Let n > 1 be an integer with its canonical representation, n = p 1 α 1 p 2 α 2 ⋯ p k α k . Put H n = max α 1 … α k , h n = min α 1 … α k , ω n = k , Ω n = α 1 + ⋯ + α k , f n = ∏ d ∣ n d and f ∗ n = f n n . Many authors deal with the statistical convergence of these arithmetical functions. For instance, the notion of normal order is defined by means of statistical convergence. The statistical convergence is equivalent with I d –convergence, where I d is the ideal of all subsets of positive integers having the asymptotic density zero. In this part, we will study I –convergence of the well-known arithmetical functions, where I = I c q = A ⊂ N : ∑ a ∈ A a − q < + ∞ is an admissible ideal on N such that for q ∈ 0 1 we have I c q ⊊ I d , thus I c q –convergence is stronger than the statistical convergence ( I d –convergence).
Part of the book: Number Theory and Its Applications