related with a significant decrease in the levels of acute problems in lebrikizumab-treated cases relative to placebo.
\nTralokinumab is another antibody against IL-13, also effective in Phase II study in improving the lung activity of individuals with moderate to acute asthma [81].
\nIn conclusion, asthma is a heterogeneous condition with several phenotypes and endotypes on the basis of different immunopathogenic mechanisms such as underlying inflammation, environmental factors, and disease severity. Understanding of distinct phenotypes with specific pathophysiology is essential for management of patients with eosinophilic asthma. Categorization of asthma into eosinophilic and non-eosinophilic subphenotypes depends on the difference in cells involved in inflammation of respiratory airway. Generally, eosinophilic inflammation has been linked with extrinsic (allergic) asthma with Th2-type response, but now eosinophils have also been observed in the airways of nonallergic (intrinsic) asthma. The development of new biological therapies like monoclonal immunoglobulin and small particles that block IgE, interleukins of Th2 type, and particular inflammatory factors has improved the knowledge about the immunopathogenesis of this phenotype and emphasizes the significance of individual-directed treatment. For doctors, it is essential to early recognize eosinophilic patients because this phenotype may need patient-directed therapies to prevent worsening of asthma symptoms.
\nI am thankful to the University Institute of Medical Laboratory department, the University of Lahore, for being helpful. My deepest gratitude to Prof. Dr. Syed Amir Gillani (Dean of FAHS) and Prof. Dr. Nazar Ullah Raja (Head of the Department of University Institute of Medical Laboratory Technology) for their support.
\nNo financial support and no other potential conflict of interest relevant to this chapter were reported.
FcєR1 | Fc epsilon receptor 1 |
GINA | Global Initiative for Asthma |
WHO | World Health Organization |
IL | interleukin |
Th2 cells | type 2 helper T cells |
ILCs2 cells | type 2 innate lymphoid cells |
LPS | lipopolysaccharides |
PGD2 | prostaglandin D2 |
TGF | transforming growth factor |
Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.
',metaTitle:"Order Print Copies",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your printed copy, you can do so by contacting our Print Sales Department at orders@intechopen.com.\n\nOur hardcover books are carefully designed and printed on wood-free premium quality paper.\n\nThe paper size is 155 mm x 225 mm (6.1 X 8.8 inches).",metaKeywords:null,canonicalURL:"/page/order-print-copies",contentRaw:'[{"type":"htmlEditorComponent","content":"InTechOpen contributors can order print books at a special price ranging from:
\\n\\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\\n\\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\\n\\n\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nASEAN - Books International
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nMallory International Ltd
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'InTechOpen contributors can order print books at a special price ranging from:
\n\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\n\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\n\n\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nASEAN - Books International
\n\nChina Publishers Services Ltd - CPS
\n\nMallory International Ltd
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10270",title:"Fog Computing",subtitle:null,isOpenForSubmission:!0,hash:"54853b3034f0348a6157b5591f8d95f3",slug:null,bookSignature:"Dr. Isiaka Ajewale Alimi, Dr. Nelson Muga, Dr. Qin Xin and Dr. Paulo P. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/10270.jpg",editedByType:null,editors:[{id:"208236",title:"Dr.",name:"Isiaka",surname:"Alimi",slug:"isiaka-alimi",fullName:"Isiaka Alimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10543",title:"Psychology and Patho-physiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!0,hash:"2464b5fb6a39df380e935096743410a0",slug:null,bookSignature:"Dr. Akikazu Takada and Dr. Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!0,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:null,bookSignature:"Dr. Guillermo Téllez and Associate Prof. Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:null,editors:[{id:"73465",title:"Dr.",name:"Guillermo",surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:"Dr. John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:101},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"169",title:"Biomedicine",slug:"biomedicine",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:6,numberOfAuthorsAndEditors:117,numberOfWosCitations:40,numberOfCrossrefCitations:29,numberOfDimensionsCitations:63,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"biomedicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8400",title:"Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"222a58353415f02de25a212213bddc00",slug:"molecular-medicine",bookSignature:"Sinem Nalbantoglu and Hakima Amri",coverURL:"https://cdn.intechopen.com/books/images_new/8400.jpg",editedByType:"Edited by",editors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7159",title:"Body-mass Index and Health",subtitle:null,isOpenForSubmission:!1,hash:"bb520e914b9b3d726b9b9f9d047011ce",slug:"body-mass-index-and-health",bookSignature:"Ayşe Emel Önal",coverURL:"https://cdn.intechopen.com/books/images_new/7159.jpg",editedByType:"Edited by",editors:[{id:"25840",title:"Prof.",name:"Ayse Emel",middleName:null,surname:"Onal",slug:"ayse-emel-onal",fullName:"Ayse Emel Onal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6632",title:"Biofeedback",subtitle:null,isOpenForSubmission:!1,hash:"7fd6758aaba7064d143ca8a1c05ef6c7",slug:"biofeedback",bookSignature:"Mark Schwartz",coverURL:"https://cdn.intechopen.com/books/images_new/6632.jpg",editedByType:"Edited by",editors:[{id:"63257",title:"Mr.",name:"Mark",middleName:null,surname:"Schwartz",slug:"mark-schwartz",fullName:"Mark Schwartz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6205",title:"Polypeptide",subtitle:"New Insight into Drug Discovery and Development",isOpenForSubmission:!1,hash:"35f89bf9a197198efc0d44d0ff56d800",slug:"polypeptide-new-insight-into-drug-discovery-and-development",bookSignature:"Usman Sumo Friend Tambunan",coverURL:"https://cdn.intechopen.com/books/images_new/6205.jpg",editedByType:"Edited by",editors:[{id:"70235",title:"Prof.",name:"Usman Sumo Friend",middleName:null,surname:"Tambunan",slug:"usman-sumo-friend-tambunan",fullName:"Usman Sumo Friend Tambunan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1899",title:"Biomedicine",subtitle:null,isOpenForSubmission:!1,hash:"4b1bc3c9f0a151f8c9ffda110c2053d6",slug:"biomedicine",bookSignature:"Chao Lin",coverURL:"https://cdn.intechopen.com/books/images_new/1899.jpg",editedByType:"Edited by",editors:[{id:"109875",title:"Dr.",name:"Chao",middleName:null,surname:"Lin",slug:"chao-lin",fullName:"Chao Lin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"33119",doi:"10.5772/38349",title:"Additive Manufacturing Solutions for Improved Medical Implants",slug:"additive-manufacturing-solutions-for-improved-implants",totalDownloads:7520,totalCrossrefCites:7,totalDimensionsCites:21,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Vojislav Petrovic, Juan Vicente Haro, Jose Ramón Blasco and Luis Portolés",authors:[{id:"116774",title:"Dr.",name:"Vojislav",middleName:null,surname:"Petrovic",slug:"vojislav-petrovic",fullName:"Vojislav Petrovic"},{id:"116777",title:"MSc.",name:"Juan",middleName:"Vicente",surname:"Haro González",slug:"juan-haro-gonzalez",fullName:"Juan Haro González"},{id:"116778",title:"BSc.",name:"José Ramón",middleName:null,surname:"Blasco Puchades",slug:"jose-ramon-blasco-puchades",fullName:"José Ramón Blasco Puchades"},{id:"116779",title:"BSc.",name:"Luís",middleName:null,surname:"Portolés Griñán",slug:"luis-portoles-grinan",fullName:"Luís Portolés Griñán"}]},{id:"68486",doi:"10.5772/intechopen.88563",title:"Metabolomics: Basic Principles and Strategies",slug:"metabolomics-basic-principles-and-strategies",totalDownloads:1570,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Sinem Nalbantoglu",authors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}]},{id:"33113",doi:"10.5772/33951",title:"Encapsulation and Surface Engineering of Pancreatic Islets: Advances and Challenges",slug:"encapsulation-and-surface-engineering-of-pancreatic-islets-advances-and-challenges-",totalDownloads:3024,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Veronika Kozlovskaya, Oleksandra Zavgorodnya and Eugenia Kharlampieva",authors:[{id:"97932",title:"Prof.",name:"Eugenia",middleName:null,surname:"Kharlampieva",slug:"eugenia-kharlampieva",fullName:"Eugenia