Kinetic models’ variables for adsorption of MB onto R1.
\r\n\tsandwiches, etc.
\r\n\r\n\tListeria monocytogenes causes one of the most serious and life-threatening diseases (listeriosis), usually caused by eating food contaminated with Listeria monocytogenes. An estimate of 1,600 people get sick (especially at risk-groups including pregnant women, newborns, old people (65 years old and above), people with weakened immune systems, etc.) and about 260 die (Listeria is the third leading cause of death from foodborne illness in the U.S.) each year, in the U.S. from Listeriosis.
\r\n\t
\r\n\tThe main goal of the book is to provide accurate and updated information on Listeria monocytogenes so governments (decision-makers), food industry, consumers, and other stakeholders can implement appropriate preventative measures to control Listeria monocytogenes. This book will cover several topics including the prevalence of Listeria monocytogenes in developed countries, the prevalence of Listeria monocytogenes in developing countries, the prevalence of Listeria monocytogenes in ready-to-eat food, detection of Listeria monocytogenes in Food, control of Listeria monocytogenes in food-processing facilities, etc.
The environmental issues associated with residual dye content or residual color in treated textile effluents are always a concern for each textile operator that directly discharges, sewage treatment works as well as commercial textile operations to meet the requirements of color and residual dye imposed on the discharge of treated effluent [1]. In watercourses higher than 1.0 mg/L, dye concentrations induced by direct discharges of textile effluents, treated or not, can give rise to public enforcement. High concentrations of fabric dyes in water bodies halt the reoxygenation potential of the receiving water and cutoff sunlight, thereby disrupting biological activity in aquatic life as well as the aquatic plant or algae photosynthesis process [2]. Presence of dye is accepted as an esthetic issue in watercourses rather than as an eco-toxic hazard. The public appears to know the blue, green and brown color of the rivers, but the color ‘non-natural’ as red and purple usually causes the most concern. Due to their long-term existence in the environment (i.e., half-life of several years), accumulation in sediments and particularly in fish or other aquatic life forms, decomposition of contaminants in carcinogenic or mutagenic compounds, and also their low aerobic biodegradability, the polluting effects of dyes on the aquatic environment may also result in toxic effects. The majority of dyes are nonbiodegradable due to their artificial origin or chemical composition, possess carcinogenic activity, and induce asthma, dermatitis, inflammation of the skin, and various tissue changes. In addition, various azo dyes, primarily aromatic compounds, show toxicity both acute and chronic. High potential health risk is caused by adsorption of azo dyes and their breakdown products (toxic amines) through the gastrointestinal tract, body, lungs, and hemoglobin adduct formation as well as blood formation disturbance [3].
There are about 700,000 tons of colors, approaching 10,000 forms, often used as color operators in most of projects. The use of colors in characteristic media is disturbing considering their heavy workload, poisonous content, and bioaccumulative ability in living beings. In particular, the azo dyes that are most advertised and that cause cancer, need to be taken seriously. The current status of cationic and anionic dyes is audited here. For this reason, common adsorbents are commonly used, such as activated carbon, chitosan, composite, and natural waste. Various dangerous engineered dyes (cationic and anionic) have been fabricated with high creation rate. To dispose of their negative effects, the broad utilization of composite was watched for oxidative debasement/expulsion of colors from wastewater. In cationic dye, methylene blue, precious stone violet, Splendid Blue-R, and Rhodamine-B, while in anionic dye, Methyl orange, Congo red, Alizarin red S and Eosin Y, are broadly treated with composite.
