IEEE 802.11b/g DCR front-end specifications.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"1734",leadTitle:null,fullTitle:"Cardiotoxicity of Oncologic Treatments",title:"Cardiotoxicity of Oncologic Treatments",subtitle:null,reviewType:"peer-reviewed",abstract:"The possibility of getting a cardiovascular disease or cancer increases with advancing age. At the same time, relevant improvements in cancer therapy have resulted in the improvement of quality of life and the increasement of the survival rate of such patients. As a result we have larger number of patients that experience the cardiac side effects of chemotherapy. The extent of cardiotoxicity is variable, depending on the type of drug used, combination with other drugs, prior mediastinal radiotherapy and the presence of cardiovascular risk factors or history of heart disease. Early detection of the patients proneness for developing cardiotoxicity is the key issue to decrease morbidity and mortality. It also facilitates more tailored therapeutic interventions. Therefore, the collaboration and interaction of cardiology and oncology may contribute to reducing the cardiovascular adverse effects and improving the results in the treatment of patients with cancer.",isbn:null,printIsbn:"978-953-51-0273-1",pdfIsbn:"978-953-51-6893-5",doi:"10.5772/2170",price:119,priceEur:129,priceUsd:155,slug:"cardiotoxicity-of-oncologic-treatments",numberOfPages:196,isOpenForSubmission:!1,isInWos:1,hash:"230472e71b2dd84c0a88f75165b37604",bookSignature:"Manuela Fiuza",publishedDate:"March 28th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1734.jpg",numberOfDownloads:17029,numberOfWosCitations:26,numberOfCrossrefCitations:8,numberOfDimensionsCitations:29,hasAltmetrics:0,numberOfTotalCitations:63,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 20th 2011",dateEndSecondStepPublish:"May 18th 2011",dateEndThirdStepPublish:"September 22nd 2011",dateEndFourthStepPublish:"October 22nd 2011",dateEndFifthStepPublish:"February 21st 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"98648",title:"Prof.",name:"Manuela",middleName:null,surname:"Fiuza",slug:"manuela-fiuza",fullName:"Manuela Fiuza",profilePictureURL:"https://mts.intechopen.com/storage/users/98648/images/system/98648.jpg",biography:"Manuela Fiuza was born in Lisbon, Portugal in 1956. She attended Lisbon Medical University and graduated in 1981. She did the fellowship of cardiology at the Hospital Santa Maria in Lisbon and graduated in 1991. During that time she developed special interest in echocardiography and intensive care. Dr. Fiuza is currently working at the Department of Cardiology of Hospital Santa Maria. Since 1999 she has been working as a senior cardiologist at the Echocardiography Laboratory. In 2000, she received her Ph.D. from Lisbon Medical University. While holding a position as a Professor of Cardiology, she also coordinated several pre- and post- graduated projects. She received several awards for scientific research. Her latest research interests are focused on cardio-oncology. Dr. Fiuza is a member of several scientific societies and is fellow of the European Society of Cardiology.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"983",title:"Cardiac Electrophysiology",slug:"cardiac-electrophysiology"}],chapters:[{id:"32608",title:"Cardiovascular Pathophysiology Produced by Natural Toxins and Their Possible Therapeutic Implications",doi:"10.5772/35079",slug:"cardiovascular-pathophysiology-produced-by-natural-toxins-and-their-possible-therapeutic-implication",totalDownloads:1891,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Robert Frangež, Marjana Grandič and Milka Vrecl",downloadPdfUrl:"/chapter/pdf-download/32608",previewPdfUrl:"/chapter/pdf-preview/32608",authors:[{id:"102916",title:"Prof.",name:"Robert",surname:"Frangez",slug:"robert-frangez",fullName:"Robert Frangez"},{id:"112178",title:"Prof.",name:"Milka",surname:"Vrecl",slug:"milka-vrecl",fullName:"Milka Vrecl"},{id:"139679",title:"Ms.",name:"Marjana",surname:"Grandič",slug:"marjana-grandic",fullName:"Marjana Grandič"}],corrections:null},{id:"32609",title:"Role of Nitric Oxide in Isoproterenol-Induced Myocardial Infarction",doi:"10.5772/34505",slug:"role-of-nitric-oxide-in-isoproternol-induced-myocardial-infarction",totalDownloads:2373,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Victoria Chagoya de Sánchez, Lucía Yañez-Maldonado, Susana Vidrio-Gómez, Lidia Martínez, Jorge Suárez, Alberto Aranda-Fraustro, Juan Carlos Torres and Gabriela Velasco-Loyden",downloadPdfUrl:"/chapter/pdf-download/32609",previewPdfUrl:"/chapter/pdf-preview/32609",authors:[{id:"100474",title:"Dr.",name:"Victoria Chagoya De",surname:"Sanchez",slug:"victoria-chagoya-de-sanchez",fullName:"Victoria Chagoya De Sanchez"}],corrections:null},{id:"32610",title:"Cardiac Complications of Cancer Treatment",doi:"10.5772/34214",slug:"cardiotoxicity-of-therapeutics-used-in-oncology",totalDownloads:1542,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Beata Mlot and Piotr Rzepecki",downloadPdfUrl:"/chapter/pdf-download/32610",previewPdfUrl:"/chapter/pdf-preview/32610",authors:[{id:"99224",title:"Dr",name:"Beata",surname:"Mlot",slug:"beata-mlot",fullName:"Beata Mlot"},{id:"105984",title:"Prof.",name:"Piotr",surname:"Rzepecki",slug:"piotr-rzepecki",fullName:"Piotr Rzepecki"}],corrections:null},{id:"32611",title:"Neuregulin1-ErbB Signaling in Doxorubicin-Induced Cardiotoxicity",doi:"10.5772/33485",slug:"neuregulin1-erbb-signaling-in-doxorubicin-induced-cardiotoxicity",totalDownloads:1842,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"David Goukassian, James Morgan and Xinhua Yan",downloadPdfUrl:"/chapter/pdf-download/32611",previewPdfUrl:"/chapter/pdf-preview/32611",authors:[{id:"95789",title:"Dr.",name:"Xinhua",surname:"Yan",slug:"xinhua-yan",fullName:"Xinhua Yan"},{id:"136086",title:"Dr.",name:"David",surname:"Goukassian",slug:"david-goukassian",fullName:"David Goukassian"},{id:"136087",title:"Prof.",name:"James",surname:"Morgan",slug:"james-morgan",fullName:"James Morgan"}],corrections:null},{id:"32612",title:"Doxorubicin-Induced Oxidative Injury of Cardiomyocytes - Do We Have Right Strategies for Prevention?",doi:"10.5772/34692",slug:"doxorubicin-induced-oxidative-injury-of-cardiomyocytes-do-we-have-right-strategies-for-prevention-",totalDownloads:3258,totalCrossrefCites:2,totalDimensionsCites:16,signatures:"Vukosava Milic Torres and Viktorija Dragojevic Simic",downloadPdfUrl:"/chapter/pdf-download/32612",previewPdfUrl:"/chapter/pdf-preview/32612",authors:[{id:"101249",title:"Dr.",name:"Vukosava",surname:"Milic Torres",slug:"vukosava-milic-torres",fullName:"Vukosava Milic Torres"},{id:"115381",title:"Prof.",name:"Viktorija",surname:"Dragojevic-Simic",slug:"viktorija-dragojevic-simic",fullName:"Viktorija Dragojevic-Simic"}],corrections:null},{id:"32613",title:"Trastuzumab and Cardiotoxicity",doi:"10.5772/34093",slug:"trastuzumab-and-cardiotoxicity",totalDownloads:2595,totalCrossrefCites:3,totalDimensionsCites:5,signatures:"M. Fiuza and A. Magalhães",downloadPdfUrl:"/chapter/pdf-download/32613",previewPdfUrl:"/chapter/pdf-preview/32613",authors:[{id:"98648",title:"Prof.",name:"Manuela",surname:"Fiuza",slug:"manuela-fiuza",fullName:"Manuela Fiuza"},{id:"105531",title:"Dr.",name:"Andreia",surname:"Magalhaes",slug:"andreia-magalhaes",fullName:"Andreia Magalhaes"}],corrections:null},{id:"32614",title:"Early Detection and Prediction of Cardiotoxicity - Biomarker and Echocardiographic Evaluation",doi:"10.5772/33561",slug:"early-detection-and-prediction-of-cardiotoxicity-biomarker-and-echocardiographic-evaluation",totalDownloads:3532,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Elena Kinova and Assen Goudev",downloadPdfUrl:"/chapter/pdf-download/32614",previewPdfUrl:"/chapter/pdf-preview/32614",authors:[{id:"96165",title:"Dr.",name:"Elena",surname:"Kinova",slug:"elena-kinova",fullName:"Elena Kinova"},{id:"127060",title:"Prof.",name:"Assen",surname:"Goudev",slug:"assen-goudev",fullName:"Assen Goudev"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"23",title:"Modern Pacemakers",subtitle:"Present and Future",isOpenForSubmission:!1,hash:null,slug:"modern-pacemakers-present-and-future",bookSignature:"Mithilesh Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/23.jpg",editedByType:"Edited by",editors:[{id:"61931",title:"Prof.",name:"Mithilesh",surname:"M Das",slug:"mithilesh-m-das",fullName:"Mithilesh M Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"358",title:"Advances in Electrocardiograms",subtitle:"Methods and Analysis",isOpenForSubmission:!1,hash:"a61fed85204779463e6e483483601fdf",slug:"advances-in-electrocardiograms-methods-and-analysis",bookSignature:"Richard M. Millis",coverURL:"https://cdn.intechopen.com/books/images_new/358.jpg",editedByType:"Edited by",editors:[{id:"45295",title:"PhD.",name:"Richard",surname:"Millis",slug:"richard-millis",fullName:"Richard Millis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1291",title:"Advances in Electrocardiograms",subtitle:"Clinical Applications",isOpenForSubmission:!1,hash:"956bc1bdc0de1de4908abbee641a17aa",slug:"advances-in-electrocardiograms-clinical-applications",bookSignature:"Richard M. Millis",coverURL:"https://cdn.intechopen.com/books/images_new/1291.jpg",editedByType:"Edited by",editors:[{id:"45295",title:"PhD.",name:"Richard",surname:"Millis",slug:"richard-millis",fullName:"Richard Millis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"129",title:"Ventricular Assist Devices",subtitle:null,isOpenForSubmission:!1,hash:"2b6b9dbd504cdf6ed9c20a742e3f2a9d",slug:"ventricular-assist-devices",bookSignature:"Jeffrey Shuhaiber",coverURL:"https://cdn.intechopen.com/books/images_new/129.jpg",editedByType:"Edited by",editors:[{id:"22152",title:"Dr.",name:"Jeffrey",surname:"Shuhaiber",slug:"jeffrey-shuhaiber",fullName:"Jeffrey Shuhaiber"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"312",title:"New Aspects of Ventricular Assist Devices",subtitle:null,isOpenForSubmission:!1,hash:"1e87f2ee94ce52fb291dfcaaeb0dd147",slug:"new-aspects-of-ventricular-assist-devices",bookSignature:"Guillermo Reyes",coverURL:"https://cdn.intechopen.com/books/images_new/312.jpg",editedByType:"Edited by",editors:[{id:"21175",title:"Dr.",name:"Guillermo",surname:"Reyes",slug:"guillermo-reyes",fullName:"Guillermo Reyes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"290",title:"Cardiac Pacemakers",subtitle:"Biological Aspects, Clinical Applications and Possible Complications",isOpenForSubmission:!1,hash:"d336ffc14d9ab1745072534d4448305f",slug:"cardiac-pacemakers-biological-aspects-clinical-applications-and-possible-complications",bookSignature:"Mart Min",coverURL:"https://cdn.intechopen.com/books/images_new/290.jpg",editedByType:"Edited by",editors:[{id:"62780",title:"Prof.",name:"Mart",surname:"Min",slug:"mart-min",fullName:"Mart Min"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5764",title:"Interpreting Cardiac Electrograms",subtitle:"From Skin to Endocardium",isOpenForSubmission:!1,hash:"643f7c4a2e6b3307a7bcfed8f752836f",slug:"interpreting-cardiac-electrograms-from-skin-to-endocardium",bookSignature:"Kevin A. Michael",coverURL:"https://cdn.intechopen.com/books/images_new/5764.jpg",editedByType:"Edited by",editors:[{id:"61996",title:"Dr.",name:"Kevin",surname:"Michael",slug:"kevin-michael",fullName:"Kevin Michael"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2225",title:"Current Issues and Recent Advances in Pacemaker