Statistical summary and Seasonal variations of ambient air quality parameters sites in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India.
\r\n\tFurther development of geophysical methods in the direction of constructing more and more adequate models of media and phenomena necessarily leads to more and more complex problems of mathematical geophysics, for which not only inverse, but also direct problems become significantly incorrect. In this regard, it is necessary to develop a new concept of regularization for simultaneously solving a system of heterogeneous operator equations.
\r\n\r\n\tCurrently, the study of processes associated not only with geophysics and astrophysics but also with biology and medicine requires even more complication of interpretation models from non-linear and heterogeneous to hierarchical. This book will be devoted to the creation of new mathematical theories for solving ill-posed problems for complicated models.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"d93195bb64405dd9e917801649f991b3",bookSignature:"Prof. Olga Alexandrovna Hachay",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8253.jpg",keywords:"Ill-Posed, Inverse Problems, Geophysics, Seismic, Electromagnetic, Thermal, Magnetic, Medicine, \r\nMathematical, Algorithms, Hierarchical, Nonlinear, Historical Description, Regularization",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 7th 2019",dateEndSecondStepPublish:"March 27th 2020",dateEndThirdStepPublish:"May 26th 2020",dateEndFourthStepPublish:"August 14th 2020",dateEndFifthStepPublish:"October 13th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"150801",title:"Prof.",name:"Olga",middleName:"Alexandrovna",surname:"Hachay",slug:"olga-hachay",fullName:"Olga Hachay",profilePictureURL:"https://mts.intechopen.com/storage/users/150801/images/system/150801.jpg",biography:"Dr. Olga A. Hachay graduated with a degree in Astrophysics from Ural State University in 1969. She obtained her PhD from the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation of the Russian Academy of Sciences (IZMIRAN) in 1979 with her thesis 'The inverse problem for electromagnetic research of one-dimensional medium.”\nSince 1969, she has been a scientific member of the Institute of Geophysics Ural Branch of Russian Academy of Sciences (UB RAS), Ekaterinburg, Russia. From 1995 to 2004, she served as chief of the group of seismic and electromagnetic research. Her research interests include developing new methods for searching the structure and the state of the Earth’s upper crust, as well as elaborating a new theory of interpretation of electromagnetic and seismic fields. From 2002, she has been the main scientific researcher of the Institute of geophysics UB RAS. Since 2008, she has been a lead scientific researcher for UB RAS in the laboratory of borehole geophysics. Dr. Hachay is a member of various organizations and societies, including the American Mathematical Society, Mathematical Association of America, International Association of Geomechanics, and the European Geosciences Union, among others. \nDr. Hachay is fluent in Russian, English and German language",institutionString:"Ural Branch of the Russian Academy of Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Ural Branch of the Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"52371",title:"Manganese Sulfide (MnS) Nanocrystals: Synthesis, Properties, and Applications",doi:"10.5772/65092",slug:"manganese-sulfide-mns-nanocrystals-synthesis-properties-and-applications",body:'\nManganese(II) sulfide (MnS) is a p-type semiconductor with a wide bandgap (
Three polymorphs (α, β, and γ) of MnS are known, and their crystal structure is represented in Figure 1. In the cubic rock-salt α-MnS structure, sulfide anions an expanded fcc lattice, and the manganese cations occupy all octahedral sites. The metastable form β-MnS has the cubic zincblende structure. Similarly to α-MnS, β-MnS comprises an expanded fcc lattice of S2−anions, but in this polymorph, the Mn2+ cations reside on half of the tetrahedral sites. Finally, γ-MnS has the hexagonal wurtzite structure, based on a slightly compressed (
Naturally occurring MnS minerals with α, β, and γ structures are known, but they have curiously been discovered in a large time interval. Natural α-MnS has been known as alabandite since the beginning of the nineteenth century [20] and is a widespread manganese ore. MnS minerals with β and γ structures have been much more recently reported upon: rambergite (γ-MnS) has been discovered in 1996 in Sweden [21] whereas browneite (β-MnS) was found in a meteorite collected in Poland in 2012 [22].
\nCrystal structure of the three polymorphs of MnS. Left: cubic α-MnS (rock salt); middle: cubic β-MnS (zincblende); right: hexagonal γ-MnS (wurtzite). The primitive cell is also shown. Color code: Mn, violet; S, yellow.
We limit our review to homogeneous or heterogeneous nanostructures that comprise pure MnS with at least one dimension smaller than 100 nm (some MnS sub-microcrystals are included when of particular interest). Both zero- (0D) and one-dimensional (1D) MnS nanosystems have been prepared using several bottom-up methods ranging from solvothermal and hydrothermal “wet” techniques to chemical vapor deposition (CVD). Though we will review MnS nanostructures prepared by any technique, we will give some detail of solvothermal methods, which found the most widespread application in the synthesis of 0D nanostructures and show a nice diversity in the choice of precursors and experimental conditions. Conversely, 1D nanosystems (rods, wires, saws) were often obtained prepared by the CVD. Some heterostructures, both 0D and 1D, comprising MnS have also been prepared by solvothermal or CVD techniques and displayed peculiar properties. The issue of polymorphism control in 0D NCs has been the subject of several reports showing that both physical and chemical parameters can be used to obtain the desired crystal structure.
\nIn this section, we will review both the synthetic methods for the preparation of zero-dimensional (0D) and one-dimensional (1D) MnS nanosystems and their morphological [usually performed resorted to scanning electron microscopy (SEM) and transmission electron microscopy (TEM)], structural [X-ray (XRD) and electron (ED) diffraction], and compositional [usually by energy dispersive X-ray spectroscopy (EDX, a.k.a. EDS), more rarely by electron energy loss spectroscopy (EELS) and its imaging counterpart electron spectroscopy imaging (ESI)] characterization. The optical, electric, and magnetic properties of the MnS nanosystems will be discussed in the following sections. The present section will separately deal with 0D and 1D MnS nanostructures, and the reports specifically addressing the control of the MnS polymorphism are collected at the end of the section. Synthetic studies involving systematic variation in the reaction conditions are deemed particularly interesting and will be given particular attention.
\nIn this subsection, we focus on nanostructures comprising MnS NCs with aspect ratio close to 1 and start with chemically homogeneous nanosystems, i.e., pure MnS NCs. The subsection is concluded by reviewing heterogeneous nanosystems comprising a 0D MnS NC.
\nOf course, most examples of 0D nanosystems are homogeneous MnS NCs or a mixture of two or three polymorphic MnS NCs. We separately review NCs obtained by solvothermal techniques, that is, where one or more precursors are decomposed at high temperature in non-aqueous solvent in an inert atmosphere, possibly in the presence of other compounds acting as a growth regulator, protective coating, shape- or polymorph-inducer, etc.
\nTo the best of our knowledge, the synthesis of 0D MnS NCs with at least one dimension below 100 nm was independently reported by two research groups in 2001. It is noteworthy that one paper was received by the publisher just 2 weeks before the other one arrived at a different publisher. However, the latter article appeared in print in 2001 while the former in 2002. In the presented by Banin group, α-MnS NCs were obtained using a solvothermal technique employing reagents rarely found in subsequent work [18]. The procedure involved the injection of a trioctylphosphine/trioctylphosphine oxide (TOP/TOPO) solution of
Using a single molecule as a precursor for both Mn and S could offer a few advantages, e.g., Mn–S bonds are already present and likely to survive the precursor decomposition, and the Mn:S molar ratio is exactly fixed. Moreover, precursor synthesis is usually easy. Thus, several papers reported the use of a single precursor, often chemically similar to Mn(Et2N-CS2)2, for the preparation of MnS NCs. In a paper regarding the synthesis of NCs of many divalent metal sulfides [23], manganese
The fixed Mn:S ratio inherent to the use of single-molecule precursors might also be regarded as a limitation while exploring synthetic conditions. This consideration, and the effort saved when precursors are commercially available, prompted many groups to employ a two-precursor strategy to synthesize MnS NCs. Of course, in this case, more care should be taken since the chemistry is more complex: the Mn–S bond has yet to be established and the reactive Mn and S species must be simultaneously present in the reaction environment. A convenient sulfide precursor is elemental sulfur (yellow powder, S8), which is readily soluble in apolar solvents. The octameric molecule must be converted to sulfide S2− anions during the reaction. Both 1-octadecene [28] and long-chain primary amines [29] have been shown to be able to produce the reactive sulfur species leading to metal sulfide NCs. MnS NCs were synthesized by heating an oleylamine solution of sulfur powder and MnCl2 [30]. NC size and shape were varied by changing the Mn:S molar ratio. Nanorods with low aspect ratio (20 × 37 nm) were obtained using Mn:S = 1:1 at 240°C while long (17 × 44 nm) and short (23 × 37 nm) bullet-shaped NCs were synthesized using Mn:S = 2:1 and 3:1, respectively, at 280°C. Unfortunately, the NC composition and crystal structure seem to be not provided.
\nSulfur can be inactivated when a long-chain carboxylic acid RCOOH is present in the reaction mixture, presumably due to the formation of RCOSH species [31]. It was shown that, in order to produce pure MnS NCs, the molar ratio Mn:S ≥ (Mn:RCOOH + 1) is required, e.g., if 1 equivalent of RCOOH is present, at least 2 equivalents of S are required (see Figure 2).
\nThe synthesis of octahedral MnS NCs using a solvothermal protocol involving heating a solution of manganese carboxylate and sulfur powder in 1-octadecene has been studied in detail in Ref. [32]. Three manganese precursors were synthesized: Mn(II) distearate (MnSt2), dioleate (MnOl2), and hydroxyoleate [Mn(OH)(Ol)]. Whenever Mn:S ≥ 2, XRD showed that the produced NCs had α-MnS structure. Rietveld analysis of XRD profiles yielded NC size in agreement with TEM data, thus showing that the NCs are single crystals. The NC size could be finely controlled by changing the precursor and the reaction temperature and time. Larger size is achieved by using Mn(Ol)2 at higher temperature with longer reaction time . In this manner, α-MnS NCs with a size from 9.3 to 29.5 nm (and 10 other intermediate sizes) could be obtained (see Figure 3). The size dispersion was also investigated and it was interestingly found that MnOl2 and Mn(OH)(Ol) behave oppositely. Size dispersion is minimum and maximum at 300°C for MnOl2 and Mn(OH)(Ol), respectively. Furthermore, the change in size dispersion when the reaction time is varied is decreasing for MnOl2 and volcano-shaped for Mn(OH)(Ol).
\nSynthetic outcome from solvothermal synthesis using different Mn precursors as a function of the L:Mn (L = surfactant) and S:Mn molar ratios. The type of NC is encoded as follows: open squares: MnO NCs; half-filled squares: mixture of MnO and α-MnS NCs; solid squares: α-MnS NCs. The precursors are color coded as follows. Black: Mn2(CO)10, red: MnSt2, green: MnOl2, blue: Mn(OH)Ol. The free surfactant, L, was stearic acid for Mn2(CO)10 and Mn distearate, and oleic acid for Mn dioleate and Mn hydroxyl oleate, respectively. Reprinted from Ref. [
MnOl2 and sulfur powder were also used to prepare α-MnS NCs with a peculiar stellated-octahedral shape [33]. When a solution of MnOl2 and S (1:2) in 1-octadecene was heated at 300°C, 15 nm spherical α-MnS NCs were obtained, but when a 1:1 v/v mixture of oleic acid and oleylamine was present in the reaction mixture, 45 nm α-MnS NCs with stellated-octahedral shape were produced. High-resolution TEM (HRTEM) and ED experiments showed that the latter are single crystals with elongated branches pointing along the six <001> equivalent directions. A further solvothermal procedure involving sulfur powder and Mn(II) nitrate [34] can be found in Section 2.3; elemental S (and Mn) was also used in a hydrothermal protocol for α-MnS nanorods [35].
\nα-MnS NCs by a solvothermal method using sulfur powder in 1-octadecene. (a) 30 nm α-MnS NCs obtained using Mn(Ol)2 as a metal precursor at 300°C. (b) 21 nm α-MnS NCs obtained using Mn(Ol)2 at 320°C. (c) 14 nm α-MnS NCs obtained using Mn(OH)(Ol) at 300°C. Adapted from Puglisi A, Mondini S, Cenedese S, Ferretti AM, Santo N, Ponti A. Chem Mater. 2010;
Since yellow sulfur powder (S8) must be converted to sulfide anion S2− during the formation of MnS NCs, using an inorganic sulfide as a precursor seemed appealing. In this manner, the synthesis of MnS NCs would not rely on the complex redox chemistry to produce sulfide anions from elemental sulfur. For instance, hydrated sodium sulfide has been employed in the synthesis of ZnS@MnS@ZnS heterostructures by co-precipitation with metal acetates in a hydroalcoholic medium (see Section 2.1.2) [6]. However, inorganic sulfides are poorly soluble in apolar solvents, which limits their application in solvothermal synthesis. This problem can be resolved by using ammonium sulfide (NH4)2S, which can be dissolved into dry oleylamine with a concentration of up to 0.5 M [36]. By injecting such solution into hot oleylamine solutions of metal precursors, the authors succeeded in the synthesis of NCs of several metal sulfides, including MnS. In this case, the sulfide (0.92 mmol) solution was injected into a solution of MnCl2 (0.44 mmol, Mn:S = 1:2.1) in a 1:6 v/v (oleic acid)/oleylamine mixture at 250°C and aged for 5 min. Trapezoid-shaped MnS NCs with an average size of ca. 20 × 12 nm were obtained. The crystal structure was claimed to be γ; no further characterization data were provided. In a later report [13], a closely related reaction gave ca. 14 nm MnS NCs with trapezoid shape. In this case, the crystal structure was claimed to be β. This is surprising since the second reaction is just scaled up by a factor 2, the other synthetic conditions being unchanged. Re-examination of the XRD plots, especially the peak intensities, led us to the conclusion that both reactions produced a mixture of β- and γ-MnS NCs. In the first reaction, γ-MnS NCs were predominant and the reverse was true for the second reaction. The predominantly β-MnS NCs were then investigated as an electrode material for batteries (see below).