Adsorption methods are used as procedures of high quality for the removal of dissolved organic contaminants from industrial wastewater, such as dyes. The fiber, pulp and paper industries are stated to use large quantities of a number of colors; such chemicals can be used in many wastewater factories that generating vast amounts of sprayed, toxic and even cancerous wastewater, causing serious hazard to aquatic living organisms. It is well known that dye effluents from the production of dyestuffs and fabric industries may have toxic effects on microbial organisms and may be toxic and/or cancerous to mammalian animals. Most of the dyes used in textile industries are resistant to light and not biodegradable. These are also resistant to aerobic digestion [4]. Because of simple design, adsorption has advantages over other methods and can entail low investment in terms of both initial and necessary land costs. The adsorption method is commonly used to treat industrial wastewater from organic and inorganic contaminants, and the researchers are paying close attention to it. The search for low-cost adsorbents with pollutant-binding capabilities has intensified in recent years. Locally available materials such as natural materials, agricultural waste, and industrial waste can be used as adsorbents at low cost. For groundwater and wastewater treatment, the activated carbon produced from these materials can be used as an adsorbent [5]. Natural hydroxyapatite derived from bio-waste, bovine and camel bones in general. To remove the natural hydroxyapatite, three separate methods are applied: thermal decomposition, subcritical water, and alkaline hydrothermal processes. Results from many physiochemical analyses have shown that all the methods used are capable of removing the organic compounds present in bovine bones and producing pure bio-ceramic hydroxyapatite with an average yield of 65% [6]. A composite material is made by consolidating at least two materials—frequently ones that have altogether different properties. The two materials cooperate to give the composite novel properties. In any case, inside the composite you can without much of a stretch differentiate the distinctive materials one from the other as they do not break up or mix into each other [7]. One of the biggest advantages of the composite is it can be formed into entangled shapes more effortlessly than most different materials. This gives fashion designers the versatility to build any form or structure. In addition, composites are light in weight, contrasted with most woods and metals, possess high strength, dimensional stability, and are nonmagnetic. Composites contain no metals; hence, they are not attractive. They can be utilized around touchy electronic gear. The absence of attractive impedance permits huge magnets utilized as a part of MRI (Magnetic Resonance Imaging) hardware to perform better. Composites are utilized as a part of both the hardware lodging and table. Also, the development of the room utilizes composite rebar to strengthen the solid dividers and floors in the healing center [8].
In this chapter, our team will investigate the performance of (polymer/hydroxyapatite) composite for removal of methylene blue as cationic dye from aqueous system.
Polyacrylonitrile co-acrylic acid apatite resins, P(AN-co-AA)-HAP, were synthesized by radical copolymerization in DMF solution in the presence of (BPO) as follows: In three-neck round flask equipped with nitrogen, thermometer, and mechanical shaker, AN and AA (mass ratio of 4:1) were dissolved in the DMF (mass ratio of total monomer to DMF 4:11) solution 1. Different types of as-prepared natural HAP produced from camel bone with appropriate amount were dispersed in DMF and sonicated for 30 min then added to solution 1 in the three-neck flask and stirred under nitrogen purging. The initiator BPO was transferred to the reaction mixture with weight ratio of total monomers of 1:450. The solution was stirred until all substances were completely dispersed and monomers dissolved. After passing nitrogen to the solution for 1 h, the polymerization was performed in an airtight device at 60°C for 3 h till complete polymerization. After complete polymerization, the obtained composite was washed several times with water and acetone to remove the residual monomers and initiators thoroughly. The final co-polymer-HAP composites P(AN-AA)-HAP were dried at 60°C till complete dryness and ground to the specified particle size.
Different types of the as-prepared natural HAP camel bone samples were used as follows:
Resin | HAP preparation temp. oC | HAP preparation gas | HAP content % in the composite |
---|---|---|---|
R1 | 700°C for N2 and 900°C for CO2 with surface area 122.56 m2/g | Passing N2 gas for 2 h (1 h for rising temperature to reach to desired temperature and 1 h for holding) then passing CO2 gas for 1 h | 14% |
R2 | 500°C for N2 and 900°C for CO2 was surface area 94.88 m2/g | ||
R3 | 900°C for N2 and 900°C for CO2 was surface area 124.35 m2/g |
The sorption experiments were carried out on solutions containing methylene blue dye with the prepared sorbents in batch as well as column techniques.