Therapy",subtitle:null,isOpenForSubmission:!1,hash:"5ed7d1556bff8c564197efc99c15c7f7",slug:"current-issues-and-recent-advances-in-pacemaker-therapy",bookSignature:"Attila Roka",coverURL:"https://cdn.intechopen.com/books/images_new/2225.jpg",editedByType:"Edited by",editors:[{id:"63271",title:"Dr.",name:"Attila",surname:"Roka",slug:"attila-roka",fullName:"Attila Roka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5239",title:"Cholesterol Lowering Therapies and Drugs",subtitle:null,isOpenForSubmission:!1,hash:"c0db17451da651dc6ff8e6c13e9e177a",slug:"cholesterol-lowering-therapies-and-drugs",bookSignature:"Chunfa Huang and Carl Freter",coverURL:"https://cdn.intechopen.com/books/images_new/5239.jpg",editedByType:"Edited by",editors:[{id:"178352",title:"Dr.",name:"Chunfa",surname:"Huang",slug:"chunfa-huang",fullName:"Chunfa Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1475",title:"Aspects of Pacemakers",subtitle:"Functions and Interactions in Cardiac and Non-Cardiac Indications",isOpenForSubmission:!1,hash:"c466df43e69f99f13186f22e9123b6a6",slug:"aspects-of-pacemakers-functions-and-interactions-in-cardiac-and-non-cardiac-indications",bookSignature:"Oliver Vonend and Siegfried Eckert",coverURL:"https://cdn.intechopen.com/books/images_new/1475.jpg",editedByType:"Edited by",editors:[{id:"36038",title:"Dr.",name:"Oliver",surname:"Vonend",slug:"oliver-vonend",fullName:"Oliver Vonend"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{},chapter:{},book:{}},ofsBook:{item:{type:"book",id:"10203",leadTitle:null,title:"Dyes and Pigments",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe use of dyes and pigments is narrowly associated with everyday life. Since ancient times, people have been using various types of dyes and pigments for both aesthetic and practical applications. Typically, the coloration of various materials e.g. textiles, clay, plastics, etc. has been their main purpose. Yet, the scope of contemporary dyes and pigments has become significantly broader and there is constant interest in new products fulfilling numerous requirements parallel to their ability to act as colorants. This trend has led to the development of functional dyes.
\r\n\r\n\tIn recent years, novel dyes and pigments with hi-tech applications have been developed and there is a continuous demand for new products with better properties and/or broader application scope. Of particular interest is the development of dyes and pigments with environment-responsive aptitudes i.e. products that can undergo some structural modification as a result of external stimuli e.g. light, heat, pressure, pH-changes, etc. These stimuli-responsive functional dyes have in turn found application in sensor technologies, optical data storage, molecular switches, etc. Acknowledging these facts, this book aims to cover current state-of-the-art research and development in the remarkably important area of environment-responsive (multi)functional dyes and pigments.
",isbn:"978-1-83968-615-3",printIsbn:"978-1-83968-614-6",pdfIsbn:"978-1-83968-616-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"624f533946a159bc8a03f109c2e1dc91",bookSignature:"Dr. Raffaello Papadakis",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10203.jpg",keywords:"Fluorescent Dyes, PH-Sensitive Dyes, Solvatochromism, Solvent Polarity Indicators, Chromic Betaines, Viscosity, Charge-Transfer Complexes, Spectroscopy, Piezochromism, Optoelectronics, Photochromism, Molecular Switches",numberOfDownloads:63,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 28th 2020",dateEndSecondStepPublish:"September 25th 2020",dateEndThirdStepPublish:"November 24th 2020",dateEndFourthStepPublish:"February 12th 2021",dateEndFifthStepPublish:"April 13th 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Chemical Engineer with working experience at the Institute of Molecular Sciences, CNRS/Aix-Marseille University in the research group of Dr. Thierry Tron, and at Uppsala University in the research group of Dr. Henrik Ottosson. Currently a Senior Research Scientist at Tdb Labs, Uppsala, Sweden.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"251885",title:"Dr.",name:"Raffaello",middleName:null,surname:"Papadakis",slug:"raffaello-papadakis",fullName:"Raffaello Papadakis",profilePictureURL:"https://mts.intechopen.com/storage/users/251885/images/system/251885.jpg",biography:"Raffaello Papadakis is a Chemical Engineer (MEng 2005) majoring in organic chemical technology and polymer science and technology. He started his PhD in the field of physical organic chemistry in 2006 under the supervision of Prof. (Emer.) Dr. Athanase Tsolomitis (National Technical University of Athens, Greece) and graduated in 2010. During his PhD he concentrated on the synthesis of solvatochromic probes and molecular switches. He later on spent two years in Marseille, France (September 2010–January 2013) working as a postodoctoral researcher at the Institute of Molecular Sciences, CNRS/Aix-Marseille University, in the field of water oxidation catalysts in the research group of Dr. Thierry Tron before moving to to Uppsala, Sweden in 2014. There he joined the group of Dr. Henrik Ottosson (Uppsala University) and he worked as a postdoc researcher and later as a researcher (Forskare) focusing on excited state (anti)aromaticity and graphene photochemistry-related research. His current research interests revolve around physical organic and materials chemistry with an emphasis on the chemistry and photochemistry of graphene and novel covalent organic frameworks as well as polymer chemistry. He is the author and coauthor of 24 scientific research papers, two book chapters and he has more than 35 contributions in international conference proceedings. Furthermore, he is an active referee of scientific peer-reviewed papers of world-class chemistry journals and he has acted as a scientific expert evaluating international research-grant proposals. Currently he works as a Senior Research Scientist at TdB Labs AB (Sweden) and specializes in polysaccharide modifications and derivatization placing particular interest in fluorescent dye polysaccharide-functionalizations.",institutionString:"TdB Labs",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:[{id:"74730",title:"Treatment of Textile Dyeing Waste Water Using TiO2/Zn Electrode by Spray Pyrolysis in Electrocoagulation Process",slug:"treatment-of-textile-dyeing-waste-water-using-tio2-zn-electrode-by-spray-pyrolysis-in-electrocoagula",totalDownloads:63,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"62550",title:"Design Concepts of Low-Noise Amplifier for Radio Frequency Receivers",doi:"10.5772/intechopen.79187",slug:"design-concepts-of-low-noise-amplifier-for-radio-frequency-receivers",body:'Today, there is an increased market demand for portable wireless communication devices and high-speed computing devices. This is true because low cost and high integration have resulted in the commercial success in wireless communication integrated circuits. But these devices are operated by batteries which have only a limited lifetime. The battery technology has not improved on par with electronics technology. As the developments in battery technology have failed to keep up with an increasing current consumption in wireless communication devices, innovative circuit design techniques are required in order to reduce the power consumption and to utilize the low voltage. Radio frequency ICs are the basic building blocks of portable wireless communication systems. The use of a manufacturing technology for implementing and integrating these circuits is very important. The decision is based mainly on cost and integration levels. In the radio frequency circuit design, the technologies such as GaAs (Gallium Arsenide), SiGe (Silicon Germanium), and BiCMOS (Bipolar CMOS) provide good performance in high-frequency characteristics. But these processes lead to an increase in cost and process complexity [1]. In recent years, CMOS technology has been used as it is the best for implementation of low cost and high integration level systems on the chip.
Another aspect for the realization of analog circuits in CMOS technology is the possibility of reduction in supply voltage with each technology generation. The development of low-voltage analog RF circuits is means economy. At the same time, the existing circuit topologies cannot conform to the required high-performance wireless specifications under low-voltage operation. Hence, it is of a great need to introduce new design evaluations of wireless direct conversion receiver front-end circuits that can successfully handle low-supply voltages. The choice of receiver architecture, circuit topology design, and systematic optimization of the front-end blocks is always important. The choice of the receiver architecture, fundamental receiver front-end parameters needed in RF circuit design, the significance of CMOS technology, and MOS transistors high-frequency characteristics are discussed briefly. IEEE 802.11b/g wireless standards and its front-end specifications are the main target applications for the designs evaluated and are then presented.
The purpose of the receiver in wireless communication system is to perform certain operations required for the received signal such as amplification, frequency translation, and analog-to-digital conversion with adequate signal-to-noise ratio before subjected to digital signal processing. The performance of a receiver is analyzed by the ability to receive the strong or weak signal in the presence of strong interferences. The performance measures are expressed in terms of sensitivity, selectivity, fidelity, and dynamic range. The selection of receiver architecture is based on performance, cost, and power dissipation. The integration level along with the number of off-chip components determines the cost of the receiver. The existing receiver topologies in RF transceivers are Zero-IF, Heterodyne, Low-IF, and Wide-band IF. The description of these receiver architectures is briefly given in this thesis.
A direct conversion receiver (DCR) is also named as homodyne, synchrodyne, or zero-IF receiver. It was developed in 1932 by a team of British scientists. This receiver provides the most natural solution to detect information transmitted by a carrier in just a single conversion stage. The simplified block diagram of a typical direct conversion receiver is shown in Figure 1.
Direct conversion receiver.
A synchrodyne receiver is a radio receiver that demodulates the incoming radio signal using a synchronous detection driven by a local oscillator. The signal conversion (RF to IF) to baseband is done in a single-frequency conversion. The RF signal from the antenna is pre-filtered by a bandpass filter (BPF) to suppress the signals out of the reception band. The signal is amplified at the low-noise amplifier (LNA) stage and down-converted into zero intermediate frequency (IF) by the mixer stage. The resulting IF signal frequency is the difference between the RF and local oscillator signal frequencies. In the case of the phase and frequency-modulated signals, the down-conversion process should be performed in quadrature to prevent signal sidebands from aliasing on one another. As the local oscillator is centered in the desired channel, it requires signal and noise to occupy both the upper and lower sidebands. The down-conversion architecture produces an image at zero-IF frequency, and thus no image filter is required.