\nAnother class of sulfide precursors, which can be considered as an intermediate between the extremes of elemental sulfur and inorganic sulfides, comprises small, typically organic, sulfur-containing molecules that can easily release sulfide anions upon hydrolysis. Sodium thiocyanate was used for the synthesis of α-MnS nanobelts [37] (see below) and thiourea (NH2)2C=S proved to be useful in hydrothermal protocols for the preparation of 1D MnS nanosystems [38, 39] (see below). In the context of the solvothermal synthesis of 0D MnS NCs, thioacetamide CH3C(S)-NH2 gave significant results. In a heat-up approach, involving heating at 250°C a solution of MnCl2 (0.50 mmol) and thioacetamide (0.50 mmol, Mn:S = 1:1) in a 1:5 v/v (oleic acid)/oleylamine mixture, monodisperse α-MnS nanocubes were synthesized [52]. Size control was achieved by varying the reaction time. A cube edge size of 14 ± 1, 26 ± 2, and 40 ± 3 nm was obtained when the reaction mixture was heated for 30, 60, and 120 min, respectively; note that the size dispersion (mean/std.dev.) is nearly constant. EDX showed that Mn:S = 1:0.9 and the two elements are homogeneously distributed. Based on the reaction carried out at different temperatures, the authors proposed that nanocubes formed via the oriented aggregation of very small spherical NCs followed by intraparticle ripening. It is interesting to note that the final nanocubes also spontaneously form meta-crystals with the simple cubic packing driven by strong interactions between the {001} faces of the nanocubes. Yang et al. [40] used thiourea in their investigation aimed at understanding the effect of reaction temperature and pressure on the crystal structure of MnS nanosystems (see Section 2.3). NC aggregation was also observed in another synthetic example where thiourea was used as a precursor [9]. In this case, MnCl2 (0.20 mmol) and thioacetamide (0.60 mmol, Mn:S = 1:3) were dissolved in a complex mixture of 1-octanol/octylamine/(oleic acid)/acetone 3:3:3:1 v/v and autoclaved at 150°C for 1 h. The product comprised large (ca. 90 nm) spherical aggregates of small (ca. 5 nm) α-MnS NCs. The authors claim that NC aggregation is induced by water generated by the decomposition of thioacetamide, but it should be noted that the hydrolysis of thioacetamide to acetamide and H2S consumes (not produces) water. Interestingly, when the hexane dispersion of these α-MnS NC aggregates was shaken with an aqueous sodium citrate solution at 85°C, the aggregates could be separated and the individual α-MnS NCs became water dispersible. These NCs were next investigated as a possible MRI contrast agent (see below).
\nTo conclude this subsection, we mention an interesting report describing how γ-MnS NCs can be produced by cation exchange from Cu2-
A few examples reporting non-solvothermal synthesis of 0D MnS NCs could be found. Sub-microcystals of all three MnS polymorphs were prepared by a hydrothermal method [42]. Since this report describes in detail how to control the crystal structure of the product, it is reviewed in Section 2.3. Hydrothermal methods were used to synthesize 1D MnS NCs, as reviewed in the next section.
\nAnother method used to synthesize 0D MnS NCs involves the growth of the NCs within the pores of mesoporous silica, thanks to heat or chemical treatment following impregnation of the porous materials. Spherical γ-MnS NCs were synthesized inside the pores of MCM-41 or SBA-15 silica host material [43]. It should be noted that the authors used the old nomenclature (e.g., see Ref. [19]) and denominated γ-MnS as “wurtzite β-MnS”. Unfortunately, for synthetic and morphological details, the reader is referred to a previous publication [44], which describes the synthesis of Mn-doped ZnS NCs. We then provide synthetic and morphological data with this
A similar method was used to synthesize MnS NCs within mesoporous silica [25]. The main differences are the use of Mn(EtO-CS2)2TMEDA as a xanthate single precursor with Mn:S = 1:4 and the heat (instead of chemical) treatment of the impregnated silica. As we will soon see, this causes large difference in the outcome. The P123 mesoporous silica (pore diameter 7 nm) impregnated with Mn(EtO-CS2)2TMEDA was dried and heated in a N2 atmosphere at 450°C for 12 h. In this case also, the ordered porous morphology of the host material was unchanged after the heat treatment. EDX showed that the products had Mn:S = 1:1 stoichiometry, but in contrast to the previous case, the XRD pattern contained peaks from all three MnS polymorphs. XRD data estimated that the MnS NC size ranged between 3.5 and 5.1 nm, smaller than the pore diameter. In this case, the influence of the mesoporous environment on the reaction mechanism was such that NCs with α, β, and γ structures were obtained, as supported by the fact that, in the absence of P123 silica, the heat treatment of Mn(EtO-CS2)2TMEDA gave 200 nm MnS NCs with purely zinc blend β structure.
\nA few examples of 0D heterostructured nanosystems including a MnS component have been reported, mostly related to optical applications. Nanosystems including both MnS and ZnS have gathered some attention thanks to the isostructurality of ZnS (zincblende,
Aiming at improving the optical properties of these MnS@ZnS nanosystems, ZnS@MnS@ZnS heterostructures were synthesized by a three-step hydroalcoholic co-precipitation protocol [6]. To a solution of Zn(II) acetate dihydrate (25 mmol) in an ethanol/water 1:1 mixture, a hydroalcoholic solution of Na2S (25 mmol) was added dropwise and a white precipitate formed. Next, a hydroalcoholic solution of Mn(II) acetate tetrahydrate (5–20 mmol) was added to form the intermediate MnS layer. Finally, the ZnS shell was prepared by a similar procedure involving the addition of 12.5 mmol of Zn followed by 25 mmol of S. Again, a detailed optical investigation (see below) came with limited morphostructural characterization. The XRD pattern of the ZnS@MnS@ZnS heterostructures is very close to that of the ZnS cores, suggesting that the MnS layer could be amorphous or β-MnS, which is isostructural with ZnS. The nanosystem size calculated from the XRD data is in agreement with that obtained from TEM images, i.e., the ZnS core has a diameter of 6.5 nm and the ZnS@MnS@ZnS nanosystems range from 5.5 to 6.3 nm, showing that leaching occurs in the second/third step. Note that no sulfur is added in the second synthetic step, thus suggesting that Mn diffuses into the lattice of the ZnS core, as also supported by optical measurements.
\nFinally, Cu1.94S/γ-MnS heterostructures have been solvothermally synthesized and subjected to a detailed structural investigation [50]. The solvothermal protocol comprises two steps: first, Cu1.94S NCs are formed by heating a solution of anhydrous Cu(II) acetate (0.31 mmol) in a 1:2 v/v mixture of oleylamine and dodecanethiol at 220°C for 15 min, the latter one also acts as a sulfur source. Then, anhydrous Mn(II) acetate (0.70 mmol) dissolved in oleylamine is injected into the hot mixture. After aging for further 10–20 min, the mixture was cooled and the nanosystems isolated. When no Mn is added, one recovers Cu1.94S NCs with monoclinic structure and disk shape (diameter ~15 nm, height ~7 nm). The flat disk surfaces correspond to the (800) planes of the monoclinic structure. When the second synthetic step is carried out, it turns out that γ-MnS nanocylinders heteroepitaxially grew on
Most 1D MnS nanowires (high aspect ratio) have been synthesized by CVD, a technique involving the decomposition of volatile thermally-labile precursors on a substrate thus producing very pure, thin-film, possibly nanostructured coatings. Because of the spatially anisotropic synthetic environment, CVD is apt for inducing the growth of 1D nanosystems. However, examples of 1D MnS nanosystems prepared by solvothermal techniques could also be found, usually nanorods with a lower aspect ratio than nanowires. Regarding the product crystal structure, 1D nanosystems crystallized in the γ-MnS structure, which is prone to anisotropic growth having hexagonal (uniaxial) structure, and in the cubic α-MnS structure. We could not find examples of β-MnS 1D nanosystems.
\nWe start with the notable example of α-MnS nanobelts synthesized by a solvothermal method. Indeed, it is noteworthy that 1D nanosystems were obtained notwithstanding that both the crystal structure and the synthetic environment are isotropic. The preparation of α-MnS nanobelts [37] involved dissolving Mn(II) acetate tetrahydrate (1 mmol) and ammonium thiocyanate (2 mmol, Mn:S = 1:2) in molten dodecylamine (40 ml) and autoclaving this solution for 72 h at 220°C. XRD showed that the product is pure α-MnS. As observed by SEM, the product comprises belt-like nanostructures, several μm long and 50–150 nm wide with an estimated thickness of 25 nm. The nanobelts have constant width along their entire length. TEM confirmed the nanobelt morphology and on the basis of ED data, the authors claimed that the nanobelt growth direction is [100] but the presented data are also consistent with the [110] growth (actually with growth along any [
Starting from elemental Mn and S, α-MnS nanorods (40-60 nm × 0.5-1.2 μm) were prepared by a hydrothermal route [35]. Mn metal (10 mmol) and S powder (10 mmol, Mn:S = 1:1) were suspended in water and then heated at 240–260°C for 14–20 h. XPS showed that the product composition is Mn:S = 1.1:1 and XRD gave a clean α-MnS pattern. The product observed in the SEM and TEM images had nanorod morphology (diameter 40–60 nm and length 0.5–1.2 μm) with a constant width and a high aspect ratio (13–20). The authors investigated the effect of various synthetic conditions. At temperature lower than 240°C, Mn(OH)2 or impure products formed and a low yield was observed when the reaction time was shorter than 10 h. When no sulfur was used, hexagonal Mn(OH)2 nanorods were obtained. The authors then proposed that α-MnS nanorods formed in a two-step mechanism where Mn(OH)2 nanorods first formed which then converted to α-MnS nanorods upon the action of sulfur, a process driven by the low aqueous solubility of MnS. MnS nanorods [39] were synthesized by autoclaving for 20 h at 150°C in an aqueous solution of MnCl2 and thiourea (both 1 M, Mn:S 1:1) in the presence of a through-hole anodized aluminum oxide (AAO) template previously impregnated with MnCl2. The produced nanorods have homogeneous morphology (diameter 60–80 nm, length 700–800 nm) and are densely packed perpendicularly to the AAO template. It is surprising that such homogeneous morphology does not correspond to a pure crystal phase. Indeed, XRD showed the presence of both α- and γ-MnS in comparable amounts. The authors also showed that the morphology can be controlled by varying the concentration of the precursors. When the latter is increased to 2 M, arrays of MnS nanowires (diameter 60–80 nm, length 30–40 μm) are obtained while MnS nanosheets (thickness 150–190 nm, width 10–15 μm) are produced when the concentration is lowered than 0.5 M. A similar hydrothermal technique was used to prepare γ-MnS nanorods-tetrapods [14] by autoclaving an aqueous solution of Mn(II) chloride tetrahydrate (21.4 mM), Na2S (42.8 mM, Mn:S 1:2), and ammonia (~1 M). The tetrapods have reasonably good morphology: each branch is a nanorod with a diameter of ~50 nm and a length of ~250 nm. XRD showed that they are pure γ-MnS and the growth direction along the [001] direction was determined by HRTEM. Additional experiments showed that the tetrapods formed by the self-assembly of independent nanorods. These nanosystems are promising materials for supercapacitor applications (see below).
\nCVD has been employed to synthesize γ-MnS 1D nanosystems with a peculiar comb-shaped morphology [10]. MnCl2 and sulfur powder (Mn:S = 1:3) were used as precursors and AuCl3 treated (001) silicon was used as a substrate. In this way, nanoribbons with one smooth edge and one saw-toothed edge were obtained and referred to as nanosaws. The product is mainly γ-MnS but a small amount of β-MnS was also observed by XRD. The nanosaws are over 25 μm long and 100–350 nm wide (the width is uniform all along the ribbon). The saw-teeth protrudes 10–50 nm from the (imaginary) flat baseline. Combining ED and HRTEM data, it was found out that the nanosaw long axis is parallel to the [01
A brief description of α-MnS nanowires obtained by atmospheric pressure CVD using MnCl2 and sulfur powder as precursors and AuCl3 treated (001) silicon as a substrate was reported in Refs. [47, 48] but unfortunately only SEM images and XRD pattern were given. A more detailed study regarding Cd-doped α-MnS nanowires synthesized by CVD was later published [49]. In this case, MnCl2 and CdS were used as precursors and the Cd content was controlled by varying the temperature of the Mn source between 600 and 700°C. We here focus on the almost pure MnS nanowires that gave a clean α-MnS pattern in the XRD plot. The nanowires are about 20 μm long and have an average diameter of 70 nm. ED and HRTEM data showed that the growth direction is along [110]. The chemical composition was studied by EDX: a line scan perpendicular to the nanowires long axis gave a Mn:S ratio close to 1 and a Cd content lower than 1%. These conclusions were confirmed by XPS. The photoluminescence and magnetic properties of these α-MnS nanowires have also been investigated (see below).