Batch experiments were conducted with 100 ml of methylene blue solution of concentration 1 × 10−5 M in 250-ml stoppered bottles containing 0.1 g of the composite material at pH 5.5. The mixture was shaken by a mechanical water shaker thermostated at 25 ± 1°C (except when studying the effect of temperature). The parameters affecting the sorption process were studied by varying any one of the parameters and keeping the other parameters constant. These factors include composite particle size, equilibrium time, dose, temperature, and the initial metal ion concentration. The solid material was separated from solution by centrifuge and the dyes concentration in the solution was determined. Methylene blue was determined spectrophotometrically using UV-visible spectrophotometer.
The amount of dye retained in the solid phase (
where
The sorption of dye solution was calculated using the relation:
The distribution coefficient (Kd) of the dye between the aqueous phase and the solid phase is calculated from the relation:
Column studies were conducted using glass column of dimensions 20 cm length and 1.2 cm of internal diameter and 0.4 g of sorbent of particle size 30 mesh was introduced as slurry in the column. A 1000-ml solution containing 1 × 10−5 M of MB added sample was passed through HAP. All the experiments were carried out at room temperature. The sample solution was collected after different volumes. Amounts of MB in each volume were determined using UV/VIS spectrophotometry. The breakthrough sorption capacity of HAP was obtained in column using the equation:
where
Desorption of solutes from the loaded column was carried out by elution using (H2SO4 + H2O2), HCL, NaOH, CH3COOH, C2O4H2, and C6H8O7. From the start of the experiment, effluent samples at different volumes were collected at the bottom of the column for analysis. The percentage desorption of solutes was obtained in column using the equation:
This chapter is divided into four parts. The first one deals with characterization of the synthesized sorbent materials, R1. The second and third parts are concerned with the removal of MB dye respectively from aqueous solution by the investigated sorbents. Capacities of the sorbent materials for removal of the studied dye were investigated. The fourth part deals with column studies (Figure 1).
(a) Infrared spectrum of the HAP samples and (b) infrared spectrum of the synthesized R1 and R1/MB.
The IR-spectra revealed wide bands of H▬O▬H lattice water in the regions 1600–1700 cm−1 and 3200–3600 cm−1 and an [OH]▬ stretching mode band at 3350 cm−1 for HAP at physical activation at 500°C. The bands at 1097 cm−1 and 1029 cm−1 were assigned for (PO4)3−. Also the bands at 960, 603, and 562 cm−1 are due to (PO4)3−. The (PO4)3− vibrational bands depend on the activation temperature. The sharpness of the peaks at 603 cm−1 and 562 cm−1 indicates a well crystallized HAP. Characteristic vibration bands of the C▬O in the carbonate group were observed at 1418–1456 cm−1. New peaks were observed for composite resin (R1) at 2006 cm−1 and peak of phosphate is slightly shifted to 1042, 592, and 560 cm−1, while the loaded resin R1 with MB dye showed a broad peak of the phosphate at 560 cm−1 and the stretching mode of vibration for OH group was observed at 3340 cm−1 as shown in the spectra. As can be seen from the morphologies of particles in the SEM images, there is a distribution of small particles and large agglomerates. These agglomerates are consisted of very fine particles that are welded together and the powders displayed a significant level of agglomeration. Forty-point BET surface area analyses were done to study the effect of polymer on the surface area of the natural hydroxyapatite. The natural HAP surface area was found to be 122.56 m2/g, while composite shaped reaches 218.48 m2/g. The XRD analyses revealed straight base lines and sharp peaks confirming that hydroxyapatite was formed in all samples, and the produced calcium phosphate was well crystallized. On the other hand, Figure 2(a–c) XRD analysis of HAP samples indicates that the samples are in the crystalline phase. In addition, XRD pattern shows a broad reflection peak at the range of 31.7–32.8 of 2 values, which correspond to the characteristic peak of hydroxyapatite. The XRD patterns of polymer/supported HAP composite resins with 14% HAP (R1) show that the characteristic peaks of HAP disappeared after the interaction between the polymer and HAP. This finding explains the interaction of the polymer within the HAP active groups (Figure 3).