Kharlampieva"},{id:"101333",title:"Dr.",name:"Veronika",middleName:null,surname:"Kozlovskaya",slug:"veronika-kozlovskaya",fullName:"Veronika Kozlovskaya"},{id:"135852",title:"MSc.",name:"Oleksandra",middleName:null,surname:"Zavgorodnya",slug:"oleksandra-zavgorodnya",fullName:"Oleksandra Zavgorodnya"}]}],mostDownloadedChaptersLast30Days:[{id:"68486",title:"Metabolomics: Basic Principles and Strategies",slug:"metabolomics-basic-principles-and-strategies",totalDownloads:1563,totalCrossrefCites:7,totalDimensionsCites:8,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Sinem Nalbantoglu",authors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}]},{id:"74620",title:"Molecular Mechanisms of Distinct Diseases",slug:"molecular-mechanisms-of-distinct-diseases",totalDownloads:177,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Adnan Batman, İrem Yalim Camci, Elif Kadioglu, Kezban Uçar Çifçi, Berçem Yeman Kıyak, Servet Tunoglu, Ezgi Nurdan Yenilmez Tunoglu and Yusuf Tutar",authors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"},{id:"342753",title:"Dr.",name:"Servet",middleName:null,surname:"Tunoglu",slug:"servet-tunoglu",fullName:"Servet Tunoglu"},{id:"342756",title:"Dr.",name:"Adnan",middleName:null,surname:"Batman",slug:"adnan-batman",fullName:"Adnan Batman"},{id:"343421",title:null,name:"Berçem",middleName:null,surname:"Yeman Kıyak",slug:"bercem-yeman-kiyak",fullName:"Berçem Yeman Kıyak"},{id:"344587",title:null,name:"İrem Yalım",middleName:null,surname:"Camcı",slug:"irem-yalim-camci",fullName:"İrem Yalım Camcı"},{id:"344588",title:"Ph.D. Student",name:"Elif",middleName:null,surname:"Kadıoglu",slug:"elif-kadioglu",fullName:"Elif Kadıoglu"},{id:"344589",title:null,name:"Kezban",middleName:null,surname:"Uçar Çiftçi",slug:"kezban-ucar-ciftci",fullName:"Kezban Uçar Çiftçi"}]},{id:"72595",title:"Integrating Evolutionary Genetics to Medical Genomics: Evolutionary Approaches to Investigate Disease-Causing Variants",slug:"integrating-evolutionary-genetics-to-medical-genomics-evolutionary-approaches-to-investigate-disease",totalDownloads:165,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Ugur Sezerman, Tugce Bozkurt and Fatma Sadife Isleyen",authors:[{id:"283538",title:"Prof.",name:"Osman Ugur",middleName:null,surname:"Sezerman",slug:"osman-ugur-sezerman",fullName:"Osman Ugur Sezerman"},{id:"318900",title:"Ph.D. Student",name:"Fatma Sadife",middleName:null,surname:"Isleyen",slug:"fatma-sadife-isleyen",fullName:"Fatma Sadife Isleyen"},{id:"319214",title:"M.Sc.",name:"Tugce",middleName:null,surname:"Bozkurt",slug:"tugce-bozkurt",fullName:"Tugce Bozkurt"}]},{id:"67272",title:"Introductory Chapter: Insight into the OMICS Technologies and Molecular Medicine",slug:"introductory-chapter-insight-into-the-omics-technologies-and-molecular-medicine",totalDownloads:478,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"molecular-medicine",title:"Molecular Medicine",fullTitle:"Molecular Medicine"},signatures:"Sinem Nalbantoglu and Abdullah Karadag",authors:[{id:"147712",title:"Dr.",name:"Sinem",middleName:null,surname:"Nalbantoglu",slug:"sinem-nalbantoglu",fullName:"Sinem Nalbantoglu"}]},{id:"62232",title:"Body Mass Index and Insulin Sensitivity/Resistance: Cross Talks in Gestational Diabetes, Normal Pregnancy and Beyond",slug:"body-mass-index-and-insulin-sensitivity-resistance-cross-talks-in-gestational-diabetes-normal-pregna",totalDownloads:734,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"body-mass-index-and-health",title:"Body-mass Index and Health",fullTitle:"Body-mass Index and Health"},signatures:"Mariana Petrova Genova, Bisera Dimitrova Atanasova and Katya\nNikolova Todorova-Ananieva",authors:[{id:"246034",title:"Ph.D.",name:"Mariana",middleName:null,surname:"Petrova Genova",slug:"mariana-petrova-genova",fullName:"Mariana Petrova Genova"},{id:"246802",title:"MSc.",name:"Bisera",middleName:null,surname:"Dimitrova Atanasova",slug:"bisera-dimitrova-atanasova",fullName:"Bisera Dimitrova Atanasova"},{id:"246803",title:"Dr.",name:"Katia",middleName:null,surname:"Todorova -Ananieva",slug:"katia-todorova-ananieva",fullName:"Katia Todorova -Ananieva"}]},{id:"61418",title:"Effect of Infra-Low Frequency Neurofeedback on Infra-Slow EEG Fluctuations",slug:"effect-of-infra-low-frequency-neurofeedback-on-infra-slow-eeg-fluctuations",totalDownloads:1490,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"biofeedback",title:"Biofeedback",fullTitle:"Biofeedback"},signatures:"Vera A. Grin-Yatsenko, Valery A. Ponomarev, Olga Kara, Bernhard\nWandernoth, Mark Gregory, Valentina A. Ilyukhina and Juri D.