\nTo improve the performance of a supercapacitor material comprising γ-MnS nanorods-tetrapods, the same group synthesized another 1D γ-MnS nanomaterial by a hydrothermal method involving autoclaving for 2 h at 120°C an aqueous solution of Mn(II) chloride tetrahydrate (8.4 mM), thiourea (44 mM, Mn:S 1:5), and KOH (3.3 mM) [14]. They obtained a mixture of γ-MnS nanowires (diameter 10–20 nm, length 0.5–3 μm, growth direction [102]) and mixed-phase MnS NCs (10–20 nm). The authors attributed the presence of the NCs to fracture of the nanowires induced by lattice expansion due to the formation of manganese hydroxysulfide during the synthesis. This mixed product was used to fabricate an asymmetric supercapacitor (see below).
\nPurer samples of γ-MnS nanowires have been prepared by autoclaving for 18 h at 120°C a solution of Mn(II) acetate (1.44 mmol), thiourea (7.88 mmol, Mn:S ≅ 1:5.5), and ethylenediamine in water (pH ~10) [56]. XRD showed that the product is predominantly γ-MnS but some α-MnS is present. The product has nanowire morphology and interestingly comprises two types of nanowires. The primary nanowires occur in bundles and have a hexagonal cross section and [0001] growth direction. The second-type nanowires do not form bundles and have a rectangular cross section and [1
Another 1D nanoheterostructure involving γ-MnS nanowires has been synthesized to improve the performance of 1D γ-MnS nanosystems as electrode materials for Li-ion batteries [11]. The preparation method is similar to that used by the same authors to prepare γ-MnS nanosaws [10], but the used Mn:S ratio of 1:3 and methane gas(partial flow = 5 sccm) added to the argon flow in the furnace. The products are nanowires comprising an elongated γ-MnS nanocore conformally coated with graphitic carbon and with hexagonal cross section (see Figure 4). The nanowires have diameter in the range of 60–100 nm and are more than 100 μm long but they easily break into shorter nanorods upon manipulation. The heterogeneous composition of the nanowires is already visible in TEM images and HRTEM confirmed the presence of both γ-MnS, as indicated by XRD data, and graphitic carbon, as indicated by Raman spectra. HRTEM also showed that the γ-MnS nanocore growth direction is [0001] and that the γ-MnS/C interface is narrower than 0.5 nm. The nanometer-resolved chemical composition of the nanowires was deduced from EDX and EELS data, which showed that the γ-MnS nanocore has Mn:S ratio close to 1:1 and diameter in the range of 20–50 nm. Extensive mechanical and electrochemical investigations of these heterostructured nanowires are reviewed below.
Electron microscopy images of γ-MnS/C nanowires. Top left:Low magnification FE-SEM image; the inset shows the nanowires after transfer onto a TEM grid. Top right: High magnification FE-SEM image showing the hexagonal cross section of the nanowires; the inset shows a close-up of an individual nanowire. TEM image (bottom left) of representative γ-MnS/C nanowires and HRTEM image (bottom right) of the γ-MnS/C interface. Adapted with permission from [
In this section, we review reports where the issue of polymorphism control was purposely investigated. As early as 2001, Lu et al. [16] found that the crystal structure of the MnS sub-microcrystals, produced by autoclaving at 190–200°C a solution/suspension of MnCl2 tetrahydrate and thiourea (Mn:S = 1:4), could be regulated by the solvent. In particular, γ-MnS nanorods and tetrapods were obtained using benzene as a solvent, β-MnS was prepared using THF, and α-MnS was obtained with aqueous solvents (water, aqueous ammonia, aqueous ethylenediamine). Unfortunately, the morphology of the α- and β-MnS crystallites was not given. These results were later confirmed by Ref. [38].
\nThe formation of MnS NCs with a given crystal structure and their polymorphic interconversion could be controlled by changing thermal parameters, as expected on the basis of the different thermodynamical stability of the three polymorphs. In 2002, it was reported [17] that when MnS nanosystems were solvothermally prepared by decomposing Mn(II) di(ethyldithiocarbamate) (Mn:S = 1:4) in hexadecylamine, cubic α-MnS NCs was formed at 250°C, whereas γ-MnS nanowires and multipods with γ-MnS branches grown from a β-MnS seed were obtained at temperature lower than 150°C. The heating rate was found to affect the crystal structure of the synthetic outcome in a similar reaction where the same single precursor was dissolved in a 1:1:2 mixture of oleic acid, oleylamine and 1-octadecene and heated at 320°C [26]. By heating a reaction mixture at a rate of 15°C/min, α-MnS NCs were obtained, but larger pencil-shaped γ-MnS NCs were produced at a heating rate of 25 and 35°C/min.
\nThe tendency toward α-MnS when the approach to equilibrium is favored was also reported in an investigation of the crystal structure of MnS sub-microcrystals obtained by injecting an aqueous solution of MnCl2 in a pre-heated alkaline solution of NaHS (Mn:S ≅ 4:1) in a pressurized reactor (note the absence of organic reagents) [42]. The initial MnS polymorph formed upon mixing is dependent on the reaction temperature. α-MnS sub-microcrystals formed within 5 min after injection when the reaction temperature was higher than 325°C, whereas a pure γ-MnS product was obtained when the reaction temperature was 235°C. At room temperature, the initial product is a mixture of γ- and β-MnS NCs, which underwent crystal phase transformation upon heating. Pure γ-MnS crystallites were obtained by treating the reaction mixture at 150°C for 3 days while complete transformation into the thermodynamically stable α-MnS phase required temperature higher than 200°C for 3 days. In view of these results, the authors noted that it is unclear whether α-MnS sub-microcrystals prepared by injection at 325°C directly formed as such or precipitated as γ-MnS crystallites that quickly transformed into α-MnS within the 5-minute reaction time.
\nPure samples of all three MnS polymorphs were synthesized again by changing the reaction temperature in a solvothermal protocol [40]. In this investigation, pressure-induced crystal phase transformation of MnS nanosystems was also reported. Anhydrous MnCl2 (0.5 mmol) and thioacetamide (0.5 mmol, Mn:S = 1:1) were dissolved in oleylamine (5 ml) and autoclaved for 30 min at various temperatures. At 200°C, 15 nm β-MnS NCs were obtained while γ-MnS bipods with β-MnS cores were produced at 230 and 250°C. Pure γ-MnS rods (340 × 50 nm) were obtained at 270°C and large (ca. 500 nm) spherical α-MnS NCs formed at 280°C. These results show that small temperature differences strongly affect the product crystal structure. However, the effect of pressure is the most interesting part of this report. Samples of β-MnS NCs and γ-MnS bipods (with β-MnS core) were compressed in a diamond anvil cell and their transformation into denser α-MnS was followed by XRD (see Figure 5). β-MnS NCs were more resistant to pressure (transformation in the range of 5-3–8.3 GPa) compared to γ-MnS bipods (2.9-4.7 GPa). The authors also showed that these transformations are first-order phase transitions with volume decrease of 18% (β-MnS NCs) and 25% (γ-MnS bipods).
High-pressure XRD patterns of β-MnS NCs (left) and γ-MnS bipods with β-MnS core (right). Legend: RS = α-MnS, ZB = β-MnS, WZ = γ-MnS. The stars and triangle in the left panel represent diffraction peaks from γ-MnS and the (200) peak of α-MnS, respectively. Adapted with permission from [
In addition to the variation of physical parameters, control of the polymorphism of MnS nanosystems can also be achieved by chemical means. In Ref. [34], it was briefly mentioned that using a higher (lower) sulfur content in a solvothermal protocol involving heating at 200°C a solution of Mn(II) nitrate and sulfur powder in octadecylamine produces large α-MnS NCs (micrometer-size γ-MnS nanorods) but no detail was reported. The importance of both physical and chemical parameters in polymorphism control was ascertained for a solvothermal reaction involving autoclaving a solution of MnCl2 (3.2 mmol), sulfur powder (3.0 mmol, Mn:S = 1:0.94), and KBH4 (5.0 mmol) as a reducing agent in ethylene glycol. At low temperature (≤180°C), hollow 300–500 nm spherical aggregates composed of 30–40 nm γ-MnS NCs formed, as determined by SEM, TEM, and XRD, with composition Mn:S = 1:1.03 from ICP data. These are the optimum conditions for the preparation of γ-MnS, any change in reaction conditions induced the partial or complete formation of α-MnS. This of course includes an increase in temperature but also the solvent as ethanolamine and ethylenediamine yielded α-MnS. The role of the reducing agent is also interesting. KBH4 is necessary to prepare γ-MnS but the stronger reductant hydrazine produced α-MnS. In general, it seems that the presence of amino groups, either in the solvent molecule or in the reductant, favors the formation of α-MnS. Similar results were obtained for the hydrothermal reaction [51] of MnCl2 tetrahydrate (1 mmol) with Na2S nonahydrate (1.5 mmol, Mn:S = 1:3) at 180°C for 9 h yielding γ-MnS sub-microrods (diameter 200–300 nm, length 1–1.5 μm) with a hexagonal cross section. However, when 34 mmol of hydrazine was added to the reaction mixture, α-MnS octahedral sub-microcrystals (edge length 170–200 nm) were formed. It was ascertained that neither pH nor temperature (120°C–180°C) affects the synthetic outcome. However, carrying out experiments with different reaction times and observing that treatment of the γ-MnS nanorods with hydrazine gave α-MnS led the authors to propose that α-MnS crystallites originated from redissolution of γ-MnS nanorods mediated by the formation of a hydrazine-manganese complex.
\nFinally, an extensive study [31] on the effect of the surfactant on the crystal phase of the MnS NCs resulting from a solvothermal protocol was carried out. The amount of sulfur needed to obtain MnS NCs by a solvothermal synthesis depends on the amount of surfactant present. A particular reaction was investigated where a mixture of (Mn precursor):sulfur:surfactant 2:4:1 dissolved in 1-octadecene was heated to 320°C (heating rate = 10°C/min). As a Mn precursor, Mn distearate and Mn2(CO)10 were used and a wide range of surfactants were investigated, that is, stearic acid, oleic acid, hexadecylamine, dodecylamine, octadecylamine, oleylamine, oleylalcohol, and dodecanethiol. It was concluded that to prepare γ-MnS NCs from a solution of elemental sulfur and a manganese precursor in 1-octadecene, it is necessary that the reaction mixture comprises both amine and carboxylic acid surfactants, otherwise α-MnS NCs are formed. Furthermore, whether the carboxylic acid is present as a free surfactant or as a carboxylate ligand within the Mn precursor is irrelevant to the crystal structure of the resulting NCs.
\nBecause of the growing interest in optical and optoelectronic applications, several studies reported on the optical absorption and photoluminescence (PL) spectra of MnS nanosystems, which can be useful as light emitting and optoelectronic devices in the ultraviolet spectral region [52], thanks to the wide bandgap of MnS and blue-shifting quantum confinement effects.
\nThe optical absorption spectra of 0D α-MnS NCs were described in several reports. Hydrothermally synthesized 30-nm spherical α-MnS NCs displayed a well-defined absorption band peaking at 261 nm (4.75 eV) [38]. Larger NCs showed broader absorption peaks. Star-shaped ~100-nm hexapods exhibited a broad peak at ca. 360 nm (3.4 eV) and ~200-nm hexagonal NCs had a similar peak but red-shifted to ca. 370 nm (3.3 eV) whereas the absorption spectrum of intermediate-size octahedral NCs is almost featureless [26]. Size-dependence of the absorption spectrum was observed for ordered aggregates of α-MnS nanocubes with edges 14, 26, and 40 nm [52]. The spectra are almost featureless but peaks in the near ultraviolet (337, 346, and 355 nm for 14, 26, and 40 nm nanocubes, respectively) were discerned and attributed to the transition to the excitonic state. The blue-shift from the 388 nm transition of the bulk material is sizeable and modulated via the nanocubes edge length.
\nPhotoluminescence of 0D α-MnS NCs was only reported in the case of size-controlled nanocubes, [52], which when excited at 300 nm emit in the near ultraviolet range at room temperature. The PL maximum is size dependent and ranges from 356 to 373 nm (3.48–3.23 eV) when the cube edge grows from 14 to 40 nm, showing the effects of quantum confinement. This phenomenon and the NC size control afforded by wet nanocrystal chemistry techniques make size-controlled α-MnS NCs promising materials for emitting devices in the ultraviolet region. PL was also investigated in 1D α-MnS NCs. Hydrothermally synthesized α-MnS nanorods (40–60 nm × 0.5–1.2 μm) excited at 273 nm at room temperature displayed a strong, narrow PL peak at 400 nm (3.1 eV), corresponding to the good size dispersion and crystal quality of the nanorods [35]. A more in-depth investigation of the PL of α-MnS nanowires (pure and Cd2+-doped) was later reported in Ref. [49]. We here focus on the pure α-MnS nanowires that are about 70 nm in diameter and grown along the [110] direction up to about 20 μm in length. Their PL was observed after excitation at 325 nm between 7 and 300 K and comprised two bands. The broad and weak band at ca. 2.9 eV (428 nm) was attributed to band-edge emission involving the excited states of the Mn2+ ions. The other band centered about 1.6 eV (775 nm) has strongly temperature-dependent intensity and vanishes at temperature above ~150 K (see Figure 6). This band was attributed to the decay of impurity-perturbed Mn2+ excited states. Time-resolved PL of the 1.6 eV band after excitation at 266 nm showed that its average decay time at 7 K is 40 μs.