(a) X-ray diffraction of the synthesized HAP, (b) X-ray diffraction of the synthesized R1, and (c) X-ray diffraction of R1 after sorption the of MB.
SEM micrographs for the natural HAP and prepared resins before and after MB dye loading.
The thermogravimetric analysis (TGA) measurements were performed in flowing nitrogen gas up on the prepared resins R1 as show in Figure 4. The thermal decomposition of the HAP-polymer composites illustrates that up to 350°C, 5 % weight loss occurred followed by three steps up to 800°C. It is clear that the presence of HAP with the polymer increases the thermal stability and delays the polymer thermal decomposition.
TGA thermogram for R1.
The thermal decomposition of apatite content depends on its hydroxide and phosphate content; both are related to the change in apatite mass upon heating. After 800°C a replacement of ▬OH− occurred, resulting in water evolution. The weight loss after 800°C was attributed to the ▬OH− content [9]. The calcium phosphates containing HPO4 undergo weight loss between 400 and 700°C due to formation of pyrophosphate and evolution of water. It is reported that after 700°C the calcium pyrophosphate reacts with HAP to produce TCP and water.
Batch experiments were carried out to find out the optimum conditions for the removal of MB dye from aqueous solution by the synthesized sorbents. Different parameters affecting the sorption of MB dye were separately studied, such as particle size of sorbent, shaking time, sorbent weight, temperature, and MB dye concentration.
The effect of shaking time on the removal of 1 × 10−5 M MB dye from aqueous solution using 0.1 g of each the sorbents used was investigated in the range 1–120 min at 25 ± 1°C. The results illustrated in Figure 5 show an increase in the removal percentage (uptake) of MB dye from aqueous solution with shaking time up to 60 min, which then remains constant with further increase of shaking time. A plateau is seen to be reached for all curves representing that the adsorbent is saturated at this time. Therefore, equilibrium time of 60 min was chosen in the subsequent studies.
Effect of shaking time on the adsorption of MB from aqueous solutions using apatite resins.
The effect of particle size on the removal efficiency of 1 × 10−5M MB dye from aqueous solution using 0.1 g of selected sorbents was studied at different sorbent particle sizes in the range (0.063–4) mesh at 25 ± 1°C, the removal of MB dye was found to increase from 22.39 to 82.5% as the sorbent particle size increased from (4–0.063) mesh, see Figure 6. The higher sorption with smaller sorbent particles may be attributed to the fact that smaller particles provide a larger surface area. Hence, selected sorbents with particle size of 0.063 mesh has been chosen for further experiments.
Effect of particle size on the adsorption of MB from aqueous solutions onto apatite resins.
The results for the removal of 1 × 10−5 M MB dye from aqueous solution using the investigated sorbents with respect to sorbents’ weight are shown in Figure 7 in the range 0.01–0.3 g/50 ml of 1 × 10−5 M MB dye solution at 25 ± 1°C. The results obtained show that when increasing sorbents’ weight from 0.01 to 0.3 g, the removal of MB dye from aqueous solution increases and remains constant with further increase of sorbents’ weight up to 0.2 g. This can be due to the availability of more surface functional groups and surface area at higher sorbent weight. The removal percentage of MB dye becomes constant from 0.2 to 0.3 g. This may be referred to the aggregation of the sorbent particles at high concentration of MB dye. Such aggregation would lead to decrease in the total surface area available for metal ion sorption.
Effect of resin dose on the adsorption of MB from aqueous solutions onto apatite resins.
The amount adsorbed of dye onto the polymeric resin was studied with time for estimating the adsorption mechanism. The adsorption of dye with time shows that mixing period of 10 min is optimum for attaining the equilibrium with respect to R1and R2, while attaining the equilibrium with R3 takes 60 min. These findings reflect a fast kinetic for adsorption of MB onto the prepared resins, especially R1 and R2.