The important characteristic of the direct-conversion receiver is that amplification and filtering are mostly performed at the baseband rather than at the RF. The required signal is selected with the help of a low-pass-type baseband filter (BBF). The low-pass filter with a bandwidth of a half of the symbol rate removes the adjoining channels at baseband. As the filtering is performed at low frequencies, filters can be realized in on-chip without using external high-Q components. Most of the signal processing action takes place at low frequencies, thereby minimizing power consumption. The DCR eliminates the image rejection problem existing in other radio architectures [2]. However, an inadequate amplitude and phase balance between in-phase and quadrature-phase signals can increase the bit-error rate [3, 4]. It has its own disadvantages such as a highly sensitive to flicker noise and DC offsets. These problems can be eliminated in the wideband system design by making use of high-pass filters. The DCR avoids the complexity of the superheterodyne’s two or more frequency conversions, IF stages, and image rejection issues. Recent research works proved that the zero-IF is always popular and is widely used for RF applications due to its simplicity, fewer off-chip components, and minimized power. Most of the receivers use the same RF front-end which includes LNA, mixer, and an oscillator. As per the constructional and performance point of view, direct conversion receivers are more suitable to satisfy the following constraints such as simplicity, integration level, less off-chip components, and power dissipation. The described front-end circuits are all targeted for direct conversion receivers.
CMOS is always cheap in processing cost and one of the best technologies for the implementation of analog design without any adaptations. Further, it can provide better integration of digital circuitry with high-performance analog circuits. Also, it provides the possibility of complete system on-chip, entire analog front-end, and the digital demodulator implemented on the same die. CMOS technology has the capability to operate at a lower supply voltage than the BiCMOS technology. This is due to the fact that each transistor has a typical switch on voltage of 0.7–0.8 V, and thus the minimum supply voltage required for BJT circuits is about 2–3 V. But modern CMOS processes provide many different threshold voltages (Vt) such as high, moderate, and low standards. For instance, MOS transistors with a lower threshold can be utilized in analog or digital circuits, where speed is important.
On the other hand, devices with a higher threshold are useful when the low-power consumption of the digital circuits is affected by leakage currents. This feature enables the circuitry design under low operating voltage even when technology is scaled down toward deep submicron CMOS processes.
Technology scaling is the primary factor in achieving high-performance circuit designs and systems. Each reduction in CMOS technology scaling has a reduced gate delay, doubled the device density, and a reduced energy per transition. To achieve this, each transistor width, length, and oxide dimensions are also scaled by 30%. Taiwan Semiconductor Manufacturing Company (TSMC) is the world’s largest dedicated semiconductor foundry, providing the industry’s leading process technology. TSMC 0.18 micron CMOS logic process is widely used for various electronic systems such as microprocessors, microcontrollers, and high-speed processors. It provides the device models under the operating voltage of 1.8 V. Therefore, this technology scale is utilized for realizing front-end designs. TSMC 0.18-μm RF CMOS models used in this research work are shown in Figure 2. The simplified device specifications are given in Table 1. The benefits and drawbacks of silicon technologies are highlighted in this section. The availability of accurate simulation models, high-frequency models, and noise models of devices are essential for accurately predicting the performance of RF circuits.
TSMC 0.18-μm RF CMOS models.
Blocks | Gain | Noise figure | IIP3 |
---|---|---|---|
LNA | 16 dB | 3 dB | −5 dBm |
MIXER | 10 dB | 4 nV/√Hz | 10 dBm |
IEEE 802.11b/g DCR front-end specifications.
Currently, wireless applications in 2.4/5 GHz frequency range are receiving greater attention because it is relatively economical and its potential for system on-chip integration. IEEE 802.11a/b/g is a set of promising standard in the market of portable/wireless communication devices such as cellular phones, WLANs, RFID, global positioning systems, etc. In the 5-GHz frequency range, the IEEE 802.11a standard is purely based on orthogonal frequency division multiplexing (OFDM) modulation technology, and it is compatible with data rates up to 54 Mbps. It provides nearly four to five times the data rate and has 10 times the overall system capacity as currently available in IEEE 802.11b wireless systems [5, 6].
The IEEE 802.11b/g operates in the 2.4–2.5 GHz ISM band, which use the direct sequence, spread spectrum signaling (DSSS) with a maximum data rate of 11Mbps, and occupies the same frequency spectrum with a data rate of 54 Mbps with orthogonal frequency division multiplexing (OFDM) modulation methods, respectively. The proposed work is mainly highlighted to meet the direct conversion specification of IEEE 802.11b/g applications as shown in Table 1.
Recently, reported designs are based on inductively degenerated cascode LNAs which do not satisfy an optimum gain, a lowest NF, and a better impedance matching. The evaluation of an active mixer with moderate linearity is one of the challenges in low-voltage design and has become an important issue in most analog IC applications. Gilbert mixer is the commonly used double-balanced, active mixer configuration. A better performance can be achieved using this structure. But this needs increase in the current through the transconductance stage and switching stage, and therefore a higher supply voltage will be required. It has a stacked structure which limits its use in low-voltage applications. In general, two types of oscillators namely LC tank and ring oscillators are often used to generate a local frequency. In GHz frequency applications, ring topology is usually preferred because of its improved noise performance and lower-power consumption. It avoids the use of spiral inductors which are employed in LC tank oscillators. But these oscillators need to be realized by using digitally controlled logics with efficient delay elements for a high-frequency generation.
Reported LC oscillator designs provided changes only to the elements in tuned circuitry and analyzed the performance. It is clearly understood that the performance of front-end blocks can be improved either by increasing the supply voltage or by providing additional stages at the output. The abovementioned problem motivated to introduce an innovative single-stage design of front-end blocks under low operating voltage for 2.4 GHz/5GHz wireless applications. The simplified block diagram of a direct conversion receiver (DCR) front-end used in this research work is shown in Figure 3. It represents the process of incoming 2.4 GHz RF signal frequency (fRF) by the LNA and down-converted into 150-MHz intermediate frequency (fIF) by the mixer. The first stage of a receiver front-end is typically a low-noise amplifier (LNA) whose main function is to provide sufficient gain in order to overcome the noise of next stages. The receiver’s sensitivity mainly depends upon the LNA noise figure and gain. A down-conversion mixer is always followed by the RF low-noise amplifier. It is one of the most important parts and used to translate one frequency into another. It changes the RF signal into an IF output signal. Intermediate frequency (IF) is the difference between RF and LO signal frequencies.
Block diagram of DCR front-end.
Mixer plays an important role in improving the overall system linearity. Oscillator is a signal generation circuit where tuned and amplifier blocks only decide the required frequency of oscillation. The digital revolution and higher growth of portable wireless devices market require many changes to the analog front-ends. It also requires new architectures, techniques, and high integration level. The CMOS design is chosen in this research because it can provide an attractive solution for RF analog circuits in terms of cost and integration level. The technology scaling in CMOS has increased the cutoff frequency of transistors and allows the improved performance of analog circuits. This chapter describes the importance of front-end blocks along with the necessity of low-voltage design and then discusses the known techniques and structures for the performance of front-end circuits. As can be seen from Figure 4, front-end is an interface between the antenna and the digital signal-processing unit of the wireless receiver. Basically, front-ends are responsible for tracking weak signal (RF) at a high frequency and translating into IF signal for transmitting with high power levels. It needs high-performance analog circuits like RF amplifier (LNA), mixer, and an oscillator. Recently, the wireless market and the need to develop efficient portable electronic systems have pushed the industry to the production of circuit designs with a low-voltage power supply. In the past years, low-power consumption usually was less considered among key design specifications. But today, both increased device/circuit density of current CMOS technology and battery-operated portable systems necessitate low-voltage, low-power system/circuit design [7, 8, 9].
Front-end in wireless receiver.
Figure 5 represents the channel length and supply voltage variation in deep sub-micron CMOS technologies [6]. It is observed that CMOS technology leads to smaller and smaller channel lengths, and the performance of RF communication circuit design will continue to improve with the reduction of supply voltage. One common technique for reducing power in analog or digital circuits is to reduce the supply voltage. In this research, front-end designs are evaluated under the supply voltage of 1.8 V. The constraint toward the low-voltage design is the threshold voltage and drain-source saturation voltage which do not scale down at an exact rate as the supply voltage or do not scale under a low-supply voltage. It is a problem as well as a challenge to face for analog designer due to the limited voltage headroom. Some circuit designs can only operate under a higher supply voltage with desirable properties and lose their high performance in a low-voltage environment. Therefore, alternative circuit structures or even system topologies need to be investigated. In modern CMOS processes, critical analog and RF circuits can be implemented with dual-gate, multi-threshold, and thick-oxide MOSFETs, which tolerate higher supply voltages, but this solution increases the cost, since additional processing masks are required [10, 11, 12, 13, 14, 15]. The development of low-voltage CMOS analog and RF front-end circuits is essential and economically advantageous.
CMOS voltage scaling.
A low-noise amplifier is the first stage of the receiver front-end and it is used to increase the signal power coming from the antenna while introducing less noise by the same LNA. Figure 6 shows the block diagram of LNA. In general, the LNA structure is composed of impedance matching block for input/output section (IMN, OMN) and amplification block (AMP). Matching networks account for performing part of filtering, optimum noise performance, and provides stability at the input as well as output. The matching elements are passive, consisting of strip lines, inductors, capacitors, and resistors. RS and RL represent the source and load impedances, respectively.
Block diagram of LNA.
The cascode structure is popularly used in LNA for narrow-band wireless applications. It is a two-stage amplifier consisting of common source and common gate (CS-CG) stages. The following are the basic characteristics of a cascode amplifier such as a higher input-output isolation, a higher input/output impedance, and a higher gain with bandwidth. Figure 7 represents the simplified cascode structure. It is a combination of an amplifying device (CS transistor- M1) with a load device (CG transistor- M2).
Cascode structure.
CS transistor M1 is considered as input stage driven by a signal source Vin. It is also used to drive a CG transistor M2 as output stage, with output signal Vout. Lg and Ls are the gate, source inductors of M1, respectively, responsible for impedance matching. Ld is the drain inductor of M2, responsible for output impedance matching. The importance of CS and CG stages has been highlighted by design equations and is given subsequently.
The amplification block (CS stage) of the cascode amplifier is revised in this research to achieve an optimized performance in single-ended and differential topologies using ADS software. These LNAs are titled as SDC and DDC LNA. The amplification block is altered by dual nMOS transistors at the CS stage. The purpose of this structure is to eliminate the use of an additional stage at the output for further amplification. It does not occupy much area in implementation and reduce the design complexity than two-stage LNA designs. Figure 8 represents the dual CS stage of LNA. An inter-stage inductor is added in between the CS and CG stages for improving the impedance matching. Figure 9 represents the schematic of SDC LNA architecture. It comprises input stage inductor Lg, inter-stage inductor LIS, dual CS transistors M1 - M2, single CG transistor M3, and output impedance matching inductor Ld. The bias current is chosen to provide the optimum overdrive voltage for dual CS transistors using transistor M4 and resistor R, Cin and Co are blocking capacitors used to block DC signal and allow only AC signal.