Photoluminescence of MnS nanosystems. Left: Temperature dependence of the photoluminescence spectrum of α-MnS nanowires measured between 7 and 300 K after excitation at 325 nm; the time resolved photoluminescence of the 1.6 eV band after excitation at 266 nm (4.66 eV) is shown in the inset. Adapted with permission from [
The PL of β-MnS nanosystems received some attention. The photoluminescence excitation (PLE) spectra, obtained by monitoring the intensity of the PL while varying the excitation wavelength, showed several well-resolved peaks attributed to the transition from the ground 6A1 state to the excited states of Mn2+ ions. Interestingly, the 6
Based on this concept, another group prepared small (5.5–6.5 nm) 0D ZnS@MnS@ZnS heterostructures by a hydroalcoholic co-precipitation protocol [6]. These triple-layer nanoparticles display a narrow intense “orange” PL band in addition to the short wavelength peaks attributed to defects in the ZnS lattice. The wavelength of the “orange” peak gradually shifts from 742 to 750 nm upon increasing the amount of Mn precursors in the synthesis, which presumably corresponds to increasing thickness of the MnS layer. The authors propose several explanations for the systematic red shift upon increasing the Mn content. This effect could be due to size-dependent electron-phonon coupling and crystal-field effects but they can also be related to the incorporation of Mn2+ ions into the ZnS lattice. Finally, long β-MnS nanowires (diameter ca. 25 nm) have a clearly defined absorption band at 371 nm (3.34 eV), described as an excitonic transition, and a Gaussian-shaped PL peak at 488 nm (2.54 eV), the shape of which was interpreted by the authors as evidence of the good monodispersion and surface passivation of these solvothermally prepared nanowires [27].
\nWe are aware of a single report on the optical properties of 0D γ-MnS NCs, whereas 1D γ-MnS nanosystems have attracted some attention. Small (3–11 nm) γ-MnS NCs grown inside mesoporous silica exhibited the so-called “orange” band at 2.1 eV (590 nm) when excited at 325 nm [43]. Thin γ-MnS nanowires (diameter 2.2 nm, aspect ratio ~80) displayed an absorption band edge at 3.64 eV (341 nm) and a well-defined PL peak centered at 3.34 eV (371 nm), which therefore seem to be promising as near ultraviolet emitters [17]. A morphologically heterogeneous sample of γ-MnS rod-like and branched nanosystems (with an aspect ratio of 6–10) displayed a very broad absorption band at 278 nm (4.46 eV) and very weak PL with peaks at 368 and 438 nm (3.37 and 2.83 eV), both attributed to band edge emission (no trap state emission was detected) [38]. The optical properties of CVD-synthesized γ-MnS nanosaws (length ~25 μm in the [01
In summary, all α-MnS NCs show band-edge emission but only 14–40 nm nanocubes are able to emit in the ultraviolet range. The “orange” band was only observed in the spectrum of the thicker and longer α-MnS nanorods. Small (2–11 nm) 0D β-MnS NCs, both uncoated and ZnS-coated, display the “orange” peak at 2.1 eV in the PL spectrum, while β-MnS nanowires (diameter 25 nm) have a significantly blue-shifted PL peak at 2.54 eV; ZnS-coated β-MnS NCs have an attractive PL quantum yield of 35%. Very thin γ-MnS nanowires emit in the near ultraviolet, whereas large nanosaws are good “orange” emitters. In conclusion, the optical properties of MnS nanostructures are very sensitive to morphology and crystal defects so that tight synthetic control is required to obtain good performance. Interesting results, especially in the near ultraviolet region, have been demonstrated, and MnS remains a promising candidate as an emitter in the range 340–380 nm.
\nRecently, electrical properties and applications of MnS nanosystems have attracted much interest. Indeed, several studies showed that MnS NCs are promising materials as electrodes for lithium ion batteries (LIBs) [10–13, 53] and as supercapacitors [14, 15]. However, the first electrical characterization in 2008 was the measurement of the current-voltage (
The use of crystalline nanomaterials to build electrodes for LIBs has gathered much attention since nanomaterials have a high surface/volume ratio, reduce Li diffusion length, are able to accommodate crystal strain, can be processed from solution, and can be produced by the rich toolbox of colloidal chemistry, which enables one to control the nanomaterial composition, size, and shape. It is noteworthy that all three MnS polymorphs have been investigated as nanosized LIB electrode materials. To put the capacity values reported below in the appropriate framework, we recall that the theoretical capacity of MnS is 616 mAh g-1. Sub-micrometric α-MnS crystals, hydrothermally-grown at different temperatures, were mixed with carbon black and a polymeric binder (8:1:1 w/w) and spread on copper foil. These electrodes showed good performance [53]. All samples exhibited a lithiation plateau at about 0.7 V versus Li/Li+, which corresponds to the Li+ insertion in MnS and evidences that the α-MnS sub-microcrystals are suitable anode materials for LIBs. The α-MnS sample prepared at the lowest temperature (120°C) displayed the highest initial lithiation capacity (1327 mAh g−1), thanks to the small particle size (150–600 nm). In all cases, however, the lithiation capacity is sharply reduced in the second cycle and then it decreased slowly upon cycling. The large irreversible decrease between the first and second cycles was attributed to the formation of a solid electrolyte interface film on the surface of the electrode. Considering the overall behavior, the best electrode is prepared using particles synthesized at 160°C (about 700 nm in size) which maintained a capacity of 578 mAh g−1, corresponding to ca. 81% of the second lithiation capacity, after 20 cycles. The authors attributed this performance to the better crystallinity of the 160°C α-MnS sub-microcrystals.
\nRecently, β-MnS NCs were used to prepare promising electrode materials for LIBs without employing any binder or conductive filler (e.g., carbon black) [13]. The solvothermally prepared ~15 nm β-MnS NCs were first electrophoretically deposited on copper plates and then stripped of their organic ligand coating by either heating at 300°C or dipping in a methanolic solution of ammonium sulfide. The charge-discharge curves and the capacity retention on cycling of both heat-treated and dipped β-MnS NC film electrodes are shown in Figure 7. These electrodes showed a lithiation plateau at 1.7 V, stable for more than 50 cycles, which makes them suitable as cathodes in LIBs. The electrodes showed excellent stability with a final capacity of 420 (dipped) and 470 mAh g−1 (heated) after more than 50 charge-discharge cycles. The good performance of these electrodes was attributed to the improved interparticle coupling and electrical properties (e.g., electrical conductivity) obtained by the combination of electrophoretic deposition and ligand stripping which allowed the authors to prepare electrodes free of additives and organic ligands.
\nFinally, also 1D γ-MnS nanosystems were used as electrodes due to their potential application for LIBs. CVD synthesized γ-MnS nanosaws (length ~25 μm in the [01
Electrochemical performance of β-MnS NC film electrodes without a conductive filler and a polymeric binder. Left: Capacity retention on cycling. Charge-discharge curves of chemical- (middle) and heat-treated (right) β-MnS NC film electrodes; the plateau at 1.7 V can be clearly seen. Adapted with permission from [
Nanosized γ-MnS has very recently turned out to have exciting properties for supercapacitor applications. A supercapacitor is a high-capacity electric capacitor showing performance between conventional electrolytic capacitors and rechargeable batteries. They typically store 10–20% of the energy that one can put into a battery but supercapacitors store and release energy much faster than a battery and can withstand many more cycles because they do not rely on electrochemical reactions to charge-discharge. Supercapacitors have advantages in applications where a large amount of power is needed for a relatively short time and when a very high number of charge-discharge cycles or a longer lifetime is required. A typical application is power supply stabilization in consumer electronics: supercapacitor-powered devices (e.g. portable speakers, screwdrivers) have already reached the market. Supercapacitors are widely used to reduce energy consumption in transportation, e.g., recovery of braking energy since they can quickly store and release energy over long times with a high cycle rate.
\nHydrothermally synthesized γ-MnS tetrapods (with 50 × 250 nm branches) were mixed with acetylene black and a fluorinated polymeric binder (70:15:15 w/w) and used to coat a nickel foam current collector [14]. Cyclic voltammetry showed that these electrodes have high specific capacitance even at a high rate, e.g., of 705 F g−1 at a scan rate of 1 mV/s and 323 F g−1 at 100 mV/s. This excellent performance was attributed to the intercalation of hydroxyl ions between the MnS layers parallel to the basal crystal plane, which are easily accessible from the exterior since they are perpendicular to the nanorod axis along the [001] direction. The charge-discharge curves maintain their quasi-triangular shape at a current density as high as 10 A g−1. The γ-MnS tetrapod capacitors had very good cycling performance with a capacity retention of 80% after 1000 cycles and 63% after 5000 cycles, with high and constant coulombic efficiency. The XRD investigation of cycled electrodes indicated that the performance degradation can be attributed to the transformation of the NCs from the γ- to the stable α-crystal structure. Asymmetric capacitors prepared by coupling a γ-MnS tetrapod positive electrode with a negative activated carbon electrode were shown to be purely capacitive and maintain the high rate capacity of the symmetric capacitor. The specific capacity is of course lower (59.8 F g−1 at 1 mV/s scan rate and 37.6 F g−1 at 100 mV/s) but the achieved energy density (11.7 Wh kg−1 at the power density of 4.45 kW kg−1) is higher than that of carbon-based symmetric capacitors in aqueous electrolytes. In order to achieve better performance by improving the carbon-based-electrode, the same group later reported on an asymmetric supercapacitor comprising inhomogeneous MnS nanomaterials (NCs and nanowires, all three polymorphs present) as a positive electrode and highly porous amorphous carbon derived from eggplants [15]. These capacitors (with almost purely capacitive behavior) exhibited high specific capacitance (around 100 mAh g−1) even at a rate of 100 mV s−1 and at current as high as 50 mA and retained 90% of the capacitance after 5000 cycles. The authors attributed this stability to the ionic accessibility and stability of the layered crystal structure of γ-MnS and showed that after being fully charged, two capacitors in series can light up a red LED indicator for 15 minutes.
\nAs anticipated, all three MnS polymorphs have antiferromagnetic (AFM) structure at low temperature, since the high-spins
Several reports focused on α-MnS 0D NCs prepared by solvothermal techniques. Puglisi et al. [32] studied octahedral α-MnS NCs with size 14, 20, and 29 nm. The general behavior of the NCs corresponds to that observed for AFM materials. The high-temperature magnetization obeys the Curie-Weiss law with size-dependent Θ = −149 K (14 nm), −227 K (20 nm), −272 K (29 nm), much higher than the bulk value. The effective magnetic moment is close to the bulk value, ranging from 4.6 to 4.9 μB. These results clearly indicate that the strength of the exchange interaction supporting the AFM order is strongly size-dependent whereas the local electronic structure of the Mn2+ ions is similar to that in the bulk. The low-temperature magnetization does not show cusps related to the AFM/PM phase transition but suggests the presence of some ferromagnetic (FM) materials, in particular for the 29 nm NCs which display a maximum in the ZFC magnetization at 25 K. This was confirmed by the isothermal magnetization at 5 K displaying an open loop with strongly size-dependent coercivity
Low field part of the field-cooled isothermal magnetization (hysteresis loop) of 14 nm (blue), 20 nm (red), and 29 nm (black) α-MnS NC. Both the open loop and the loop shift are clearly seen.
Size-dependent magnetic properties were also measured for α-MnS cubic NCs with an edge size of 14, 26, and 40 nm [52] and further supported the core-shell model. The ZFC/FC magnetization is similar to that observed for octahedral NCs, showing at 32 K a maximum of the ZFC magnetization of 26 and 40 nm NCs. The largest NCs also reveal an increase of the FC magnetization below 28 K related to the freezing of the surface spins. The low-temperature hysteresis loops confirmed the presence of an FM region since they display open loops with size-dependent coercivity ranging from 10 Oe (14 nm) to 1265 Oe (40 nm), which is in good agreement with the coercivity of octahedral NCs. The study of the magnetic properties of 45 nm star-shaped α-MnS NCs [33] again confirmed this model by showing that at 5 K the NCs have an open hysteresis loop with large
Two facts about the magnetic properties of 0D α-MnS NCs are generally agreed upon. First, the NC core undergoes a low-temperature AFM transition characterized by negative Curie-Weiss temperature Θ that approaches the bulk value (−465 K) as the NC size increases. Second, the NC surface spins form an FM-like layer, which is clearly observed in the low-temperature hysteresis loops. The observed coercivity ranges from the hundreds of Oe for 20–30 nm octahedral NCs to the kOe range for 40 nm nanocubes and 45 nm nanostars. Exchange coupling between the AFM core and the FM shell has been detected as a shift (exchange bias) of the field-cooled hysteresis of octahedral α-MnS NCs [32].