Different kinetic models were applied on the obtained results and the kinetic parameters were determined. The kinetic models correlate the amount adsorbed of dye with time. Lagergren presented the following equation for pseudo-first-order reactions [10]:
where qe and qt are the dye concentration in solid phase at equilibrium and at time t, respectively, and k1 is the model constant (min−1). The linear form of the above equation was obtained by integration at the borders (qt = 0 to qt = qt and t = 0 to t = t) as:
The rate constant k1 was determined from the plot of log(qe − qt) with t as shown in Figure 8 while the value of qe was determined from the intercept. The model variables with the coefficient are given in Table 1.
Pseudo-first-order model kinetic plot for the sorption of MB onto the synthesized sorbents R1.
Adsorption system | Kinetic model | Parameters | R2 | SD |
---|---|---|---|---|
MB-R1 | Pseudo first order | k1 = 1.718 qe = 0.607 | 0.994 | 0.0163 |
Pseudo second order | K2 = 2.18 qe = 2.73 | 0.987 | 0.133 | |
Elovich | β = 5.98 α = 8.72 | 0.978 | 0.0376 | |
Intra-particle | kid = 3.168 C = 2.93 | 0.991 | 0.834 |
Kinetic models’ variables for adsorption of MB onto R1.
The plots in the figures above show linear fit with correlation coefficient (R) of 0.994 for R1. The values of calculated adsorption capacity qe and the linear regression coefficient clarify that the studied kinetic model kinetic model could not fit with the experimental results for adsorption of MB onto R1.
Second-order kinetic model, which describes the chemical adsorption is given by [11].
where k2 is the model constant (g/mg min). The above equation could be integrated at the border (qt = 0 to qt = qt at t = 0 to t = t) to give:
The model variables were calculated from the plot of t/qt with t as shown in Figure 9. The plot showed a linear relation, and the model parameters with the correlation coefficient R2 are given in Table 1.
Pseudo-second-order model kinetic plot for the sorption of MB onto the synthesized sorbents R1.
The results of the studied kinetic model clarify that the experimental results for adsorption of MB onto R1, R2, and R3 could be described by kinetic model supporting chemical adsorption. The MB sorption could be represented favorably on the composite resins by the pseudo-second order kinetic model. This finding refers to the participation of chemical adsorption within the adsorption mechanism for MB onto R1.
Elovich kinetic model was applied upon the results to explain mainly the chemisorptions onto heterogeneous solid surfaces. The linearized form of Elovich model equation is given in [12].
where α and β are model parameters representing the starting sorption rate (g mg−1 min−2) and the leaching constant (mg g−1 min−1), correspondingly. The model parameters were calculated from the linear fit of qt vs. log(t) plot, shown in Figure 10, and are presented in Table 1.
Elovich model kinetic plot for the sorption of MB onto the synthesized sorbents R1.
The value of the Elovich constant (α and β) for the adsorption of MB on R1 predicate the effect of adsorbent dose and the possibility of performing sorption-desorption regeneration cycles of adsorbent. The value of correlation coefficient (R) reflects a poor fit of Elovich model with the experimental results. It could be inferred that both chemical and surface adsorption mechanisms are participating in the studied systems.
Intraparticle diffusion model was studied to explain the influence of transfer of dye from solution to solid surface of adsorbent on the reaction. The adsorption reaction could be affected by film diffusion, pore diffusion, surface diffusion, and/or adsorption on pore surface. The studied batch experiment was performed with shaking; therefore, the transfer of adsorbate particles could be described by diffusion coefficient that gives a considerable fitting with the experimental results. Weber model could be studied to explain the intraparticle diffusion’s influence on the reaction by the following equation [13]:
where kid is the Webber model constant (mg g−1 min−0.5) and C is a constant (mg g−1) connected to the depth of the boundary layer, reflecting the boundary layer effect.