Structure of dual CS stage.
Schematic of SDC LNA.
From the schematics, an equivalent model of input stage is developed for determining the simplified theoretical expressions of input impedance and output impedance of the dual CS stage and it is shown in Figure 10. The gate-source capacitances and drain-source currents are paralleled in this model. Cgs1, Cgs2, and Gm1,2 Vgs represent the gate-to-source capacitances of nMOS transistors M1, M2 and drain-source currents of both transistors. Gm1,2 is the sum of transconductances gm1 and gm2. The input impedance of the MOSFET’s without feedback is usually capacitive due to the gate-source capacitance. In order to get the resistive input impedance, an inductive feedback (Ls) is added to the source.
Equivalent model of input stage.
The input impedance seen at the gate of M1 and M2 is expressed in Eq. (1). At resonance, inductive and capacitive impedances are canceled out, and hence the input impedance becomes purely resistive.
The required gate inductor (Lg) and source inductor (Ls) cancel out the imaginary part of the input impedance at 9 and 1 nH, respectively. The optimum quality factor (Q) for the best NF is about 8, with a corresponding Fmin of 1.77 dB. An inter-stage matching inductor of 3 nH is placed in between the dual CS and CG stages.
The output impedance of the common source stage with inter-stage matching inductor is derived by using Eq. (2)
where Cds1, Cds2 are the drain-to-source capacitances of the transistors M1, M2. In the design of RF front-end, the mixer directly follows the LNA. Hence, the output impedance matching of LNA is not an issue. If the LNA output load is either an external filter or there is a need to measure the performance of the LNA alone, then the output of the LNA needs to be matched with certain impedance.
The selection of the cascode topology simplified the analysis by neglecting the gate-drain capacitance. The on-chip spiral inductor Ld and output capacitor Co with values of 15 nH and 0.5 pF are used for output matching. The LNA circuit is designed by minimizing the noise figure for a gain constraint of 20 dB and an input and output matching constraints of −10 dB at 2.4 GHz. The width of the transistors in dual CS stage is assumed to be equal in the design analysis. The W/L ratio of cascode transistor (M3) is the same as that of a common source stage. The bias transistors width and current are arbitrarily selected as one-tenth of that of the CS transistor. With the help of operating frequency (ωo) and the gate-to-source capacitance, the optimized width of the transistors can be computed at a particular frequency of interest. The optimized LNA performance is achieved by the transistor width values of 70–100 μm. The LNA performance is evaluated for radio frequencies of 2.4 and 5 GHz, respectively. The design analysis with suitable formulae has been expressed in the next section.
A differential topology approach is usually preferred in RF design due to its well-known characteristics of immunity to common mode disturbances, rejection to parasitic couplings, and an increased dynamic range. It produces a differential output which is more flexible for feeding signal information to the second stage of front-end. Here, the LNA is evaluated in differential topology, and its novel design is given in detail. Figure 11 shows the schematic of DDC CMOS LNA. Each common source (CS) stage of cascode structure is built by two parallel transistors instead of one, and called as dual CS stage. It comprises an input stage formed by inductors Lg and Ls, two inter-stage inductors (Lis), four common source transistors (M1, 2 - M3, 4), and two common gate transistors (M5-M6). Two drain inductors LD are used for output impedance matching. This structure is suitable for multiple demands of LNA such as gain, noise figure, and linearity. The equivalent circuit of the single cascode stage is shown in Figure 12, where the transistors M1, M2 are replaced by gate-source capacitances (Cgs1, Cgs2), channel currents (gm1Vgs1, gm2Vgs2), and gate-drain capacitances (Cgd1, Cgd2). ro1 and ro2 are the output resistances of two nMOS transistors M1, M2, respectively.
Schematic of DDC LNA.
Equivalent circuit for input stage of DDC LNA.
The cascoding transistors (M5, M6) reduce the interaction of the tuned output with the tuned input and nullify the effect of gate-drain capacitances of dual-CS transistors. The simplified expressions of input and output impedance have already been dealt in the previous section. The design increased the complexity in a differential structure. But the degree of design choice is satisfied with the multiple objectives such as gain, NF, and 1-dB gain compression point.
With reference to Figure 10, the theoretical expressions of performance factors are derived and highlighted. The total current flowing through the dual CS stage is represented by assuming that the transistors are operated in a saturation region, and it is shown in Eq. (3)
where K is the process-dependent term, L is the channel length, W1 and W2 are the gate widths of M1, M2, and Vgs1, Vgs2, Vt are the gate-source voltages and threshold voltage of transistors, respectively.
The structure of DDC LNA is a differential representation of two SDC LNAs. The design procedure is commonly described for SDC LNA and DDC LNA. Inductors and transistors are the basic building elements of LNA. Inductors are reactive and do not add noise into the circuit. The LC resonance always improves the gain and noise performance of LNA. The optimized width of the transistors and an inductance value of inductors are calculated by using appropriate design equations. The calculations are highlighted at design frequency (fo) of 2.4 GHz with an essential feature of TSMC RF CMOS 0.18-μm technology scale. The design steps are elaborated through these design factors as follows:
gate inductance (Lg)
gate-source capacitance (Cgs)
width of the transistor (W)
where fo is 2.4 GHz.
= 2π × 2.4 × 109 = 15.079 × 109 rad/s.
is calculated by using Eq. (4).
The value of gate inductor Lg is realized by means of Eq. (5). The Q of an inductor value is selected as 8, based on 0.18-μm CMOS scale characteristics. The source impedance is assumed to be 50 Ω
It is observed in simulation, whenever the Lg value is reduced below 8 nH, the design frequency is shifted between 2 and 3 GHz and becomes very difficult to achieve the narrowband performance. At high frequencies, the careful design impact only reduces the component variations against the performance of LNAs.
The gate-source capacitance (Cgs) is expressed in terms of RF frequency, shown in Eq. (6). Ls is assumed to be 0.5–1 nH
From the technology-scale characteristics, the channel length (L) of 0.18 μm and oxide thickness (Tox) of 4.1 × 10−9 m is observed. The permittivity of oxide is calculated by using this Eq. (7),
where
The optimized width of the transistors is calculated by substituting all the values in Eq. (9). The sizes of the transistors are assumed to be equal in dual CS stage
For DDC LNA, an additional design requirement is drain inductance of output stage inductors whose values are calculated by assuming Cout as 1 pF in Eq. (10). The inductance values of gate inductor Ld (10–15 nH) have been adjusted to vary the gain of the LNA
The calculated values of components are used in the LNA design schematic with S-parameter test setup and simulated the performance of the designed circuit. With the transistor width of 97 μm, the DDC LNA achieved the optimum performance in terms of gain, NF, and impedance matching for this design. Both SDC and DDC LNA designs are also realized at a 5-GHz frequency by adopting the same procedure.
The performance metrics namely gain and NF are derived commonly and used to analyze the circuit activity of the LNA design.
With reference to Figure 12, the overall dual CS stage transconductance can be expressed as
where Qin is the effective Q of the amplifier input circuit. The increase in quality factor Q does not reduce the device transconductance, and therefore the overall stage transconductance remains unchanged. In general, the gain of a circuit is characterized by effective transconductance and load impedance.
At resonance frequency, the gain of LNA is expressed in terms of device transconductances gm1 and gm2 in Eq. (12),
where QL is the quality factor of the load element. The unity gain frequency is specified by,
The impact of Q on performance factors can be observed not only in theory but also in simulation. Using linearity test setup, the simulated value of gain saturation of SDC LNA is observed from the output 1-dB compression point of +6.16 dBm at 2.4 GHz RF frequency and with −2 dBm input referred value. Figure 13 represents the equivalent noise model of the input stage of designed LNAs. The gate- and drain-induced noise current sources are shown with gate-source capacitances of the RF nMOS transistors.
Equivalent noise model of input stage.
The expressions for noise current densities have already been explained in previous sections. With reference to Figure 13, the noise factor is evaluated in terms of power spectral densities of drain noise current and gate noise current. It can be expressed as,
where SRs is the output noise power density due to the source impedance.
At series resonance condition, the output noise power density Sd due to the drain noise current can be written as
where Rs is the source resistance and
In the same way, the output noise power density due to gate noise current, Sg, can be written as
where c is the correlation factor between the gate and the channel noise current sources. The quality factor Q is a function of the source resistance and the gate-source capacitance of the MOSFETs.
By substituting Eqs. (14) and (15) in Eq. (16), the noise factor F can be expressed as
where fo and fT are design frequency and unity-gain frequency, respectively, and
Continuous improvement in technology will definitely lead to improve the noise performance at frequency of interest. The LNA can be designed to get NF equal to a minimum noise factor of the transistor, but also the lowest NF can be enumerated with the given CMOS technology scale.
Further, the NF of the DDC LNA is simplified, and it is given in Eq. (17)
By using Eqs. (12) and (17), the theoretical gain and noise figure of DDC LNA are calculated and are validated through simulations.
SDC and DDC LNAs are designed and its performance is analyzed at 2.4- and 5-GHz frequencies. The devices and its characteristics used in designs are based on TSMC 0.18-μm RF CMOS process. Agilent’s Advanced Design System (ADS) electronic design automation (EDA) tools are used for performance analysis. The various parameters analyzed here are S parameters, NF, and linearity to describe LNA performance with a supply voltage of 1.8 V. Scattering parameter (SP) analysis is the most useful linear small signal analysis for LNA. It is test setup by specifying the input, output ports, and the range of sweep frequencies. It is used for the characterization of forward gain (S21), input impedance matching (S11), output impedance matching (S22), and reverse gain (S12).
The graphs of S11 and S21 are provided in dB scale for both LNAs. SDC and DDC LNA graph of S parameter analysis with respect to RF frequency lies between the ranges of 1.0–3.0 GHz which are shown in Figures 14 and 15. The value of the input impedance matching of SDC LNA can be obtained from Figure 14. The results are indicated by markers m1 and m2. Simulation result gives the input matching value as −10.99 dB which satisfies the requirement of matching constraint of LNA that is S11 < −10 dB at 2.4 GHz. The value of forward gain S21 is reached as 16.957 dB. Normally, the requirement of gain at 2.4 GHz is in the range of 15–30 dB. LNA satisfies the gain constraint but still the value is less. Moreover, it needs balun circuit additionally to process its output to the mixer as in the case of front-end design analysis. The graphs of S12, S22 are not mentioned to avoid overlapping but traced during simulation.
S-parameters of SDC LNA.
S-parameters of DDC LNA.
To suppress the noise of the succeeding stages of front-end, the gain of LNA should be high. If the gain is too small, LNA cannot amplify the incoming weak signal to a desired value. If the gain is too large, LNA cannot degrade the linearity of the following mixer. It is one of the most important performance factors of LNA design. Therefore, DDC LNA satisfies the highest gain constraint at 2.4 GHz with optimized matching, and its performance is better than that of SDC LNA which is observed from results of Figure 15. The gain of DDC LNA is 28.75 dB. It is possible to feed the signal into the mixer directly due to its differential structure.