\nThe magnetic properties of 1D α-MnS nanosystems have also been studied. α-MnS nanowires, slightly doped with Cd, have been grown by CVD to about 20 μm length and average diameter 70 nm [49]. The growth direction is along [110]. They generally behave as an AFM material both at low temperature (where they display closed isothermal magnetization curves) and at high temperature (
The magnetic properties of γ-MnS nanosystems have been rarely reported. However, a detailed study of 0D γ-MnS NCs has been described. Spherical γ-MnS NCs with size 3–11 nm were prepared by intrapore synthesis inside mesoporous silica [43]. The high-temperature part of the NC magnetization versus temperature curve follows the Curie-Weiss law with Θ ranging from about −500 K (11 nm) to about −100 K (6 nm). It is noteworthy that 3 nm γ-MnS NCs closely follow the Curie-Weiss law down to 2 K, indicating that AFM ordering is not present even at such low temperature. Therefore, the behavior of γ-MnS NCs agrees with the conclusion drawn for α-MnS NCs, i.e., the onset of AFM ordering occurs at lower temperature for smaller NCs. Deeper insight into the magnetism of the γ-MnS NCs was obtained by studying their electron paramagnetic resonance (EPR) spectrum. EPR is a local probe of the magnetic state of transition ions but, because of the strong interactions between Mn2+ ions, the EPR spectrum appears as a broad line without any resolved feature from zero-field or hyperfine interaction. Careful analysis of the temperature-dependent EPR spectra showed that they are actually composed of a broad and a narrow line, the latter following the purely PM Curie law. The broad line follows the Curie-Weiss law with negative Θ typical of AFM materials and the EPR-derived Θ values closely agree with those derived from magnetization measurements, evidencing that the broad EPR line corresponds to the AFM ordered core of the NCs. Since optical measurements showed that the Mn2+ exchange constant does not depend on size, the strong decrease in the AFM onset with size was attributed to the presence of a disordered PM shell. By analyzing the relative intensity of the broad (AFM) and narrow (PM) EPR lines, the authors could conclude that the surface/volume ratio is critical to determine the onset of the long-range ordered AFM phase and that the minimum diameter to observe AFM ordering of γ-MnS NCs at non-zero temperature is between 3 and 6 nm, corresponding to 1000–4000 Mn2+ ions.
\nHeterostructures consisting of a 16 × 16 nm γ-MnS nanocylinder epitaxially grown on a 16 × 4 nm Cu1.94S nanoplate were synthesized by a solvothermal technique [50]. The isothermal magnetization curve is purely PM but no conclusion can be drawn since the measurement temperature is not specified. The magnetic properties of solvothermally prepared γ-MnS nanorods (2.4 × 20 nm) were measured [17]. The isothermal magnetization at 5 K displayed an open loop with large coercivity (
No magnetic characterization of β-MnS NCs seems to have been reported except for a brief EPR study. The RT EPR spectrum of solvothermally prepared β-MnS nanowires with 25 nm diameter was described [27] as a single line at
In conclusion, the magnetic properties of MnS nanosystems can mostly be understood on the basis of the magnetic core-shell model where just the nanosystem core undergoes a size-dependent AFM transition (the smallest the size, the lowest the transition temperature) whereas the nanosystem surface shell form a FM-like (α- and γ-MnS) or PM (γ-MnS) layer. We recall that the observation of exchange bias shifted hysteresis loops in octahedral α-MnS NCs [32] is a strong evidence of the presence of an FM/AFM interface.
\nAs a very promising application of the magnetism of MnS, we mention a report demonstrating very good performance of α-MnS NCs as a
The mechanical properties of individual heterogeneous γ-MnS@(graphitic carbon) nanowires synthesized by CVD have been measured using an AFM holder in a TEM chamber [11]. The nanowires have hexagonal section (60–100 nm) and are over 100 μm long in the [0001] direction; the inner γ-MnS core has a diameter of 20–50 nm. Under uniaxial compression, the nanowires first underwent a weak plastic deformation followed by fracture in brittle mode at a critical force of 1330 nN. The fracture occurs perpendicular to the nanowires axis along the [0001] direction. The calculated Young modulus (65 GPa) is comparable to that of 1D ZnS nanosystems and three orders of magnitude lower than that of carbon fibers, suggesting that the modulus is dominated by the γ-MnS core. This was supported by bending and axial stress experiments, which showed that the strain is mostly confined to the γ-MnS core.
\nAs a last application, we mention that 3–5 nm MnS NCs (a mixture of all three polymorphs) prepared inside mesoporous silica by impregnation/calcination were successfully used as a catalyst for the growth of carbon nanocages when a flow of methane was passed on the NC-containing silica [55]. The latter have non-uniform size but their framework elements are 3–7 nm thick, consistent with the size of the MnS NCs. This suggests that the framework elements grow starting from the MnS NCs in the silica pores. A growth mechanism has been proposed involving the formation of reduced metal sites on the MnS NC surface where methane cracking occurs. The deposited carbon cannot form carbides and nucleates the growth of the nanocages. The authors claim that this is the first example of using a transition metal sulfide for the synthesis of carbon nanostructures.
\nWe have reviewed the literature concerning the synthesis, properties, and application of MnS nanosystems having at least one dimension smaller than 100 nm, with a few exceptions regarding MnS sub-microparticles with interesting properties and applications. The wide variety of successful synthetic techniques for the preparation of 0D and 1D MnS nanosystems (both homogeneous and heterogeneous) with size, shape, and polymorphism control is astounding. However, the issue of independently controlling morphology and crystal structure is not yet completely solved. Further research in this direction is needed to foster application of MnS nanosystems in the above described fields. Recently, excellent results on the performance of MnS nanomaterials have been reported that we believe will further stimulate basic and applicative research in the exciting field of MnS nanosystems.
\nThe Atmosphere hosts almost all emissions from every source on the Earth’s surface, freshwater bodies, oceanic surface and anthropogenic emissions. In the atmosphere, mercury occurs in the following three primary forms: The gaseous elemental mercury (GEM), reactive elemental mercury or divalent mercury (RGM) and particulate mercury (PHg) [1, 2]. There is a significant quantity of research which indicates that these elements in the environment, water and marine environments via a dynamic mixture of transport and transformation in natural and human (anthropogenic) [1, 3, 4, 5]. Mercury (Hg) stays as a natural substance with the biogeochemical cycle, which is involved in the Earth and is considered as a contaminant because of its long-range transport in the atmosphere [6, 7]. At World level, about 50 to 70% of total mercury discharge is through anthropogenic exercises, including petroleum product ignition, smelting of metals, burning of urban waste, the release of smoke from coal-burning power plants [8, 9]. In nature, mercury occurs in three unmistakable structures, GEM, RGM and PHg [10, 11, 12, 13]. Among these three structures, RGM and PHg shift rapidly because of their characteristics such as high-water dissolvability and reactivity [14, 15]. The lifetime of GEM is 0.5 to 2 years, which is sufficient for its transportation worldwide level [16, 17, 18]. It is reported that East Asian Nations are a standout amongst the most critical patrons of worldwide anthropogenic mercury discharge [19, 20, 21]. Total gaseous mercury (Hg0) evasion is approximated to be 2900 mg/year (range 1900–4200 mg/yr) from the ocean [22, 23]. The ocean is therefore known to be the primary terrestrial Hg source worldwide, contrasted with approximately 2000 mg/yr from direct anthropogenic emissions. Hg usually occurs in geochemical reserves, but for several years human activities including mining and more recent burning of fossil fuels have increased the emission of Hg from the mineral source into the atmosphere [24, 25]. The background means the concentration of TGM in the northern hemisphere (1.3–1.6 ng m−3), southern hemisphere (1.1–1.3 ng m−3) and tropic regions (0.8–1.1 ng m−3) respectively [26, 27, 28]. Various investigations have been completed worldwide on GEM mainly centred on the urban and rural locales, including mining and mechanical territories [29, 30, 31, 32, 33, 34]. A thorough investigation of the air fluctuation, adding up to vaporous mercury and their relationship at the high-altitude station (Kodaikanal) of Southern India has been reported [35]. However, there is no complete investigation of the developed and developing urban regions of India and their contribution to TGM. This is the first research in India with a comparative and continuous observation of the temporal variations in TGM and its relationship to other meteorological parameters in urban and rural high-altitude stations. In general, the variation in mean seasonal concentration of TGM depends largely on meteorological variables. The study aims to investigate that during the day concentration of TGM is strongly change by solar radiation, evaporation and weather patterns. The main objectives of this study are to assess the Seasonal variability of atmospheric Total Gaseous Mercury (TGM) in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in India, to identify the potential sources and sinks of atmospheric mercury in the study areas and the influence of changing weather conditions on the atmospheric mercury distribution. Further, to compare the concentration of mercury in the past and recent findings of mercury at different locations around the world.
\nIn this study, monitoring sites are centrally located in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India (Figure 1). Kodaikanal is situated on a plateau on the southern ridge of upper Palani hill, at 2133 m (6998 ft) between the valleys of Parappar and Gundar. Such hills surround the Western Ghats mountains on the western side of South India. Kodaikanal region covering the whole of Kodaikanal taluk is located between 10° 7\'56" N latitude and 10°26\' and 77°15\' East and 77°42\' East longitude. Such hills shape the western Ghats on the west portion of South India\'s eastward slope. Kodaikanal is located on the east coast of the Western Ghats, at the southern end of the elevated hills of Palani of Dindigul district, in the state of Tamil Nadu. For a long time in Kodaikanal, despite reports of extensive mercury contamination, the closure of a mercury factory owned by the Indian Unilever company Hindustan Unilever became a big concern. There are 35,021 residents in Kodaikanal.
\nAtmospheric Total Gaseous Mercury (TGM) monitoring sites in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India.
Chennai, situated on the South East Coast of India is the capital of Tamil Nadu. The Chennai city houses large scale enterprises like Petrochemical businesses, Thermal power plants, Rubber Factories and also many small-scale industries are prospering in and around the city. Chennai Metropolitan falls in the tropical wet and dry climatic condition, with the average barometrical temperature of around 25 to 40°C. The normal yearly precipitation of the city is approximately 140 cm. Because of its varied industrial and domestic setting, Chennai Metropolitan is a suitable site for studying the variations in the concentration of TGM in the air. The computerized mercury vapour analyzer (Model No - Tekran 2537B) placed at Anna University, Guindy Campus, Chennai (13° 0\'45.05" N - 80° 14\'2.66" E; MSL – 49 ft) was used for TGM measurements. TGM measurement and dataset were collected from the top of the Institute for ocean management, building in the Guindy campus of Anna University. The sampling height is about 50 m above the ground level, and the sample inlet was fixed in 1m above the floor of the sampling site. Many significant roads crossed in the nearby observation sites it creating vehicular pollution, with no significant sources of massive industrial pollution within 10 km radius.
\nThe Total Gaseous Mercury (TGM) estimation was carried out using a Tekran™ 2537B utilizing an in-situ automated ambient mercury vapour analyzer. Tekran mercury vapour analyzer (2537B) continuously measured the TGM every 5-minutes from January 2015 to December 2016 at high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India. The meteorological information was acquired from computerized weather stations such as the Central Pollution Control Board (CPCB) Chennai station, Indian Meteorological Department and World weather online. Consistent informational collections of the above said parameters were recorded for each 15-minute interim and per day averages. Using a Mercury Vapor Automated Analyzer (Model No–Tekran 2537B), the addition of total gaseous mercury (TGM) was studied. To this achieve, using cold vapour atomic fluorescence spectroscopy (CVAFS) techniques and the minimum detection limit 0.1 ng/m3, which are described. When the ambient air was analyzed, a 47 mm Teflon filter was inserted in the whole measurement method of usage of the experiment. The flow rate is constant 1 L min–1 during all sampling periods. The implicit two gold cartridges, on the other hand, gather and thermally desorb mercury. The analyzer measured the Hg concentrations with intervals of 5 minutes automatically every 24 hours, and it was calibrated with its internal permeation sources. Present measurements at atmospheric TGM concentrations include other parameters, temperature, relative humidity, density, rainfall intensity, the direction of wind and velocity of the wind. The analyzer is automatically adjusted every 24 hours for each cartridge utilizing the internal ZERO and SPAN Permeation Processes. The peak areas for both cartridges during the calibration cycle are ensured during the ZERO process and under an error of less than ± 10% during the SPAN process. Computerized day-to-day alignments were performed every 24 hours (3.10 p.m. and 3.40 p.m.) using the instrument\'s internal adjustment source [35, 36]. The periodical inner alignment expels both in traverse and zero that are caused for the most part by temperature and maturing of the fluorimeter light. The tested air was estimated in each five-minute time interim at a stream rate of 5 L min−1. The detail of the inspecting air and the precision status of the instrument is clarified by Mao et al. The recognition furthest reaches of the TGM are< 0.1 ng m−3. The precision of the estimation and the task is ± 5 %. Zero air was utilized as straightforward for the instrument. Airstream was gathered through PFA Teflon tube, which was tried with an aftereffect of around 100 % RGM passing proficiency (vacillation of RGM is once in a while < 2 %). However, this method is still the most accurate to date and is widely used for the observation of speciated Hg in ambient air.