If the adsorption takes place within multilayer adsorbent, the adsorbate particles have to spread within the interior pores of solid materials. The model parameters were obtained from the plot of qt vs. t1/2, shown in Figure 11, and are presented in Table 1.
Intraparticle model kinetic plot for the sorption of MB onto the synthesized sorbent R1.
The results in Figure 11 show two linear regions referring to the participation of at least two steps in the reaction. The linearity in the first region refers to a diffusion of dye into macro-pores of adsorbent, while the second linear region shows that the adsorbate particles diffuse within a micro-pore of adsorbent. The third region refers to mesoporous of adsorbent. The data obtained show that the synthesized sorbent has different pores.
The results in the figures reflect a variation of particle migration rate between different stages of sorption. The deviation of straight lines from the origin (when extrapolated), reflects that the diffusion within pore is not only the rate determining step. The model variables for adsorption of MB using both R1, were given in Table 1. These results indicate that Webber diffusion model could not be considered as the controlling mechanism in the adsorption reaction.
The adsorption of MB onto R1 was studied at different initial dye concentrations (within the range 1–50 mg/L). The removal percentage and the adsorbed amount of MB are presented against the starting dye concentration in Figure 12. The results show that the amount of MB retained on the solid adsorbent increases with increasing dye concentration.
Langmuir-1 isotherm plot for the sorption of MB onto the synthesized sorbent R1.
Different isotherm models were studied for describing the adsorption mechanism controlling the reaction. Langmuir isotherm model [13] was studied for adsorption of MB onto R1, which is expressed as:
where Ce is the dye concentration in solution after experiment (mg/L), qe is dye concentration on the solid resin (mg/g), and qmax and KL are model parameters connected to maximum adsorbed amount (mg/g) and adsorption energy, correspondingly. A plot of Ce vs. Ce/qe is presented in Figure 12 and the model variables were determined from the plot and are given with coefficient R in Table 2.
Model | Resin | Parameter | R | SD |
---|---|---|---|---|
Langmuir | R1 | qmax = 25.77 KL = 16.18 | 0.975 | 0.0418 |
Freundlich | R1 | 1/n = 0.617 Kf = 6.102 | 0.988 | 0.104 |
Dubinin-Radushkevich | R1 | β = −0.093 qmax = 10.39 ES = 2.318 | 0.979 | 0.359 |
Adsorption isotherm models’ parameters for MB-R systems.
R values for the adsorption systems were found to be 0.975, indicating less compatibility with Langmuir isotherm. This finding prove that monolayer chemical adsorption on the homogeneous surface is not participate in the adsorption process.
Freundlich isotherm model [13] was applied on the experimental results, which is described by the equation:
where kf (mg/g) and n are model constants, indicating the adsorption capacity and favorability nature of the adsorption process. Freundlich model constants were determined from the linear fit of log qe vs. log Ce plot in Figure 13 and are given with the correlation coefficient in Table 2.
Freundlich model isotherm plot for the sorption of MB onto the synthesized sorbent R1.
The values of R of Freundlich plots for MB-R system showed bad fit of the experimental results with Freundlich isotherm model.
Dubinin-Radushkevich (D-R) adsorption isotherm model was studied; it describes adsorption onto porous solid surfaces, and is described by the following equation [13]:
where β is the D-R model constant (mol2/kJ2), qmax is the constant referring to the maximum adsorbed amount (mg/g), and ε is Polanyi potential (ε = RTln(1 + 1/Ce)). The D-R model constants were obtained from the linear fit of the plot of ln qe vs. ε2 (Figure 14) and are given with correlation coefficient in Table 2. The adsorption free energy (ES) is calculated as:
Dubinin-Radushkevich model isotherm plot for the sorption of MB onto the synthesized sorbent R1.
The calculated mean adsorption free energy (ES) from D-R model for adsorption of MB using R1 was found to be 8.03 kJ/mol. These values reflect that physical adsorption is a participating mechanism.