\nKropotov",authors:[{id:"234121",title:"Ph.D.",name:"Vera",middleName:null,surname:"Grin-Yatsenko",slug:"vera-grin-yatsenko",fullName:"Vera Grin-Yatsenko"},{id:"238431",title:"Prof.",name:"Valery",middleName:null,surname:"Ponomarev",slug:"valery-ponomarev",fullName:"Valery Ponomarev"},{id:"238434",title:"Dr.",name:"Olga",middleName:null,surname:"Kara",slug:"olga-kara",fullName:"Olga Kara"},{id:"238435",title:"Dr.",name:"Bernhard",middleName:null,surname:"Wandernoth",slug:"bernhard-wandernoth",fullName:"Bernhard Wandernoth"},{id:"238437",title:"Dr.",name:"Mark",middleName:null,surname:"Gregory",slug:"mark-gregory",fullName:"Mark Gregory"},{id:"238439",title:"Prof.",name:"Valentina",middleName:null,surname:"Ilyukhina",slug:"valentina-ilyukhina",fullName:"Valentina Ilyukhina"},{id:"238441",title:"Prof.",name:"Juri",middleName:null,surname:"Kropotov",slug:"juri-kropotov",fullName:"Juri Kropotov"}]},{id:"33120",title:"Crossings on Public Perception of Biomedicine: Spain and the European Indicators",slug:"crossings-on-public-perception-of-biomedicine-spain-and-the-european-indicators-",totalDownloads:1358,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biomedicine",title:"Biomedicine",fullTitle:"Biomedicine"},signatures:"Eulalia Pérez Sedeño and María José Miranda Suárez",authors:[{id:"112999",title:"Dr.",name:"Eulalia",middleName:null,surname:"Perez Sedeno",slug:"eulalia-perez-sedeno",fullName:"Eulalia Perez Sedeno"},{id:"117289",title:"MSc.",name:"María José",middleName:null,surname:"Miranda Suárez",slug:"maria-jose-miranda-suarez",fullName:"María José Miranda Suárez"}]},{id:"62128",title:"Body Mass Index and Colorectal Cancer",slug:"body-mass-index-and-colorectal-cancer",totalDownloads:514,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"body-mass-index-and-health",title:"Body-mass Index and Health",fullTitle:"Body-mass Index and Health"},signatures:"Nuri Faruk Aykan, Mehmet Artac and Tahsin Özatli",authors:[{id:"94089",title:"Prof.",name:"Nuri Faruk",middleName:null,surname:"Aykan",slug:"nuri-faruk-aykan",fullName:"Nuri Faruk Aykan"},{id:"257212",title:"Prof.",name:"Mehmet",middleName:null,surname:"Artaç",slug:"mehmet-artac",fullName:"Mehmet Artaç"},{id:"257213",title:"Dr.",name:"Tahsin",middleName:null,surname:"Özatlı",slug:"tahsin-ozatli",fullName:"Tahsin Özatlı"}]},{id:"71705",title:"Landscape Genetics: From Classic Molecular Markers to Genomics",slug:"landscape-genetics-from-classic-molecular-markers-to-genomics",totalDownloads:219,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methods-in-molecular-medicine",title:"Methods in Molecular Medicine",fullTitle:"Methods in Molecular Medicine"},signatures:"Enéas Ricardo Konzen and Maria Imaculada Zucchi",authors:[{id:"196963",title:"Dr.",name:"Enéas Ricardo",middleName:null,surname:"Konzen",slug:"eneas-ricardo-konzen",fullName:"Enéas Ricardo Konzen"},{id:"305359",title:"Prof.",name:"Maria Imaculada",middleName:null,surname:"Zucchi",slug:"maria-imaculada-zucchi",fullName:"Maria Imaculada Zucchi"}]},{id:"61938",title:"Calcitonin-Related Polypeptide Alpha Gene Polymorphisms and Related Diseases",slug:"calcitonin-related-polypeptide-alpha-gene-polymorphisms-and-related-diseases",totalDownloads:455,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"polypeptide-new-insight-into-drug-discovery-and-development",title:"Polypeptide",fullTitle:"Polypeptide - New Insight into Drug Discovery and Development"},signatures:"Nevra Alkanli, Arzu Ay and Suleyman Serdar Alkanli",authors:[{id:"234410",title:"Dr.",name:"Nevra",middleName:null,surname:"Alkanli",slug:"nevra-alkanli",fullName:"Nevra Alkanli"},{id:"235954",title:"Dr.",name:"Arzu",middleName:null,surname:"Ay",slug:"arzu-ay",fullName:"Arzu Ay"},{id:"235955",title:"Mr.",name:"Suleyman Serdar",middleName:null,surname:"Alkanli",slug:"suleyman-serdar-alkanli",fullName:"Suleyman Serdar Alkanli"}]}],onlineFirstChaptersFilter:{topicSlug:"biomedicine",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/319875/sobir-norov",hash:"",query:{},params:{id:"319875",slug:"sobir-norov"},fullPath:"/profiles/319875/sobir-norov",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()