\nIn the meteorological variables at the high-altitude ground station at Kodaikanal, India continued measurement of total gaseous mercury (TGM= Gaseous Elemental Mercury (GEM) + Reactive Gaseous Mercury (RGM) was performed from Jan 2015 to December 2015). The mean concentration for TGM was 1.49 ng m−3 with a range of 1.1–2.10 ng m−3 is shown in Figure 2. The Global Mercury Observation System (GMOS) ground-based monitoring sites in India are also the highest altitude monitoring location in the GMOS network at Kodaikanal (South India). Such measurement positions constitute a major addition to the GMOS network and improve the understanding of atmospheric Hg species in this world region. The statistical summary of TGM concentration along with the meteorological parameters in the ambient air of Kodaikanal during the study period provided in Table 1. Figure 2 shows the hourly average, daily average, monthly variation of TGM concentration in high-altitude background station (Kodaikanal) in South India. The maximum hourly and daily average concentrations were 2.55 ng/m3 and 1.95 ng/m3, respectively. The TGM concentration was occurring at every day for a month, evening time (3.00 am to 6.00 pm; the maximum concentration within the whole-time frame) it is shown in Figure 2. This finding was identical to previous observations of [37], at high altitude, remote area of the region of Mt. Changbai, northeast China. Mean annual TGM concentrations at the site of Kodaikanal were recorded at 1.52 ± 0.24 ng/m3; between 0.77 ng/m3 and 3.35 ng/m3. These observable values of mean TGM concentrations were strongly linked to previous observations [35]. The average TGM values in the study area have also been compared with those reported from the high-altitude rural areas, but lower than in the Asian coastal regions [30, 38]. The highest monthly average TGM was reported in April 2015 (2.07 ng/m3), while in July 2015 the lowest monthly average was 1.08 ng/m3. The TGM concentrations range from 0.7 to 2.0 ng/m3, accounted for approximately 96% of the overall TGM. The annual mean TGM values were usually higher during the day time (1.57 ng/m3) compared tonight (1.08 ng/m3) it shows in Figure 2. The day-night fluctuations in the TGM level may be induced by temperature variations and thus condensation levels and soil volatilization. A rural site with a similar altitude (~2800 m) in the south of France, where the estimation of TGM in the Pic du Midi Observatory [39], with equivalent techniques, recorded an average of 1.86 ± 0.27 ng/m3. The geogenic mercury emissions are almost ~0.5 kilotonnes per year (kt y−1) and re-emission of Hg ~1.6 kt y−1 from the sources of plants and biomass burning [40]. The mercury deposition can be influenced by organic substances complexation, binding to Fe-Mn oxides, hydrothermal pollutants, sulfide interaction and methylation, as well as world proximities such as river drainage, waste sources, etc. [9, 10, 19, 41]. Meteorological conditions of high-altitude background station (Kodaikanal) in South India studied during the period under report are presented in Figure 3. The rose diagram graphically displays wind speed, and wind direction graph indicates that West, ENE direction has the maximum value of frequency fall in 20% with a wind speed range of 4–5 m/s at December to March. The minimum wind speed ranges 2–3 m/s falls in during May to November in Kodaikanal site (Figure 3). The relative humidity values increased from June to November; also, the TGM concentrations were decreased. But relative humidity values decreased from December to May; similarly, the TGM concentrations were increased. Between November and May (dry season), the TGM concentration difference was relatively higher than between June and August (wet season). The Correlation trends of TGM concentration and meteorological parameters in high-altitude background station (Kodaikanal) in South India it shows in Figure 3. There were major differences in the mean seasonal concentration of TGM, which mainly depends on weather conditions, and found to be the following: Summer > Winter > Northeast monsoon or Autumn > South-West monsoon or Spring it is given in Table 1. This research also showed that solar radiation, evaporation and rainfall strongly changed the daytime TGM concentration. The seasonal variation is influenced by meteorological conditions and other external sources [4, 14]. The gaseous elemental mercury is an important pathway from soil to atmosphere at the forest and to the environment [19]. Also, in the Kodaikanal region, the mean annual TGM value in the Northern Hemisphere in Kodaikanal is well within the ranges of the recorded TGM background for the area (1.5–1.7 ng/m3). These ground stations mainly track the remote background at high altitude sites and sea levels. The meteorological conditions are significantly influenced by the topsoils and vegetation to release mercury in nature environments [8, 26]. The findings were also significantly affected by long- transport of improved Hg air masses from the eastern part of Gansu, the west of Shanxi, the west of Ningxia as well as northern India [37]. Furthermore, these studies have shown that natural source emissions in summer are higher than in winter.
\nDiurnal and monthly variation of TGM concentration in high-altitude background station (Kodaikanal) in South India.
Sites | \nAir Quality Parameters | \nSeasons | \n|||
---|---|---|---|---|---|
Autumn | \nSpring | \nSummer | \nWinter | \n||
Chennai | \nWind Speed (m/s) | \n1.13 | \n1.38 | \n1.41 | \n1.11 | \n
Wind Dir (Deg) | \n198 | \n131 | \n157 | \n187 | \n|
Temp (°C) | \n29 | \n30 | \n31 | \n27 | \n|
RH (%) | \n71 | \n73 | \n67 | \n73 | \n|
SR (W/sq.m) | \n199 | \n254 | \n213 | \n198 | \n|
TGM (ng/m3) | \n4.69 | \n5.40 | \n3.62 | \n5.39 | \n|
Kodaikanal | \nWind Speed (m/s) | \n8.60 | \n6.70 | \n8.40 | \n9.20 | \n
Wind Dir (Deg) | \n177 | \n258 | \n129 | \n150 | \n|
Temp (°C) | \n17.6 | \n17.4 | \n20.5 | \n18.1 | \n|
RH (%) | \n92.2 | \n91.1 | \n82.6 | \n80.3 | \n|
SR (W/sq.m) | \n290 | \n304 | \n346 | \n322 | \n|
TGM (ng/m3) | \n1.54 | \n1.38 | \n1.62 | \n1.59 | \n
Statistical summary and Seasonal variations of ambient air quality parameters sites in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India.
Trends of TGM concentration and meteorological parameters in high-altitude background station (Kodaikanal) in South India.
Diurnal and monthly variation of TGM concentration and meteorological parameters in the coastal urban city (Chennai) in South India were estimated in-situ. In the overall monitoring period, day by day, TGM esteem ranges from 0.07 to 638.74 with a mean estimation of 4.68 ng/m3. The highest concentration of total gaseous mercury was recorded in June 2016 (638.74 ng/m3), and lowest concentration was recorded in August 2016 (0.07 ng/m3) at the coastal urban city (Chennai) in South India (Figure 4). The measured values of TGM are having a higher range than the Northern Hemisphere foundation concentration (1.50–1.75 ng/m3) [9, 42]. TGM concentration occurring at every day, night or early morning (2.00 am to 7.00 am; the maximum concentration within the whole-time frame) is shown in Figure 4. Similarly, TGM concentrations were higher in the early in the morning and midnight times reported by Schmolke et al. [36]. Such night-time maximums of TGM concentration [33, 36, 43, 44] have been due to mercury releases in the night-time inversion layer from surface accumulations. The potential sources of TGM in the investigation ground are from coal-based power plants, vehicular discharge, and squander burning [11, 12, 43]. The short-term measurements of TGM in china report recommend that the TGM ranges from 2.5 to 3.5 ng/m3 for east beach front territories of China, 1.94 to 3.22 ng m−3 for Indochina peninsular regions [29]. Ci et al. [45] revealed that sea occasions are effectively engaged with the conveyance of the GEM along with the beachfront territories. Globally an average of 1.5 ng/m3 of gaseous mercury is found in the atmosphere and Chennai; the average is 4.68 ng/m3. The present-day a large source of atmospheric mercury obtains from the ocean the mostly in Hg0 (approximately ranges 1900–4200 Mg/year). The datasets of meteorological parameters versus TGM were plotted in Figure 5. Amidst the whole investigation time frame, the most extreme aggregate recurrence of wind rose was seen between 35 to 65° (NE) and 195 to 275° (SSE to WSW), and this focus is around 39% of the aggregate TGM outflow from the coastal urban city (Chennai) in South India Figure 5. TGM fluctuations were observed seasonally and diurnally, which suggested differences in source intensity, deposition processes and meteorological influences. The meteorological data set observed used to compare total gaseous mercury variation in the coastal urban city (Chennai) in South India, and it shows in Figure 5. The annual rose diagram graphically displays wind speed, and wind direction graph indicates that NE direction has the maximum value of frequency fall in 14% with a wind speed range of more than 5 m/s at Chennai urban environments. It is observed that when the temperature (27 centigrade) is low, the total gaseous mercury is found to be maximum (8.07 ng/m3) for February (Figure 5). Solar radiation, temperature, relative humidity and the wind speed increased a month of April, but the TGM concentration was in declined it shows in Figure 5. The TGM concentration was in positively correlated in barometric pressure and wind direction. The TGM concentrations continuously decreased in the following months, April to August; similarly, the barometric pressure and relative humidity also decreased (Figure 5). The meteorological parameters play a vital role in regulating atmospheric total gaseous mercury concentrations [15, 46]. The leading cause of pollution in megacities India is affected by the coal-fired power plants, transportation, industrial activity and also urban solid waste [47]. The peak concentration of total gaseous mercury was observed in Chennai urban environments during Winter as 5.64 ng/m3, and the lowest concentration occurred during South-West Monsoon, which is 3.91 ng/m3. The highest concentration is observed during Winter and Summer due to long-range transportation of total gaseous mercury compared to autumn and spring seasons. The concentration of total gaseous mercury for the four seasons are arranged in the following order: Winter > Summer > Autumn > Spring for the coastal urban city (Chennai) in South India it is given in Table 1.
\nDiurnal and monthly variation of TGM concentration in the coastal urban city (Chennai) in South India.
Trends of TGM concentration and meteorological parameters in the coastal urban city (Chennai) in South India.
The influence of seasonal shift is very predominant in high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in South India. The meteorological parameters (Wind speed, wind direction, solar radiation, Atmospheric temperature, Relative humidity) and TGM focus were connected to decide the relationship connection between the informational indices of the monitoring sites. Total gaseous mercury concentration varies significantly with wind speed and wind direction and other meteorological parameters, a concentration which changes with the seasons as given in Table 1. China and India where less attention of recycling the waste and increased production of coal combustion, metals, chlorine, and cement production. In India imported mercury users of Chlor-alkali plants, thermometers, batteries, Hg-Zinc, Zn-Carbon, fluorescent lamps, thermostat switches, alarm clocks, and hearing aids a total mercury user of 129.32 (Mg) reported by Mukherjee et al. [47]. A total of 6500 tones year−1, adapted from, was measured for mercury emissions from biomass combustion, geogenic activities, and soil/vegetation/ocean emissions. The atmospheric mercury emissions approximately one-third from the sources of anthropogenic emissions similarly, natural emissions 70% and Oceanic emissions from 36% [31]. The primary anthropogenic sources such as combustion of fossil fuels for 24% and coal-burning (21%) at worldwide estimated emissions [5]. The approximately 2320 Mg of mercury is released yearly to the worldwide atmosphere (31%) for the primary sources of anthropogenic emission [8]. The world’s leading mercury reservoirs, a unit of the Earth\'s measurement system and still an ecosystem suffering from anthropogenic activity, encompass the atmosphere (4.4 to 5.3 Gt), the terrestrial environment (in particular soils: 250 to 1000 Gg) and aquatic ecosystems (e.g. oceans: 270 to 450 Gg) [48]. The sustainability of mercury monitoring networks is an essential factor affecting the effectiveness of monitoring efforts.
\nIn a global mercury assessment in 2013, mercury reported to dental usage measured at roughly 270-341 tons in 2010 [49], which represents 10% of global consumption of mercury Figure 6. Recently, the United Nations Environment Programme (UNEP) report 2018 to estimate the anthropogenic sources of anthropogenic sources in 2015 were about 2220 tons. Such sources constitute respectively 25 to 37 percentages of overall worldwide mercury emissions, measured at approximately 2000 tons. The TGM concentration in South Asia (India) are compared with other nations, the TGM levels are similar to the east, and southeast Asian countries and also Europe, Sub-Saharan Africa and North America are the averages and maximum concentration generally smaller. Mercury emission estimated (kg) in global in south Asia was in the second-largest nation in the worldwide it shows Figure 6 [49]. Recent assessments of emissions of mercury into the environment (the 2010 targets) indicate that the primary anthropogenic sources of mercury pollution into the environment are artisanal and small-scale gold mining and fossil fuels (primarily coal) for power plants and industrial boilers for the generation of heat and electricity. In India majority of mercury releases from coal-burning (89,444 kg) followed by non-ferrous metal production (22,536 kg), waste from products (13,692 kg), cement production (13,421 kg) non-ferrous metal production, combustion of fossil fuels and artisanal small scale gold mining was in less than 1000 kg etc. it shows in Figure 6 [49]. The most important natural sources and sources of re-emissions assessed within the GMOS project are oceans, which contribute 36% of the emission of mercury, followed by biomass (9%), deserts, metal and non-vegetation areas (7%), tundra and grassland (6%), forest (5%) and evasion after the events of mercury depletion (3%) [25, 40]. The majority of mercury releases worldwide estimated by fossil fuel combustion (11%), small-scale gold mining (5%), non-ferrous metal production (4%), cement production (3%), caustic soda production (2%), waste incineration (2%) and pig iron production (1%) [8]. Total mercury emissions are dominant in Asian countries, particularly China and India, and this information on the above factors and detailed estimates for mercury can be found in AMAP/UNEP [49].
\nCountry and sector-wise mercury emission and sources of emission sectors in India and global (data source: UNEP [
Mukherjee et al. [47] reported the mercury contamination in India its mainly from industrial mercury emissions from coal combustion, the iron and steel industry, non-ferrous metallurgical plants, chloralkali plants, cement industry, waste disposal and other minor sources (i.e. brick production). The largest contributors to the source categories are coal combustion (52%) and waste incineration (32%) as shown in Figure 6. In general, TGM concentrations in urban and suburban areas are higher than in rural areas [49]. Mercury emission estimated (kg) in global in south Asia was in the second-largest nation in the worldwide [49]. However, measurements from global urban sites, which are also situated in the same region Asia, showed less than half of the mean concentration from our site. One of the main reasons for our study area is located in the coastal region was that episodically diluting with cleaner marine air and TGM with oceanic bromine will reduce pollution [50]. The possible sources of TGM in India are coal-fired power plants, vehicular emission, manufacture of ferrous and non-ferrous metals, waste incinerating sites, domestic fuel use from residents within the Informal villages around the Landward side, and ocean origin sources. Also, The Asian countries emissions are dominated in the global anthropogenic mercury emissions [21]. Current estimations on mercury emissions and re-emissions of primary natural mercury, including, mercury leakage cases, were measured at 5207 tonnes year−1, which accounts for approximately 70% of the GMOS programme [5]. This pollution estimate is accurately compared to the information given by Cohen et al. Various additional lines of study and measurement are necessary to improve inventories of mercury and improve the ability to assess control options.
