Service robot control faces challenges of dynamic environment and complex behavior, which mainly include eye-hand coordination and continuous operations. However, current programming scheme lacks the ability of managing such tasks. In this chapter, we propose a methodology of software development paradigm for the continuous operation of the dual-arm picking robot. First, a dual-arm robot is built for picking with the purpose of selectively harvesting in plant factory. Second, a hierarchical control software is framed by means of “Sense Plan Act” (SPA) paradigm. Third, based on the previous design, programming concept, and the ROS system, the sub-node programming of visual module, motion module, eye-hand coordination module, and task planning module are implemented with a state machine-based architecture. The experimental results show that if total number of targets within the visual field is not more than three, the average picking time is less than 35 s. The fluency of concurrent task management shows the feasibility of manipulating complex robot behavior for autonomous and continuous operations with the finite state machine model and task level architecture.
Part of the book: Service Robotics