The effect of temperature on the removal efficiency of 1 × 10−5 M MB dye from aqueous solution using 0.1 g of each investigated sorbents was studied at different temperatures ranging from 25 to 50°C. It is observed from the results that the removal of MB dye increases slightly with increasing temperature, see Figure 15. This behavior indicates that the sorption process of MB dye from aqueous solution using all selected sorbents is an endothermic process. The increase in the sorption efficiency of MB dye by the sorbents used at high temperature may be attributed to the increase of MB dye mobility and decrease of the retarding forces acting on the diffusing dye.
Effect of temperature on the adsorption of MB from aqueous solution onto R1.
The thermodynamic parameters corresponding to dye sorption on the prepared resins were assessed using Van’t Hoff equation [14] (Table 3).
Adsorption system | Temperature (°K) | SD | |||
---|---|---|---|---|---|
R1-MB | 298 | 44.991 | 6.961 | 172.81 | 0.257 |
313 | −7.850 | ||||
323 | −11.626 |
Thermodynamic parameters for sorption of MB onto R1.
where kd is the distribution coefficient of the solute ions, ΔS° is the entropy change (J mol−1 K−1), R is the ideal gas constant (8.314 J mol−1 K−1), and T is the absolute temperature. A plot of log kd vs. 1/T was constructed as shown in Figure 16 from which the slope of the straight line equal −(ΔH°)/2.303; consequently, the value of apparent enthalpy change (ΔH°) for the overall system was calculated. The values of other thermodynamic parameters are calculated at different temperatures, using the following equations:
Effect of temperature on the sorption of MB by the synthesized sorbent R1.
Sorption dynamics of MB in a fixed bed flow through a sorption column is eventually conducted for multiple reuse of the sorbent. Column sorption studies of MB on the R1 beads at room temperature were investigated using aqueous solution of 1 × 10−5 M influent concentrations (Ci). Experimental breakthrough curve was studied using flow rate 0.2 ml/min. It is obtained by plotting the ratios of effluent concentration to initial concentration versus the volume of the effluent, see Figure 17. It was observed that the column gets saturated after passing 1 l of MB solution. The estimated breakthrough sorption capacity (Qe) was 79.65 mg/g for MB.
Breakthrough curve of MB dye with R1.
Once the column reached exhaustion, efficient elution of adsorbed solute from resin in column is essential to ensure the recovery of dye as well as the reuse of resin for repeated adsorption/desorption cycles. Desorption of MB from R1 was studied using different concentrations of sulfuric acid and hydrogen peroxide.
Desorption curve shown in Figure 18 was obtained by plotting the effluent concentration (Ce) versus elution volume from the column at a flow rate of 0.2 ml/min. The result obtained shows that 93.79% recovery was achieved for MB by 1:1 W/W H2SO4 and H2O2.
Dynamic desorption curve of MB from R1 by H2O2 and H2SO4.
In the current study, the removal of MB dye from aqueous solution was investigated by three prepared composite resins and the following conclusions can be drawn:
The prepared composite resins can potentially be applied for removal of MB dye from aqueous solutions.
The adsorption mechanism was suggested based on applying different isotherm models and kinetic models.
From the data obtained for the uptake of MB dye by practical experiment, good match was found with calculated values obtained from isotherm models.
Working on the composite is more advanced than working on HAP alone because:
The spontaneous reaction was carried out at low temperatures while HAP was carried out with spontaneous reaction at high temperatures.
The surface area and mechanical strength for composite are higher than the surface area and mechanical strength of HAP alone.
Different inorganic and organic solutions were studied for regeneration of composite.
Aqueous solution containing mixture of sulfuric acid and hydrogen peroxide of 1:1 w/w showed the maximum release for the adsorbed dyes with 87.46% for methylene blue dye.
The authors extend their appreciation to the Research and Development Grants Program for National Research Institutions and Centers (GRANTS) at King Abdulaziz City for Science and Technology (KACST) for supporting this work through research groups program under grant number 1-18-01-010-0002.