\nIndia is known to be the second-highest mercury (Hg) contributor to the global Hg budget for the environment. The present study is focused on the hourly, daily, and seasonal variations of the TGM concentration and meteorological parameters investigated at high-altitude background station (Kodaikanal) and coastal urban city (Chennai) in India. The mean total gaseous mercury concentration in Chennai is 4.68 ng/m3, which is higher when compared to Kodaikanal, where it’s approximately 1.53 ng/m3. TGM concentrations exhibit an obvious diurnal pattern at Chennai urban region. All peak values appear between 3:00 am, and 8:00 am in all the seasons. This is probably the result of the change in the height of the atmospheric boundary layer that occurs between day and night. This is in large relation to global averages, but slightly less than in semi-industrial/urban areas in India.
\nThe reason behind the higher concentration of total gaseous mercury in Chennai region is the high pollution due to anthropogenic sources, for example, industrial and vehicular emissions, which essentially improves vaporous mercury and also significantly enhances the atmospheric mercury level. Among the seasons, concentrations of TGM were higher during winter season both in Chennai and Kodaikanal indicating dry air with lower humidity aggregates higher pollutants in an urban environment. Total gaseous mercury concentration during the winter season is observed to be maximum in both regions. The average TGM concentrations during four monitoring seasons were ordered as Winter > Summer > Autumn > Spring. The average TGM concentrations in Chennai during the four monitoring seasons were ordered as Winter (5.64 ng/m3) > Summer (5.16 ng/m3) > Autumn (4.59 ng/m3) > Spring (3.92 ng/m3). The average concentration of total gaseous mercury in the high-altitude background station (Kodaikanal) for the four seasons are arranged in the following order: Winter (1.61 ng/m3) > Autumn (1.53 ng/m3) > Summer (1.51 ng/m3) > Spring (1.36 ng/m3). From the results, it is clear that meteorological parameters play a vital role in the variation of total gaseous mercury. Factors such as the re-emission of concentrated mercury through Earth soils, vertical mixing and long-range transport influenced the seasonal variability of TGM at the monitoring sites. Moreover, it is clear that in the future if these meteorological parameters changes, it will change the concentration of total gaseous mercury in the observation regions. The present study can be extended by quantifying the total mercury emission from the earth systems and its impact on environments and human health in the Chennai urban region. There is a shortage of essential information and pollution factors for Asian countries to complete this analysis to address this situation. Recent work has used TGM and meteorological parameters, although the impact of wind speed, wind direction, and solar radiation on pollutant behaviour are well known, and these factors can be more easily approached in future research.
\nThe authors express their gratitude towards The Global Mercury Observation System (GMOS), European Commission, for providing instrumental (Grant Agreement no. 265113) and technical support and Central Pollution Control Board (CPCB), Chennai, for providing meteorological data.
\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/54719/images/system/54719.jpg",biography:"Prof. Hany A. El-Shemy received his two PhD degrees in Biochemistry and Genetic Engineering from the University of Cairo, Egypt and University of Hiroshima, Japan. He became an assistant professor in the Biochemistry Department of Cairo University, Egypt, from Sept. 1996 and advanced to associate professor in Sept. 2002 as well as a full professor in March 2007. His research interests are in the fields of plant biotechnology and medicinal plants (Molecular Biology). He registered 2 patents, wrote 12 international books, published more than 90 SCI journal papers and 45 conference presentations, and served as the technique committee member as well as chair in many international conferences and the editor in BMC Genomics as well as in Current Issues in Molecular Biology, and also a reviewer for more than 25 SCI cited journals. He received several awards, including State Prize awarded from the Academy of Science, Egypt (2004); Young Arab Researcher Prize awarded from Schuman Foundation, Jordan (2005); State Excellence Prize from the Academy of Science, Egypt (2011 and 2018); and Cairo University Prizes (2007, 2010, and 2014). He served as an expert for African Regional Center for Technology, Dakar, Senegal, plus a visiting professor at Pan African University, African Union, Nairobi, Kenya. He was appointed acting vice president of the Academy of Science and Technology from November 2013 to November 2014, Egypt. He was also a dean of the Faculty of Agriculture, Cairo University from 2014 to 2017.",institutionString:"Cairo University",institution:{name:"Cairo University",country:{name:"Egypt"}}},{id:"93369",title:"Dr.",name:"Yves",middleName:null,surname:"Gibon",slug:"yves-gibon",fullName:"Yves Gibon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Institut National de la Recherche Agronomique",country:{name:"Morocco"}}},{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:1754},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"13,19"},books:[{type:"book",id:"10892",title:"Ectoparasites",subtitle:null,isOpenForSubmission:!0,hash:"47dba2f65ac57fe739e73cb0309802b2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10892.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10883",title:"Pain Management",subtitle:null,isOpenForSubmission:!0,hash:"82abad01d1cffb27e341ffd507117824",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10883.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10648",title:"Vibrios",subtitle:null,isOpenForSubmission:!0,hash:"863c86c37b8a066ed95397fd9a114a71",slug:null,bookSignature:"Dr. Lixing Huang and Dr. Jie Li",coverURL:"https://cdn.intechopen.com/books/images_new/10648.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!0,hash:"70c3ce4256324b3c58db970d446ddac4",slug:null,bookSignature:"Dr. Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:null,editors:[{id:"255360",title:"Dr.",name:"Usama",surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10884",title:"Bisphenols",subtitle:null,isOpenForSubmission:!0,hash:"d73ec720cb7577731662ac9d02879729",slug:null,bookSignature:"Prof. Pınar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10884.jpg",editedByType:null,editors:[{id:"109978",title:"Prof.",name:"Pınar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10746",title:"Prebiotics and Probiotics - From Food to Health",subtitle:null,isOpenForSubmission:!0,hash:"3ab2902c0d43605ab43cd0868542db95",slug:null,bookSignature:"Dr. Elena Franco-Robles",coverURL:"https://cdn.intechopen.com/books/images_new/10746.jpg",editedByType:null,editors:[{id:"219102",title:"Dr.",name:"Elena",surname:"Franco-Robles",slug:"elena-franco-robles",fullName:"Elena Franco-Robles"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10745",title:"Nematodes - Recent Advances, Management and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"975ef07a02e028baac4d50b9f0a733b5",slug:null,bookSignature:"Dr. Cristiano Bellé and Dr. Tiago Kaspary",coverURL:"https://cdn.intechopen.com/books/images_new/10745.jpg",editedByType:null,editors:[{id:"274523",title:"Dr.",name:"Cristiano",surname:"Bellé",slug:"cristiano-belle",fullName:"Cristiano Bellé"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11017",title:"Herpesviridae - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"a62aa90a2efdd776add46a44462341e2",slug:null,bookSignature:"MSc. Angello Retamal-Díaz",coverURL:"https://cdn.intechopen.com/books/images_new/11017.jpg",editedByType:null,editors:[{id:"183530",title:"MSc.",name:"Angello",surname:"Retamal-Díaz",slug:"angello-retamal-diaz",fullName:"Angello Retamal-Díaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10735",title:"Metformin",subtitle:null,isOpenForSubmission:!0,hash:"fee7e27a0fa000d000c459ff6e4b749e",slug:null,bookSignature:"Prof. Juber Akhtar, Dr. Usama Ahmad, Dr. x Badruddeen and Dr. Mohammad Irfan Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10735.jpg",editedByType:null,editors:[{id:"345595",title:"Prof.",name:"Juber",surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:25},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:44},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1135",title:"Preventive Healthcare",slug:"preventive-healthcare",parent:{title:"Public Health",slug:"medicine-public-health"},numberOfBooks:12,numberOfAuthorsAndEditors:293,numberOfWosCitations:296,numberOfCrossrefCitations:146,numberOfDimensionsCitations:384,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"preventive-healthcare",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7498",title:"Pharmacovigilance",subtitle:null,isOpenForSubmission:!1,hash:"5ee3f3e52c1a651284ffd2dd7851a980",slug:"pharmacovigilance",bookSignature:"Charmy S. Kothari, Manan Shah and Rajvi Manthan Patel",coverURL:"https://cdn.intechopen.com/books/images_new/7498.jpg",editedByType:"Edited by",editors:[{id:"216161",title:"Dr.",name:"Charmy S.",middleName:null,surname:"Kothari",slug:"charmy-s.-kothari",fullName:"Charmy S. Kothari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6589",title:"Smoking Prevention and Cessation",subtitle:null,isOpenForSubmission:!1,hash:"3027e9088771d92f60efe13c5460fef7",slug:"smoking-prevention-and-cessation",bookSignature:"Mirjana Rajer",coverURL:"https://cdn.intechopen.com/books/images_new/6589.jpg",editedByType:"Edited by",editors:[{id:"194329",title:"Ph.D.",name:"Mirjana",middleName:null,surname:"Rajer",slug:"mirjana-rajer",fullName:"Mirjana Rajer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7234",title:"Immunization",subtitle:"Vaccine Adjuvant Delivery System and Strategies",isOpenForSubmission:!1,hash:"4c2a4e9db5f7d62490e3934a09adf3f4",slug:"immunization-vaccine-adjuvant-delivery-system-and-strategies",bookSignature:"Ning Wang and Ting Wang",coverURL:"https://cdn.intechopen.com/books/images_new/7234.jpg",editedByType:"Edited by",editors:[{id:"205915",title:"Dr.",name:"Ning",middleName:null,surname:"Wang",slug:"ning-wang",fullName:"Ning Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6601",title:"Disinfection",subtitle:null,isOpenForSubmission:!1,hash:"ea121cf9b26d006bc6d7c7f92195852d",slug:"disinfection",bookSignature:"Sahra Kırmusaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/6601.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Dr.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6672",title:"Vignettes in Patient Safety",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"2c8b1831a8cceea8be146cbfbd582b81",slug:"vignettes-in-patient-safety-volume-3",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/6672.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6268",title:"Vignettes in Patient Safety",subtitle:"Volume 2",isOpenForSubmission:!1,hash:"0d2a1e477127a80d432276b11e6806d0",slug:"vignettes-in-patient-safety-volume-2",bookSignature:"Michael S. Firstenberg and Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/6268.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5948",title:"Vignettes in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"d9aa14e866ecd2f473e4ff93be2525a2",slug:"vignettes-in-patient-safety-volume-1",bookSignature:"Michael S. Firstenberg and Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/5948.