Noise figure is defined as the ratio of the total input noise to the total output noise due to the source. In general, the noise figure of LNA should remain below 5 dB to prevent inducing noise problems in other stages of the receiver, like mixer, IF amplifier, etc. The NF graphs of the proposed LNA designs are given in Figures 16 and 17. The values of NF for SDC and DDC LNA are 3.281 and 2.7 dB, respectively. These values are highly desirable in wireless receiver. Typically, an NF of less than 4 dB is required in most standard CMOS LNAs. Both designs produce better NF and satisfy the noise reduction constraint. By making use of a single-stage structure, both SDC and DDC LNA designs satisfied the objectives of LNA. Simulation results show that DDC LNA structure presented here achieve better performances in what concerns S21, NF, and impedance matching at 2.4-GHz frequency. This analysis has also proved that DDC LNA achieved comparably good performance than other LNAs. This performance study helped us to select proper LNA architecture for front-end design.
NF of SDC LNA.
NF of DDC LNA.
Advances in technologies that allow directional drilling coupled with high-volume hydraulic fracturing have made large unconventional oil and gas deposits accessible in the United States. The Energy Information Agency (EIA) estimates that in 2017 approximately 60% of U.S. dry natural gas production came from shale resources [1]. Similarly, oil production from tight oil formations rose from a negligible fraction in 2000 to 50% of total crude oil production in 2017 [2]. This growth has brought oil and gas production and related infrastructure closer to towns and communities in more than 20 states, with more than 15 active shale plays, and raised concerns about the risks to public health from chemical and nonchemical stressors associated with unconventional oil and gas production (UOG) [3]. This chapter provides a summary of these risks by taking a life cycle approach to characterizing the sources and types of health stressors and their likely exposure pathways. While UOG shares a number of processes with conventional oil and gas production, it differs in several important aspects, noticeably the use of directional (horizontal drilling) and large-volume hydraulic fracturing to stimulate the flow of natural gas or oil to the wellhead. These differences are particularly important as they pose additional, and to date not exhaustively regulated health, risks. There is also still greater uncertainty compared with conventional oil and gas production regarding the lack of information about the content of hydraulic fracturing fluids (HFF) and their health effects.
As with any fossil fuel production, a hydraulically fractured (‘fracked’) well has the potential to release air and water pollutants, pose physical and public safety hazards, and contribute to psychosocial stressors for nearby residents and communities. The life cycle of a well consists of several phases shown in Figure 1 [4].
The typical life cycle of an unconventional oil or gas well.
Each life cycle phase generates emissions, effluents and waste that may pose health risks to workers and nearby communities. They are discussed in this chapter according to their exposure pathway, e.g., via air or water, and by exposed population groups, e.g., oil and gas workers or nearby communities. It is noted that the likelihood of health impacts is generally a function of the hazardousness of the chemical and nonchemical stressor (i.e., the stimulus causing undesirable health effects), the exposure duration and the pathway. The spatial reach of the stressor is also important and may range from the immediate well-pad area to local (up to 10 km), regional (up to 100 km) and local distances (farther than 100 km). Thus, the following sections are organized to describe human health risks according to pathway and spatial distance.
The most significant types of occupational risks for UOG workers are accidents, malfunctions, and exposure to on-site air pollution. Accidents and malfunctions can bring workers in contact with hazardous and toxic materials via inhalation, dermal contact, or ingestion. They can also pose thermal radiation risks due to fires and explosions. Air pollution may be the result of accidents and malfunctions but is also a side effect of typical well-site activities such as oil and gas drilling, production, flaring, venting, storage of liquids and maintenance operations.
UOG wells are industrial sites with heavy and moving equipment, hazardous and toxic substances, and harsh environmental conditions. As a result, accidents and malfunctions (e.g., well blowouts, explosions, failure in well integrity such as sustained casing pressure and communication of the well with other, often orphaned wells) are the cause for most documented deaths and injuries for workers at unconventional well sites [5, 6].
Although it is difficult to obtain detailed information on worker-related injuries and fatalities for UOG, the oil and gas extraction industry in general has an occupational fatality rate that is 2.5-times that of the construction industry and 7-fold higher than the industry average [5, 6]. Fatalities are primarily caused by traffic-accidents (nearly a third of all confirmed fatalities), and smaller producers tend to have a higher mortality rate than larger and multi-national companies [7]. The traffic-related occupational risk to UOG workers is not surprising considering the substantial amount of material (e.g., water, HFF chemicals and additives, proppant), equipment (e.g., pipes, compressors, work-over equipment), and waste products (e.g., flowback and produced water, used drilling mud and drill cuttings) that need to be transported to and from the well site. Drilling and fracturing a well usually involves more than 1000 truck trips, often on narrow country roads not designed for such heavy use [8]. In contrast to UOG worker fatalities, the oil and gas industry has below-average injury rates, a fact that has been attributed to underreporting [6, 7, 9]. Although most accidents and fatalities occur among oil and gas workers, they also impact nearby communities. Truck accidents, well blowouts and explosions have caused injuries and fatalities among residents (see Section 4 for details).
The main sources of air pollution on UOG sites are [4]:
Direct and fugitive emissions of methane and other hydrocarbons from well-heads and other production and transmission infrastructure on the well site (e.g., flowback and produced water holding tanks or evaporation ponds, valves, pipelines, processing equipment).
Intentional venting and flaring of gas and hydrocarbon products.
Diesel emissions from trucks, generators and diesel-powered equipment.
Volatile organic compounds from drilling muds, HFF, flowback and produced water.
Workers may suffer from acute exposure to hazardous and toxic air pollutants such as hydrogen sulfide, benzene, formaldehyde and other volatile organic compounds [5]. Hydrogen sulfide arguably poses the greatest acute toxicity risk, causing irritation and central nervous system effects at concentrations as low as 100 ppm and death at around 1000 ppm [10]. Other risks arise from exposure to hydrocarbons, including aromatics such as benzene, ethylbenzene, toluene and the isomers of xylene (collectively referred to as BTEX). The health effects associated with BTEX include several types of leukemia, non-Hodgkin’s lymphoma, anemia and other hematopoietic disorders, immunological effects, and reproductive and developmental effects [4, 11, 12]. While the health effects of BTEX are well documented and health-based regulatory exposure standards exist, other sources of exposure are less well characterized and not regulated. These include chemicals in HFF and volatilized components in drilling muds. A sizeable fraction of compounds used in HFF do not have Chemical Abstract Service (CAS) identifiers [13].
In addition, workers may suffer chronic exposure to stressors such as crystalline silica, which is the main proppant used in hydraulic fracturing to hold open rock fractures and ease the flow of oil and gas to the surface. Prolonged inhalation of silica can cause silicosis and lung cancer, and it is also associated with chronic obstructive pulmonary disease, kidney disease and autoimmune diseases [14]. OSHA has issued a health alert for workers concerning exposure to silica during hydraulic fracturing [15]. Esswein et al. reports a study by the National Institute for Occupational Safety and Health (NIOSH), which collected and analyzed 111 samples of personal breathing zone data for respirable crystalline silica exposure at 11 UOG sites in five states (Colorado, Texas, North Dakota, Arkansas, and Pennsylvania) [16]. They found that 93% of samples exceeded the threshold limit value (TLV) of the American Conference of Industrial Hygienists of 0.025 mg/m3, 76% exceeded the Recommended Exposure Limit (REL) of the National Institute of Occupational Safety and Health (NIOSH) of 0.05 mg/m3 and 51% were higher than the permissible exposure limit (PEL) by the Occupational Safety and Health Administration (OSHA) of 0.05 mg/m3 averaged over an 8 hour-day. The differences in limits reflect the health protection goal of the respective institutions and the contexts and situations in which exposures are evaluated. Much of the silica sand (also known as ‘frac sand’) is mined in Wisconsin and Minnesota, thereby extending the occupational health risks to workers outside of the oil and gas industry and to regions where no hydraulic fracturing takes place [5]. Esswein et al. in a separate study also identified chemical exposure risks, including benzene, at six UOG sites in Colorado and Wyoming in 2013 and again found that wearable personal breathing zone monitors provided insufficient protection and were not always worn because of malfunctions [17].
Soil contamination from UOG operations can occur through surface spills of HFF, chemicals, drilling muds, and other compounds used during all life cycle phases of the well [18]. Health risks in these instances are largely limited to on-site workers and occur primarily through dermal contact. Workers may also carry contaminants indoors on their clothes and boots. Soil contamination has not yet been extensively studied in the UOG literature.
The heavy truck traffic associated with UOG, especially during the phases of well preparation, well drilling and hydraulic fracturing pose risks for vehicular accidents. In Bradford County, Pennsylvania, for example, the rise in truck traffic was concomitant with a rise in traffic accidents involving large trucks [8]. Similar statistics were observed in the Eagle Ford Shale in Texas. A study by Patterson et al. focusing on waste transport in the UOG sector in Pennsylvania found that UOG wells produced a median wastewater amount of 1294 m3, requiring 122 heavy-truck trips for transportation off-site [19]. Throughout the full life cycle of a UOG well, and especially during the drilling and hydraulic fracturing stages, more than a thousand truck trips are required to transport water, chemicals, proppants, and equipment to and from the site. Since many well sites are now occupied by multiple wells, the health risks, such as air pollution from diesel engines and traffic accidents, increase even further.
Throughout most of the well’s life cycle residents are also at risk of accidents due to malfunctions such as well blowouts, explosions, fire, spills, and leaks. These may release hazardous chemicals into the air and pose thermal radiation risks. Extreme weather events put oil and gas sites and associated infrastructure at risk. For example, holding and evaporation ponds for flowback and produced water overflowed in Colorado during the 2013 floods and released chemical and hydrocarbon laced liquids across the landscape and into nearby surface waters [20].
The around-the-clock operations of UOG production sites mean that people and communities in the vicinity may experience a continuous, albeit variable, exposure to airborne pollutants. In addition to infrequent but acute symptoms, they may thus suffer effects from cumulative exposure. The drilling, fracking and operation of UOG wells releases VOCs, from valves, pipes, condensate tanks, flowback and produced water tanks, and other infrastructure. Well maintenance operations such as offloading, additional fracking stages, etc. are often episodes of high air emissions of hydrocarbons, especially for natural gas wells. Residents have complained about odors and health symptoms such as headaches, nose bleeds, skin irritation, chronic fatigue, and neurological effects. A number of observational studies has shown associations between the occurrence of health symptoms and distance to the well, well density, and temporal coincidence with well-site activities [21, 22, 23, 24]. Well completions, condensate storage tanks and compressors have been shown to release VOCs, including C2–C8 alkanes, aromatic hydrocarbons, methyl mercaptan, and carbon disulfide [4]. Also process-related is a study that found elevated concentrations of benzene, several aliphatic hydrocarbons in samples taken 130–500 feet from five well pads in Colorado during high-emission periods of uncontrolled flowback [4, 25]. The increased truck traffic also degrades local air quality through diesel exhaust, nitrogen oxides, dust, and other pollutants associated with diesel fuel combustion. Several studies of ambient air quality in densely populated areas with high UOG activity have shown that while the majority of wells produce emissions below regulatory standards and action levels, a few high-emitters can be responsible for the majority of emissions [26, 27, 28].