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4650",title:"Primary Care in Practice",subtitle:"Integration is Needed",isOpenForSubmission:!1,hash:"3e8540a822eeae65ea19979f52abb25b",slug:"primary-care-in-practice-integration-is-needed",bookSignature:"Oreste Capelli",coverURL:"https://cdn.intechopen.com/books/images_new/4650.jpg",editedByType:"Edited by",editors:[{id:"110047",title:"Dr.",name:"Oreste",middleName:null,surname:"Capelli",slug:"oreste-capelli",fullName:"Oreste Capelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3453",title:"Infection Control",subtitle:null,isOpenForSubmission:!1,hash:"b85a2fb3c8ea8c11034e436a8389bd3c",slug:"infection-control",bookSignature:"Silpi Basak",coverURL:"https://cdn.intechopen.com/books/images_new/3453.jpg",editedByType:"Edited by",editors:[{id:"101476",title:"Dr.",name:"Silpi",middleName:null,surname:"Basak",slug:"silpi-basak",fullName:"Silpi Basak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2289",title:"Public Health",subtitle:"Methodology, Environmental and Systems Issues",isOpenForSubmission:!1,hash:"c23d3d6a58e69be8a876d9772022a52d",slug:"public-health-methodology-environmental-and-systems-issues",bookSignature:"Jay Maddock",coverURL:"https://cdn.intechopen.com/books/images_new/2289.jpg",editedByType:"Edited by",editors:[{id:"67153",title:"Prof.",name:"Jay",middleName:null,surname:"Maddock",slug:"jay-maddock",fullName:"Jay Maddock"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1811",title:"Public Health",subtitle:"Social and Behavioral Health",isOpenForSubmission:!1,hash:"93597bfaec819d81d8764fde5784fc02",slug:"public-health-social-and-behavioral-health",bookSignature:"Jay Maddock",coverURL:"https://cdn.intechopen.com/books/images_new/1811.jpg",editedByType:"Edited by",editors:[{id:"67153",title:"Prof.",name:"Jay",middleName:null,surname:"Maddock",slug:"jay-maddock",fullName:"Jay Maddock"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1820",title:"Infection Control",subtitle:"Updates",isOpenForSubmission:!1,hash:"e81e237a0379f680e6a159b6963e7871",slug:"infection-control-updates",bookSignature:"Christopher Sudhakar",coverURL:"https://cdn.intechopen.com/books/images_new/1820.jpg",editedByType:"Edited by",editors:[{id:"95455",title:"Dr.",name:"Christopher",middleName:null,surname:"Sudhakar",slug:"christopher-sudhakar",fullName:"Christopher Sudhakar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:12,mostCitedChapters:[{id:"36935",doi:"10.5772/37886",title:"Gender Differences in Food Choice and Dietary Intake in Modern Western Societies",slug:"gender-differences-in-food-choice-and-dietary-intake-in-modern-western-societies",totalDownloads:17248,totalCrossrefCites:35,totalDimensionsCites:92,book:{slug:"public-health-social-and-behavioral-health",title:"Public Health",fullTitle:"Public Health - Social and Behavioral Health"},signatures:"Claudia Arganini, Anna Saba, Raffaella Comitato, Fabio Virgili and Aida Turrini",authors:[{id:"114665",title:"Dr.",name:"Aida",middleName:null,surname:"Turrini",slug:"aida-turrini",fullName:"Aida Turrini"},{id:"116008",title:"Dr.",name:"Claudia",middleName:null,surname:"Arganini",slug:"claudia-arganini",fullName:"Claudia Arganini"},{id:"116171",title:"MSc.",name:"Anna",middleName:null,surname:"Saba",slug:"anna-saba",fullName:"Anna Saba"},{id:"116173",title:"Dr.",name:"Fabio",middleName:null,surname:"Virgili",slug:"fabio-virgili",fullName:"Fabio Virgili"},{id:"116174",title:"Dr.",name:"Raffaella",middleName:null,surname:"Comitato",slug:"raffaella-comitato",fullName:"Raffaella Comitato"}]},{id:"36947",doi:"10.5772/37701",title:"Nature Therapy and Preventive Medicine",slug:"nature-therapy-and-preventive-medicine",totalDownloads:3286,totalCrossrefCites:6,totalDimensionsCites:37,book:{slug:"public-health-social-and-behavioral-health",title:"Public Health",fullTitle:"Public Health - Social and Behavioral Health"},signatures:"Juyoung Lee, Qing Li, Liisa Tyrväinen, Yuko Tsunetsugu, Bum-Jin Park, Takahide Kagawa and Yoshifumi Miyazaki",authors:[{id:"113955",title:"Dr.",name:"Juyoung",middleName:null,surname:"Lee",slug:"juyoung-lee",fullName:"Juyoung Lee"},{id:"138631",title:"Prof.",name:"Qing",middleName:null,surname:"Li",slug:"qing-li",fullName:"Qing Li"},{id:"138632",title:"Prof.",name:"Liisa",middleName:null,surname:"Tyrväinen",slug:"liisa-tyrvainen",fullName:"Liisa Tyrväinen"},{id:"138633",title:"Dr.",name:"Yuko",middleName:null,surname:"Tsunetsugu",slug:"yuko-tsunetsugu",fullName:"Yuko Tsunetsugu"},{id:"138634",title:"Prof.",name:"Bum-Jin",middleName:null,surname:"Park",slug:"bum-jin-park",fullName:"Bum-Jin Park"},{id:"138635",title:"Dr.",name:"Takahide",middleName:null,surname:"Kagawa",slug:"takahide-kagawa",fullName:"Takahide Kagawa"},{id:"138636",title:"Prof.",name:"Yoshifumi",middleName:null,surname:"Miyazaki",slug:"yoshifumi-miyazaki",fullName:"Yoshifumi Miyazaki"}]},{id:"36946",doi:"10.5772/38411",title:"Public Health Research and Action: Reflections on Challenges and Possibilities of Community-Based Participatory Research",slug:"public-health-research-and-action-reflections-on-challenges-and-possibilities-of-community-based-par",totalDownloads:2694,totalCrossrefCites:6,totalDimensionsCites:15,book:{slug:"public-health-social-and-behavioral-health",title:"Public Health",fullTitle:"Public Health - Social and Behavioral Health"},signatures:"S. Lazarus, B. Duran, L. Caldwell and S. Bulbulia",authors:[{id:"117130",title:"Prof.",name:"Sandy",middleName:null,surname:"Lazarus",slug:"sandy-lazarus",fullName:"Sandy Lazarus"},{id:"136803",title:"Dr.",name:"Bonnie",middleName:null,surname:"Duran",slug:"bonnie-duran",fullName:"Bonnie Duran"},{id:"136804",title:"Dr.",name:"Leon",middleName:null,surname:"Caldwell",slug:"leon-caldwell",fullName:"Leon Caldwell"},{id:"136805",title:"Mr.",name:"Samed",middleName:null,surname:"Bulbulia",slug:"samed-bulbulia",fullName:"Samed Bulbulia"}]}],mostDownloadedChaptersLast30Days:[{id:"64294",title:"Evaluation of Effectiveness of Peer Education on Smoking Behaviour",slug:"evaluation-of-effectiveness-of-peer-education-on-smoking-behaviour",totalDownloads:774,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"smoking-prevention-and-cessation",title:"Smoking Prevention and Cessation",fullTitle:"Smoking Prevention and Cessation"},signatures:"Nurcan Bilgiç and Türkan Günay",authors:[{id:"228458",title:"Dr.",name:"Nurcan",middleName:null,surname:"Bilgiç",slug:"nurcan-bilgic",fullName:"Nurcan Bilgiç"},{id:"270102",title:"Prof.",name:"Türkan",middleName:null,surname:"Günay",slug:"turkan-gunay",fullName:"Türkan Günay"}]},{id:"62561",title:"Preventing Vaccine Failure in Poultry Flocks",slug:"preventing-vaccine-failure-in-poultry-flocks",totalDownloads:2799,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"immunization-vaccine-adjuvant-delivery-system-and-strategies",title:"Immunization",fullTitle:"Immunization - Vaccine Adjuvant Delivery System and Strategies"},signatures:"Aamir Sharif and Tanveer Ahmad",authors:[{id:"246237",title:"Dr.",name:"Aamir",middleName:null,surname:"Sharif",slug:"aamir-sharif",fullName:"Aamir Sharif"},{id:"259271",title:"Dr.",name:"Tanveer",middleName:null,surname:"Ahmad",slug:"tanveer-ahmad",fullName:"Tanveer Ahmad"}]},{id:"50027",title:"The Management of Dementia in Primary Care",slug:"the-management-of-dementia-in-primary-care",totalDownloads:1582,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"primary-care-in-practice-integration-is-needed",title:"Primary Care in Practice",fullTitle:"Primary Care in Practice - Integration is Needed"},signatures:"Luc Pieter De Vreese, Luigi De Salvatore, Lara Rovesta and Andrea\nFabbo",authors:[{id:"174568",title:"Dr.",name:"Andrea",middleName:null,surname:"Fabbo",slug:"andrea-fabbo",fullName:"Andrea Fabbo"},{id:"174807",title:"Dr.",name:"Luc Pieter",middleName:null,surname:"De Vreese",slug:"luc-pieter-de-vreese",fullName:"Luc Pieter De Vreese"}]},{id:"50015",title:"Cardiovascular Risk Assessment in People Affected with Diabetes in Primary Care",slug:"cardiovascular-risk-assessment-in-people-affected-with-diabetes-in-primary-care",totalDownloads:1185,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"primary-care-in-practice-integration-is-needed",title:"Primary Care in Practice",fullTitle:"Primary Care in Practice - Integration is Needed"},signatures:"Lucia Borsari, Monica Lorenzini, Silvia Riccomi, Valentina Solfrini,\nMarco Vinceti and Oreste Capelli",authors:[{id:"110047",title:"Dr.",name:"Oreste",middleName:null,surname:"Capelli",slug:"oreste-capelli",fullName:"Oreste Capelli"},{id:"174919",title:"Dr.",name:"Silvia",middleName:null,surname:"Riccomi",slug:"silvia-riccomi",fullName:"Silvia Riccomi"},{id:"174922",title:"Dr.",name:"Monica",middleName:null,surname:"Lorenzini",slug:"monica-lorenzini",fullName:"Monica Lorenzini"},{id:"175212",title:"Dr.",name:"Valentina",middleName:null,surname:"Solfrini",slug:"valentina-solfrini",fullName:"Valentina Solfrini"},{id:"176767",title:"Dr.",name:"Lucia",middleName:null,surname:"Borsari",slug:"lucia-borsari",fullName:"Lucia Borsari"},{id:"176768",title:"Prof.",name:"Marco",middleName:null,surname:"Vinceti",slug:"marco-vinceti",fullName:"Marco Vinceti"}]},{id:"60411",title:"Defining Adverse Events and Determinants of Medical Errors in Healthcare",slug:"defining-adverse-events-and-determinants-of-medical-errors-in-healthcare",totalDownloads:806,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"vignettes-in-patient-safety-volume-3",title:"Vignettes in Patient Safety",fullTitle:"Vignettes in Patient Safety - Volume 3"},signatures:"Vasiliki Kapaki and Kyriakos Souliotis",authors:[{id:"201567",title:"Associate Prof.",name:"Kyriakos",middleName:null,surname:"Souliotis",slug:"kyriakos-souliotis",fullName:"Kyriakos Souliotis"},{id:"201568",title:"Dr.",name:"Vasiliki",middleName:null,surname:"Kapaki",slug:"vasiliki-kapaki",fullName:"Vasiliki Kapaki"}]},{id:"50499",title:"Integrated Care for Heart Failure in Primary Care",slug:"integrated-care-for-heart-failure-in-primary-care",totalDownloads:1704,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"primary-care-in-practice-integration-is-needed",title:"Primary Care in Practice",fullTitle:"Primary Care in Practice - Integration is Needed"},signatures:"Monica Lorenzini, Caterina Ricci, Silvia Riccomi, Federica Abate,\nBarbara Casalgrandi, Benedetta Quattrini, Gianbattista Spagnoli,\nLetizia Reggianini and Oreste Capelli",authors:[{id:"110047",title:"Dr.",name:"Oreste",middleName:null,surname:"Capelli",slug:"oreste-capelli",fullName:"Oreste Capelli"},{id:"174922",title:"Dr.",name:"Monica",middleName:null,surname:"Lorenzini",slug:"monica-lorenzini",fullName:"Monica Lorenzini"},{id:"111587",title:"Dr.",name:"Silvia",middleName:null,surname:"Riccomi",slug:"silvia-riccomi",fullName:"Silvia Riccomi"},{id:"176492",title:"Dr.",name:"Caterina",middleName:null,surname:"Ricci",slug:"caterina-ricci",fullName:"Caterina Ricci"},{id:"176493",title:"Dr.",name:"Letizia",middleName:null,surname:"Reggianini",slug:"letizia-reggianini",fullName:"Letizia Reggianini"},{id:"186451",title:"BSc.",name:"Federica",middleName:null,surname:"Abate",slug:"federica-abate",fullName:"Federica Abate"},{id:"186452",title:"BSc.",name:"Barbara",middleName:null,surname:"Casalgrandi",slug:"barbara-casalgrandi",fullName:"Barbara Casalgrandi"},{id:"190027",title:"Dr.",name:"Gianbattista",middleName:null,surname:"Spagnoli",slug:"gianbattista-spagnoli",fullName:"Gianbattista Spagnoli"},{id:"190029",title:"MSc.",name:"Benedetta",middleName:null,surname:"Quattrini",slug:"benedetta-quattrini",fullName:"Benedetta Quattrini"}]},{id:"28883",title:"Skin Irritation Caused by Alcohol-Based Hand Rubs",slug:"skin-irritation-caused-by-alcohol-based-hand-rubs",totalDownloads:4224,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"infection-control-updates",title:"Infection Control",fullTitle:"Infection Control - Updates"},signatures:"Nobuyuki Yamamoto",authors:[{id:"97691",title:"Dr.",name:"Nobuyuki",middleName:null,surname:"Yamamoto",slug:"nobuyuki-yamamoto",fullName:"Nobuyuki Yamamoto"}]},{id:"55307",title:"Dangers of Polypharmacy",slug:"dangers-of-polypharmacy",totalDownloads:1188,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"vignettes-in-patient-safety-volume-1",title:"Vignettes in Patient Safety",fullTitle:"Vignettes in Patient Safety - Volume 1"},signatures:"Pamela L. Valenza, Thomas C. McGinley, James Feldman, Pritiben\nPatel, Kristine Cornejo, Najmus Liang, Roopa Anmolsingh and\nNoble McNaughton",authors:[{id:"197829",title:"Dr.",name:"Pamela",middleName:"L.",surname:"Valenza",slug:"pamela-valenza",fullName:"Pamela Valenza"}]},{id:"60108",title:"Adverse Events in Hospitals: “Swiss Cheese” Versus the “Hierarchal Referral Model of Care and Clinical Futile Cycles”",slug:"adverse-events-in-hospitals-swiss-cheese-versus-the-hierarchal-referral-model-of-care-and-clinical-f",totalDownloads:746,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"vignettes-in-patient-safety-volume-3",title:"Vignettes in Patient Safety",fullTitle:"Vignettes in Patient Safety - Volume 3"},signatures:"Michael Buist",authors:[{id:"234439",title:"Prof.",name:"Michael",middleName:null,surname:"Buist",slug:"michael-buist",fullName:"Michael Buist"}]},{id:"61103",title:"Disinfection of Water Used for Human and Animal Consumption",slug:"disinfection-of-water-used-for-human-and-animal-consumption",totalDownloads:503,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"disinfection",title:"Disinfection",fullTitle:"Disinfection"},signatures:"Tatiana Hrušková, Naďa Sasáková, Gabriela Gregová, Ingrid\nPapajová and Zuzana Bujdošová",authors:null}],onlineFirstChaptersFilter:{topicSlug:"preventive-healthcare",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/319387/pavel-prudnikov",hash:"",query:{},params:{id:"319387",slug:"pavel-prudnikov"},fullPath:"/profiles/319387/pavel-prudnikov",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()