At the regional level, ozone, methane, benzene, and alkanes have been traced back to UOG production and installations, notably in Colorado’s Front Range, the Denver-Julesburg Basin, the Niobrara Basin, the Uintah Basin, and the Upper Green River Basin [29, 30, 31, 32]. Winter ozone levels in some of these regions have reached levels (149 ppb) exceeding the worst days of day-time ozone levels in Los Angeles, one of the most ozone-polluted cities in America. Emission inventories showed that 98–99% of the VOCs and 57–61% of NOx were attributable to unconventional oil and gas production [33]. Texas and Louisiana are also projecting increases in ground-level ozone concentrations of between 9 and 17 ppb above current concentrations for the low and high-emission scenarios, which may push some counties into non-attainment status of the federal ozone air quality standard (70 ppb).
Global effects of the growth in UOG arise from increases in methane emissions. Bottom-up and top-down studies have revealed higher methane levels in areas with UOG production, mostly natural gas shale plays, than under previous emission inventories released by the U.S. Environmental Protection Agency (EPA). According to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), methane has a global warming potential that is 28 times that of carbon dioxide over a 100-year time horizon. Thus, while the transition of electric power generation from old, dirty coal-fired power plants to more efficient and cleaner natural gas plants is associated with regional air quality improvements, the climate benefits of UOG for shale gas remain somewhat disputed [34, 35, 36, 37].
Most of the public attention surrounding hydraulic fracturing concerns the risks of surface and groundwater pollution, especially in the context of drinking water wells. There are several pathways for such pollution [4], including:
Surface spills on-site and during transportation involving HFF, liquid drilling mud, and chemicals.
Well casing leaks.
Migration of gases and liquids through fractured rock into groundwater aquifers and to the surface.
Leaks from abandoned wells.
Wastewater discharges on-site or at wastewater treatment facilities.
A study by Gross for Colorado found that water pollution from surface spills is a relatively frequent occurrence: groundwater were impaired in 77 surface spills that were reported between July 2010–July 2011 and representing ~0.5% of active wells in densely drilled Wells County, Colorado [38]. Such impairment occurs primarily when spilled fluids percolate through the soil into shallow groundwater aquifers.
Vengosh et al. undertook a detailed study to understand which pathways were most likely for surface and subsurface migration. They distinguished between (i) the contamination of shallow aquifers with fugitive hydrocarbon gases (stray gas contamination, (ii) contamination of surface water and shallow groundwater from spills, leaks, and/or the disposal of inadequately treated shale gas wastewater, and (iii) the accumulation of toxic and radioactive elements in soil or stream sediments near disposal spill sites [3]. Using published data and studies from across the U.S. the results indicate that there is evidence for stray gas contamination, surface water impacts, and accumulation of radium isotopes at some disposal and spill sites. A critical issue in conclusively attributing the pollution of drinking water wells or other water sources to UOG operations is the lack of baseline data, i.e., data on water quality before UOG commenced. In particular, methane, heavy metals, and radioactive compounds may have been in the water long before the arrival of unconventional oil and gas production as a result of the aquifers’ geology or due to other man-made activities. In order to better understand and attribute the sources of water contamination, states such as California now require water quality monitoring before and after unconventional well drilling and stimulation activities. Overall, the evidence for methane contamination of groundwater and drinking water wells from hydraulic fracturing remains controversial in many cases [39, 40, 41].
While the debate and study of how water quality may be impacted by UOG activities continues, there is clear evidence that water abstraction for hydraulic fracturing in water-scarce areas can lead to increased competition and shortages. A report by Ceres, a sustainability non-profit organization formerly known as the Coalition for Environmentally Responsible Economies, examined the relationship between water use by UOG and other sectors in water-stressed regions and found that water resources are negatively impacted [42]. Nationwide, Ceres looked at nearly 110,000 UOG wells and estimated that 57% of oil and gas wells hydraulically fractured between 2011 and 2015 were in water-scarce regions and where water is a subject of competition among farmers, towns and cities, and the oil and gas industry. Overall, fracking-related water use during the 5-year study period totaled 358 billion gallons. Put into perspective, this amount of water is consumed by approximately 200 mid-sized U.S. cities. States with significant oil and gas production that are particularly impacted by the threat of increasing water competition are Texas, Colorado, and California. These states are also home of some of the leading shale plays, including the Eagle Ford and the Midland Play (part of the Permian Basin) in Texas. Other plays characterized by high water use are the Marcellus Shale and the Niobrara in Colorado, Wyoming, and Nebraska. The county with the highest number of UOG wells (~7000 wells) and water use for hydraulic fracturing (>16 billion gallons) is Weld County, CO [42].
Wastewater is the largest waste stream in oil and gas production. It consists primarily of produced water, which is for the most part brine mixed with hydrocarbons and suspended solids. Produced water is distinct from flowback water, which consists primarily of HFF and is generated for the first few days after hydraulic fracturing operations. Produced water may contain chemicals and additives used in drilling mud, methane, petroleum condensate, heavy metals, naturally occurring radioactive materials (NORM). Typically, flowback and produced water are temporarily stored in on-site pits (also called evaporation sumps) or tanks prior to disposal or reuse/recycling. These pits pose air and water pollution risks, from the release of volatile compounds into the air (evaporation is the purpose of some pits and may be supported by aerators) and the use of unlined pits. Flooding can also lead to pits overflowing and dispersing their hazardous contents across the landscape and potentially contaminating groundwater and nearby surface streams. On-site spills due to broken pipes or deterioration of the exterior walls of pits can also lead to localized soil and water contamination. California’s oil-rich Central Valley has a legacy of unlined pits and at least one of the sites is known to have a sub-surface pollution plume that is threatening the Kern River [43].
The majority of produced water is disposed of through deep-injection wells (class II wells according to the UIC program by EPA). In Pennsylvania, produced water was initially send to publicly owned treatment works, but the treatment processes were not adequate to handle the high TDS and chemical-contaminated water and the state prohibited the practice. If the injection wells reach aquifers that may potentially be used as a source of water for drinking or other purposes, the practice may threaten the water supply in water-stressed regions. This is the case in California, where hundreds of injection wells were found to be in potential violation of the Safe Drinking Water Act [44].
In addition to the potential health benefits arising from the replacement of coal-fired power plants with plants using shale gas, the development of UOG can generate local and regional economic benefits that can improve the overall health of the population. Additional jobs and UPG producer taxes can stimulate the economy and lead to greater public investments in education and healthcare. The estimates vary but UOG related employment in the U.S. might be in the order of 1.7 million people with further growth projected [45]. However, negative health effects of UOG expansion can occur from “boomtown” effects, i.e., the extractive-resource driven rapid expansion of local economies, which is followed by equally fast declines when resource prices decline or other market forces throttle production. These effects have been well-documented in the 1970s and 1980s and they tend to hit the most vulnerable members of communities first and hardest [4]. Psychosocial studies have also documented the tensions that can rise in communities split into supporters and opponents of UOG, by concerns of the local residents about known and unknown side-effects of UOG production such as air and water contamination, and concern over social disruptions due to the sudden influx of mostly male workers from other parts of the country. Residents surveyed in rural parts of Pennsylvania, where Marcellus Shale development has grown rapidly, have mentioned feelings of loss concerning their old way of living, the degradation of pristine environments, and their sense of place. Psychosocial stress can manifest itself in a variety of symptoms that are difficult to diagnose. They can be exacerbated by a lack of trust in the UOG producers and local and state government regarding the safe development of these unconventional resources. The Geisinger Health System in Pennsylvania is undertaking a series of coordinated studies of the population it serves regarding self-reported symptoms [46].
Considering the diverse range of potential health risks emanating from UOG operations and the role that local factors such as regulations, geology, climate, proximity to population centers, etc. play, there are a number of open research questions that should be addressed. Arguably the most pressing issue is the lack of information about UOG activities followed by the need for toxicological and epidemiological studies.
In particular, the major information gaps and uncertainties regarding our understanding of the health risks of UOG development impact the ability of regulators, healthcare professionals, communities, and individuals to take appropriate measures to protect against them, to inform others, and to work with the industry to mitigate the negative effects of UOG. The most important issues to be addressed from a research and data development perspective are shown in Table 1.
Occupational health and safety | Public health |
---|---|
Study the occupational health and safety risks of UOG with respect to the use and regulation of personal protective equipment and the activities that put oil and gas workers at most risk. | Collect and release timely and complete information about the composition of hydraulic fracturing fluids, in particular, addressing the use of trade secret protections and the accessibility of information by emergency responders, public health officials, oil and gas regulators, the scientific community, and the general public. |
Assess the differences of UOG activities compared with conventional oil and gas development and determine targeted and effective occupational health protections for them. | Continue efforts to close the knowledge gap on the health risks of UOG through toxicological and exposure-effect studies of HFF constituents. |
Fix the incomplete reporting of occupational health and safety incidents, especially with respect to injuries in order to reduce underreporting in state and federal statistics. | Conduct longer-term epidemiological studies to improve the scientific understanding of the associations and causalities between exposure to UOG-related hazards and reported health symptoms. These include the systematic description and assessment of exposure pathways and severity and their duration as well as developing an improved understanding of the effects of multiple well sites with regard to cumulative and aggregate exposures. |
Invest in community-based studies on the psychosocial stresses and associated health outcomes resulting from the expansion of UOG activities into rural communities. | |
Develop databases and systematic guidelines for air and water quality monitoring before and during UOG activities with the goal to improve source-attribution in cases of deteriorated air and/or water quality. | |
Develop tracers and other solutions to better identify and attribute the causes of drinking water well contamination in the context of UOG activities. |
List of proposed research and development activities needed to fully understand and mitigate the risks of UOG on worker and public health.
These gaps and uncertainties should be systematically addressed in future studies, which require improved cooperation between UOG producers, federal, state and local government, and community health and environmental advocacy groups. FracFocus, an industry-sponsored database providing information on hydraulically fractured wells and the HFF used, is a step towards addressing this information gap, but it is voluntary, incomplete, and lacks some important functionality.
Occupational health risks would benefit from better surveillance and reporting, especially of injuries. Focus should be on monitoring exposure to benzene, toluene, silica, aliphatic hydrocarbons, diesel exhaust, HFF chemicals, hydrogen sulfide, NORM, and traffic related exposures [4]. In addition, studies on both chronic and acute exposures are relevant in the occupational health context.
The proposed before-and-after monitoring of water and air quality, in the context of planned UOG development, could provide a stronger foundation to accurately and conclusively determine if contamination events occurred and what their source was. The variable and locally specific context of UOG development calls for studies that assess the magnitude and duration of human exposure to stressors during the various life cycle phases of UOG wells. For example, HFF mixture, geology, type of unconventional resource, and environmental factors all influence the potential for exposure and resulting health effects. In addition, the dense clustering of wells typical for UOG development creates the risk of aggregate effects that need to be further assessed.
With regard to psychosocial and community health impacts, current knowledge could be enhanced through greater involvement of community organizations as a source of information and for building trust between community members on the one hand and scientists, public health officials, and regulators on the other. These community organizations can furthermore serve as a bridge for continued outreach, education, and data collection after studies have been completed. UOG producers could rebuild trust by actively engaging with the community in the planning processes of new UOG development, providing fact-based information about the development, and supporting community activities aimed at identifying and reducing sources of stress. Public-private partnerships, such as the Health Effects Institute, have been able to bridge the trust-deficit and can serve as a model for working to solve the often-contentious health issues [4].
The use of large-volume, horizontal hydraulic fracturing has expanded across the U.S. and inspired talk of American energy independence and a renaissance of manufacturing. At the same time hydraulic fracturing has also become a lightning rod in public debates that pitches neighbors against each other and prompted calls for moratoria and greater scientific scrutiny from environmental groups and community health advocates. This chapter is an attempt to summarize the main sources of environmental pollution and health risks that arise during the lifespan of a hydraulically fractured well. It is a reminder that the reader that unconventional oil and gas production is an industrial activity that is noisy, dirty, and that generates substantial amounts of waste. Some of these side effects occur primarily on the well pad and in its immediate vicinity, where they pose risks to workers and residents. Others manifest themselves regionally and even globally and thus add to the pollution burden of people and communities who are far away from oil and gas production. The regulatory environment in which oil and gas development takes place usually creates obstacles for people to receive information and seek redress for pollution and health effects they might experience. Indeed, the burden of proof of causality between unconventional oil and gas operations as the source of the impacts is often on the individual or community and requires a level of scientific knowledge and information that is beyond their capacity. This is where regulators, public health officials, and the scientific community need to focus and together with the oil and gas industry develop mechanisms for greater transparency, meaningful data collection, and targeted epidemiological and toxicological studies. Unconventional oil and gas development is projected to continue its growth path and will remain a part of life in many rural and also urban communities across the U.S. In order to facilitate a co-existence that is based on trust, prioritizes safety over profits, and invests in local communities, the discussed health risks need to be addressed comprehensively and form the evidentiary basis for regulatory action.
I declare that I have no conflict of interest.
As a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Data Provider, metadata for published Chapters and Journal Articles are available via our interface at the base URL:http://www.intechopen.com/oai/?.
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at info@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Data Provider, metadata for published Chapters and Journal Articles are available via our interface at the base URL:http://www.intechopen.com/oai/?.
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at info@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:187},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1047",title:"Pulmonology",slug:"pulmonology",parent:{title:"Internal Medicine",slug:"internal-medicine"},numberOfBooks:33,numberOfAuthorsAndEditors:861,numberOfWosCitations:270,numberOfCrossrefCitations:151,numberOfDimensionsCitations:371,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"pulmonology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7990",title:"Update in Respiratory Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6451d7376123e392f1c86ad58c6efd27",slug:"update-in-respiratory-diseases",bookSignature:"Jose Carlos Herrera Garcia",coverURL:"https://cdn.intechopen.com/books/images_new/7990.jpg",editedByType:"Edited by",editors:[{id:"224037",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Herrera Garcia",slug:"jose-carlos-herrera-garcia",fullName:"Jose Carlos Herrera Garcia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9126",title:"Respiratory Physiology",subtitle:null,isOpenForSubmission:!1,hash:"e57374d11c8da9e7c70631881dcf55fa",slug:"respiratory-physiology",bookSignature:"Ketevan Nemsadze",coverURL:"https://cdn.intechopen.com/books/images_new/9126.jpg",editedByType:"Edited by",editors:[{id:"149748",title:"Dr.",name:"Ketevan",middleName:null,surname:"Nemsadze",slug:"ketevan-nemsadze",fullName:"Ketevan Nemsadze"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7872",title:"Cystic Fibrosis",subtitle:"Heterogeneity and Personalized Treatment",isOpenForSubmission:!1,hash:"5e2772740d2d4ebda048e06f2eee0b94",slug:"cystic-fibrosis-heterogeneity-and-personalized-treatment",bookSignature:"Dennis Wat and Dilip Nazareth",coverURL:"https://cdn.intechopen.com/books/images_new/7872.jpg",editedByType:"Edited by",editors:[{id:"92549",title:"Dr.",name:"Dennis",middleName:null,surname:"Wat",slug:"dennis-wat",fullName:"Dennis Wat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7155",title:"Diseases of Pleura",subtitle:null,isOpenForSubmission:!1,hash:"0c5e2d001498cc246b2c2e335e71b3dc",slug:"diseases-of-pleura",bookSignature:"Jelena Stojšić",coverURL:"https://cdn.intechopen.com/books/images_new/7155.jpg",editedByType:"Edited by",editors:[{id:"192769",title:"Ph.D.",name:"Jelena",middleName:null,surname:"Stojšić",slug:"jelena-stojsic",fullName:"Jelena Stojšić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8325",title:"Interventional Pulmonology and Pulmonary Hypertension",subtitle:"Updates on Specific Topics",isOpenForSubmission:!1,hash:"eaef88d222f670a00c67f12c5ebdb5e0",slug:"interventional-pulmonology-and-pulmonary-hypertension-updates-on-specific-topics",bookSignature:"Theodoros Aslanidis",coverURL:"https://cdn.intechopen.com/books/images_new/8325.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8250",title:"The Burden of Respiratory Syncytial Virus Infection in the Young",subtitle:null,isOpenForSubmission:!1,hash:"576eea34382b48ecff475d3f267837a2",slug:"the-burden-of-respiratory-syncytial-virus-infection-in-the-young",bookSignature:"Bernhard Resch",coverURL:"https://cdn.intechopen.com/books/images_new/8250.jpg",editedByType:"Edited by",editors:[{id:"66173",title:"Prof.",name:"Bernhard",middleName:null,surname:"Resch",slug:"bernhard-resch",fullName:"Bernhard Resch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8674",title:"Interstitial Lung Diseases",subtitle:null,isOpenForSubmission:!1,hash:"ec93938ba596b2062c6744b2885d23ea",slug:"interstitial-lung-diseases",bookSignature:"Jelena Stojšić",coverURL:"https://cdn.intechopen.com/books/images_new/8674.jpg",editedByType:"Edited by",editors:[{id:"192769",title:"Ph.D.",name:"Jelena",middleName:null,surname:"Stojšić",slug:"jelena-stojsic",fullName:"Jelena Stojšić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8738",title:"Asthma",subtitle:"Biological Evidences",isOpenForSubmission:!1,hash:"b0af4d7a29f41b1408f487f13af4216d",slug:"asthma-biological-evidences",bookSignature:"Celso Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/8738.jpg",editedByType:"Edited by",editors:[{id:"66336",title:"Prof.",name:"Celso",middleName:null,surname:"Pereira",slug:"celso-pereira",fullName:"Celso Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6523",title:"Asthma Diagnosis and Management",subtitle:null,isOpenForSubmission:!1,hash:"bc182ff614fdd60e11dc8ef59f7f3df5",slug:"asthma-diagnosis-and-management-approach-based-on-phenotype-and-endotype",bookSignature:"Kuan-Hsiang Gary Huang and Chen Hsuan Sherry Tsai",coverURL:"https://cdn.intechopen.com/books/images_new/6523.jpg",editedByType:"Edited by",editors:[{id:"87842",title:"Dr.",name:"Kuan-Hsiang Gary",middleName:null,surname:"Huang",slug:"kuan-hsiang-gary-huang",fullName:"Kuan-Hsiang Gary Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6097",title:"COPD",subtitle:"An Update in Pathogenesis and Clinical Management",isOpenForSubmission:!1,hash:"aeea9ee8ddad49657d60b4ae35f11600",slug:"copd-an-update-in-pathogenesis-and-clinical-management",bookSignature:"Cormac McCarthy",coverURL:"https://cdn.intechopen.com/books/images_new/6097.jpg",editedByType:"Edited by",editors:[{id:"169423",title:"Dr.",name:"Cormac",middleName:null,surname:"McCarthy",slug:"cormac-mccarthy",fullName:"Cormac McCarthy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5938",title:"Contemporary Topics of Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"7b8f70c5a40d7270ab454c8a1e9959e8",slug:"contemporary-topics-of-pneumonia",bookSignature:"Zissis C. Chroneos",coverURL:"https://cdn.intechopen.com/books/images_new/5938.jpg",editedByType:"Edited by",editors:[{id:"80345",title:"Dr.",name:"Zissis",middleName:null,surname:"Chroneos",slug:"zissis-chroneos",fullName:"Zissis Chroneos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"46627",doi:"10.5772/58252",title:"Lung Inflammation, Oxidative Stress and Air Pollution",slug:"lung-inflammation-oxidative-stress-and-air-pollution",totalDownloads:1657,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"lung-inflammation",title:"Lung Inflammation",fullTitle:"Lung Inflammation"},signatures:"Elisa Couto Gomes and Geraint Florida-James",authors:[{id:"91768",title:"Dr.",name:"Elisa",middleName:null,surname:"Gomes",slug:"elisa-gomes",fullName:"Elisa Gomes"},{id:"170705",title:"Dr.",name:"Geraint",middleName:null,surname:"Florida-James",slug:"geraint-florida-james",fullName:"Geraint Florida-James"}]},{id:"30257",doi:"10.5772/31495",title:"Pulmonary Paracoccidioidomycosis: Clinical, Immunological and Histopathological Aspects",slug:"pulmonary-paracoccidioidomycosis-clinical-immunological-and-histopathological-aspects",totalDownloads:1658,totalCrossrefCites:0,totalDimensionsCites:11,book:{slug:"lung-diseases-selected-state-of-the-art-reviews",title:"Lung Diseases",fullTitle:"Lung Diseases - Selected State of the Art Reviews"},signatures:"Luz E. Cano, Ángel González, Damaris Lopera, Tonny W. Naranjo and Ángela Restrepo",authors:[{id:"87441",title:"Dr.",name:"Luz Elena",middleName:null,surname:"Cano",slug:"luz-elena-cano",fullName:"Luz Elena Cano"},{id:"87467",title:"Dr.",name:"Angel",middleName:null,surname:"Gonzalez",slug:"angel-gonzalez",fullName:"Angel Gonzalez"},{id:"87469",title:"Dr.",name:"Damaris",middleName:null,surname:"Lopera",slug:"damaris-lopera",fullName:"Damaris Lopera"},{id:"87470",title:"Dr.",name:"Tonny",middleName:null,surname:"Naranjo",slug:"tonny-naranjo",fullName:"Tonny Naranjo"},{id:"87475",title:"Prof.",name:"Angela",middleName:null,surname:"Restrepo",slug:"angela-restrepo",fullName:"Angela Restrepo"}]},{id:"42381",doi:"10.5772/53957",title:"Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses",slug:"structural-and-functional-aspects-of-viroporins-in-human-respiratory-viruses-respiratory-syncytial-v",totalDownloads:2873,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"respiratory-disease-and-infection-a-new-insight",title:"Respiratory Disease and Infection",fullTitle:"Respiratory Disease and Infection - A New Insight"},signatures:"Wahyu Surya, Montserrat Samsó and Jaume Torres",authors:[{id:"75210",title:"Prof.",name:"Jaume",middleName:null,surname:"Torres",slug:"jaume-torres",fullName:"Jaume Torres"},{id:"158475",title:"Mr.",name:"Wahyu",middleName:null,surname:"Surya",slug:"wahyu-surya",fullName:"Wahyu Surya"}]}],mostDownloadedChaptersLast30Days:[{id:"59911",title:"Cough Variant Asthma as a Phenotype of Classic Asthma",slug:"cough-variant-asthma-as-a-phenotype-of-classic-asthma",totalDownloads:605,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"asthma-diagnosis-and-management-approach-based-on-phenotype-and-endotype",title:"Asthma Diagnosis and Management",fullTitle:"Asthma Diagnosis and Management - Approach Based on Phenotype and Endotype"},signatures:"Sanela Domuz Vujnović, Adrijana Domuz and Slobodanka Petrović",authors:[{id:"217451",title:"Ph.D.",name:"Sanela",middleName:null,surname:"Domuz Vujnović",slug:"sanela-domuz-vujnovic",fullName:"Sanela Domuz Vujnović"},{id:"218886",title:"MSc.",name:"Adrijana",middleName:null,surname:"Domuz",slug:"adrijana-domuz",fullName:"Adrijana Domuz"},{id:"226626",title:"Prof.",name:"Slobodanka",middleName:"Branko",surname:"Petrović",slug:"slobodanka-petrovic",fullName:"Slobodanka Petrović"}]},{id:"57668",title:"Pneumonia of Viral Etiologies",slug:"pneumonia-of-viral-etiologies",totalDownloads:1753,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"contemporary-topics-of-pneumonia",title:"Contemporary Topics of Pneumonia",fullTitle:"Contemporary Topics of Pneumonia"},signatures:"Al Johani Sameera and Akhter Javed",authors:[{id:"76522",title:"Dr.",name:"Javed",middleName:null,surname:"Akhter",slug:"javed-akhter",fullName:"Javed Akhter"},{id:"80162",title:"Dr.",name:"Sameera",middleName:"M.",surname:"Al Johani",slug:"sameera-al-johani",fullName:"Sameera Al Johani"}]},{id:"42381",title:"Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses",slug:"structural-and-functional-aspects-of-viroporins-in-human-respiratory-viruses-respiratory-syncytial-v",totalDownloads:2869,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"respiratory-disease-and-infection-a-new-insight",title:"Respiratory Disease and Infection",fullTitle:"Respiratory Disease and Infection - A New Insight"},signatures:"Wahyu Surya, Montserrat Samsó and Jaume Torres",authors:[{id:"75210",title:"Prof.",name:"Jaume",middleName:null,surname:"Torres",slug:"jaume-torres",fullName:"Jaume Torres"},{id:"158475",title:"Mr.",name:"Wahyu",middleName:null,surname:"Surya",slug:"wahyu-surya",fullName:"Wahyu Surya"}]},{id:"51148",title:"Mechanical Ventilation of the Infant with Severe Bronchopulmonary Dysplasia",slug:"mechanical-ventilation-of-the-infant-with-severe-bronchopulmonary-dysplasia",totalDownloads:2867,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"respiratory-management-of-newborns",title:"Respiratory Management of Newborns",fullTitle:"Respiratory Management of Newborns"},signatures:"Edward G. Shepherd, Susan K. Lynch, Daniel T. Malleske and Leif D. Nelin",authors:[{id:"179965",title:"Prof.",name:"Leif",middleName:null,surname:"Nelin",slug:"leif-nelin",fullName:"Leif Nelin"},{id:"179967",title:"Dr.",name:"Edward",middleName:null,surname:"Shepherd",slug:"edward-shepherd",fullName:"Edward Shepherd"},{id:"180630",title:"Dr.",name:"Susan",middleName:null,surname:"Lynch",slug:"susan-lynch",fullName:"Susan Lynch"},{id:"180631",title:"Dr.",name:"Daniel",middleName:null,surname:"Malleske",slug:"daniel-malleske",fullName:"Daniel Malleske"}]},{id:"53221",title:"Hypoxia and its Emerging Therapeutics in Neurodegenerative, Inflammatory and Renal Diseases",slug:"hypoxia-and-its-emerging-therapeutics-in-neurodegenerative-inflammatory-and-renal-diseases",totalDownloads:1317,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"hypoxia-and-human-diseases",title:"Hypoxia and Human Diseases",fullTitle:"Hypoxia and Human Diseases"},signatures:"Deepak Bhatia, Mohammad Sanaei Ardekani, Qiwen Shi and\nShahrzad Movafagh",authors:[{id:"189604",title:"Dr.",name:"Shahrzad",middleName:null,surname:"Movafagh",slug:"shahrzad-movafagh",fullName:"Shahrzad Movafagh"},{id:"192092",title:"Dr.",name:"Deepak",middleName:null,surname:"Bhatia",slug:"deepak-bhatia",fullName:"Deepak Bhatia"},{id:"192093",title:"Dr.",name:"Mohammad",middleName:null,surname:"Sanaei Ardekani",slug:"mohammad-sanaei-ardekani",fullName:"Mohammad Sanaei Ardekani"},{id:"195341",title:"Dr.",name:"Qiwen",middleName:null,surname:"Shi",slug:"qiwen-shi",fullName:"Qiwen Shi"}]},{id:"30176",title:"Types of Physical Exercise Training for COPD Patients",slug:"types-of-physical-exercise-training-for-copd-patients",totalDownloads:11481,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"chronic-obstructive-pulmonary-disease-current-concepts-and-practice",title:"Chronic Obstructive Pulmonary Disease",fullTitle:"Chronic Obstructive Pulmonary Disease - Current Concepts and Practice"},signatures:"R. Martín-Valero, A. I. Cuesta-Vargas and M. T. Labajos-Manzanares",authors:[{id:"83623",title:"Dr.",name:"Ai",middleName:null,surname:"Cuesta-Vargas",slug:"ai-cuesta-vargas",fullName:"Ai Cuesta-Vargas"},{id:"118783",title:"Mrs.",name:"Martín-Valero",middleName:null,surname:"Rocio",slug:"martin-valero-rocio",fullName:"Martín-Valero Rocio"},{id:"118786",title:"Dr.",name:"Labajos-Manzanares",middleName:null,surname:"M.T.",slug:"labajos-manzanares-m.t.",fullName:"Labajos-Manzanares M.T."}]},{id:"55737",title:"Multidrug-Resistant Gram-Negative Pneumonia and Infection in Intensive Care Unit",slug:"multidrug-resistant-gram-negative-pneumonia-and-infection-in-intensive-care-unit",totalDownloads:1189,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"contemporary-topics-of-pneumonia",title:"Contemporary Topics of Pneumonia",fullTitle:"Contemporary Topics of Pneumonia"},signatures:"Mauricio Rodriguez and Salim R. Surani",authors:[{id:"15654",title:"Dr.",name:"Salim",middleName:null,surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"},{id:"201286",title:"Mr.",name:"Mauricio",middleName:null,surname:"Rodriguez",slug:"mauricio-rodriguez",fullName:"Mauricio Rodriguez"}]},{id:"42375",title:"Pathogenesis of Viral Respiratory Infection",slug:"pathogenesis-of-viral-respiratory-infection",totalDownloads:3958,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"respiratory-disease-and-infection-a-new-insight",title:"Respiratory Disease and Infection",fullTitle:"Respiratory Disease and Infection - A New Insight"},signatures:"Ma. Eugenia Manjarrez-Zavala, Dora Patricia Rosete-Olvera, Luis Horacio Gutiérrez-González, Rodolfo Ocadiz-Delgado and Carlos Cabello-Gutiérrez",authors:[{id:"91060",title:"Dr.",name:"Maria Eugenia",middleName:null,surname:"Manjarrez",slug:"maria-eugenia-manjarrez",fullName:"Maria Eugenia Manjarrez"},{id:"95405",title:"Dr.",name:"Carlos",middleName:null,surname:"Cabello Gutiérrez",slug:"carlos-cabello-gutierrez",fullName:"Carlos Cabello Gutiérrez"},{id:"95406",title:"Prof.",name:"Dora Patricia",middleName:null,surname:"Rosete",slug:"dora-patricia-rosete",fullName:"Dora Patricia Rosete"},{id:"166672",title:"Dr.",name:"Luis Horacio",middleName:null,surname:"Gutiérrez-González",slug:"luis-horacio-gutierrez-gonzalez",fullName:"Luis Horacio Gutiérrez-González"}]},{id:"65946",title:"The Role of Pulmonary Rehabilitation in Patients with Idiopathic Pulmonary Fibrosis",slug:"the-role-of-pulmonary-rehabilitation-in-patients-with-idiopathic-pulmonary-fibrosis",totalDownloads:866,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"interstitial-lung-diseases",title:"Interstitial Lung Diseases",fullTitle:"Interstitial Lung Diseases"},signatures:"Elena Dantes, Emanuela Tudorache and Milena Adina Man",authors:[{id:"207947",title:"Dr.",name:"Emanuela",middleName:null,surname:"Tudorache",slug:"emanuela-tudorache",fullName:"Emanuela Tudorache"},{id:"277501",title:"Dr.",name:"Elena",middleName:null,surname:"Dantes",slug:"elena-dantes",fullName:"Elena Dantes"},{id:"290427",title:"Dr.",name:"Man",middleName:null,surname:"Milena Adina",slug:"man-milena-adina",fullName:"Man Milena Adina"}]},{id:"50654",title:"Respiratory Function During Chest Compressions",slug:"respiratory-function-during-chest-compressions",totalDownloads:1420,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"respiratory-management-of-newborns",title:"Respiratory Management of Newborns",fullTitle:"Respiratory Management of Newborns"},signatures:"Georg M Schmölzer, Anne Solevåg, Erica McGinn, Megan O’Reilly\nand Po-Yin Cheung",authors:[{id:"179622",title:"Dr.",name:"Georg",middleName:null,surname:"Schmolzer",slug:"georg-schmolzer",fullName:"Georg Schmolzer"},{id:"179804",title:"Dr.",name:"Anne",middleName:null,surname:"Solevag",slug:"anne-solevag",fullName:"Anne Solevag"},{id:"179805",title:"Prof.",name:"Po-Yin",middleName:null,surname:"Cheung",slug:"po-yin-cheung",fullName:"Po-Yin Cheung"},{id:"179806",title:"Dr.",name:"Megan",middleName:null,surname:"O'Reilly",slug:"megan-o'reilly",fullName:"Megan O'Reilly"}]}],onlineFirstChaptersFilter:{topicSlug:"pulmonology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/319416/jeyaprakash-natarajan",hash:"",query:{},params:{id:"319416",slug:"jeyaprakash-natarajan"},fullPath:"/profiles/319416/jeyaprakash-natarajan",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()