Decades ago, scientists believed that carbon comes in two basic forms, that is, graphite and diamond, but in the last three decades, scientists have discovered new forms of carbon known as advanced carbon materials including fullerene, carbon nanotubes (CNTS), and graphene, respectively [1, 2, 3, 4, 5, 6]. In recent years, graphene is considered as an outstanding candidate for enhancing the structural, electrical, mechanical, and thermal properties of materials (for example, metals, ceramics, and polymers) [7, 8]. In hybrid nanostructures, the physical property enhancement may be possible due to excellent physical properties of the graphene. Excellent physical properties included higher thermal conductivity (5000 Wm−1 K−1), electrical conductivity (106 S m−1), and Young’s modulus (1 TPa), which are a driving force for enhancement in the physical properties of hybrids. Among the various types of graphene materials, graphite oxide-derived graphene plays an important role in increasing the physical properties of hybrids because of its surface functionalization and its ability of large-scale production at any level. Even a tiny amount of graphene in hybrids (either polymers or ceramics or metals) may alter its physical properties to a great extent. In case of graphene, the compatible structural properties and how it makes bond with various types of nanostructures are reasons for improved properties in the end product (hybrids or composites). For example, reduced graphite oxide (rGO)-polystyrene composites with a low threshold content of 0.1 (volume %) rGO have shown greatly improved electrical conductivity (approx. 0.1 S m−1); this has been possible due to good dispersion of rGO in the polymer composite matrix. Similarly, in inorganic hybrids, rGO has been used for the deposition of Co3O4 particles for increased catalytic effects, which may have been used for the decomposition of ammonium perchlorate because of the complex properties of GO and Co3O4. In another research, rGO was used to improve the mechanical properties of the bulk silicon nitride (i.e. toughness is enhanced by up to 235%), which may be used for high-performance mechanical and structural applications [8, 9]. In short, graphene being the toughest, strongest, lightweight material may act as a wonder material for future scientific revolution in every aspect of life. Even if it is combined with polymers, metals, and ceramics, it may play a significant role in improving physical properties due to its versatile surface, morphology, chemistry, and physical properties. In this chapter, we will discuss graphene combination with various ceramics and how it has been used to improve their physical properties, and porous carbon for energy storage, respectively. This book chapter will be a significant contribution to advance studies on physical properties and technological applications.
Low strength and brittle attributes are the main properties of ceramics. The most widely used structural ceramic is alumina, due to its good thermal conductivity and the shape stability [7]. Alumina has a wide range of applications, some of the fields include dental implants, high speed cutting tools, chemical insulators, electrical insulators, and wear resistant coatings. Scientists have observed that mechanical properties of alumina may be improved using carbon nanotubes, for example, fracture toughness (by 94%), flexural strength (6.4%), and hardness (by 13%), respectively. On the addition of graphene platelets, about 40% enhancement in the fracture toughness of the ball milled alumina/zircon/graphene have been noticed. In another research study, the alumina-rGO core shell nanocomposites were fabricated using the method known as the sol-gel method, and it was found through this study that the BET surface area of the rGO is essential to enhance the surface charge properties of the hybrids. In another study, alumina graphene composite films were reported with a low optical gap of about 1.53 eV. Alumina-rGO nano-composites obtained via deposition during the process showed a unique morphology of aluminum nanoparticles with low prosperity and BET surface area of 242.4 m2 g−1. Moreover, scientists have found that in a microwave preparation of alumina-rGO composites, the grain size of the alumina matrix was reduced from 475 to 180 nm, which was obtained from the conventional sintering process, leading to an increase in the Young’s modulus from 148 to 180 GPa. Scientists have found that using solvothermal-hot press processing route, highly conductive alumina-rGO hybrids may be obtained, which consist of Al2O3 nanorods and rGO, respectively [7, 8, 10]. The same solvothermal method was used to form hybrids from cross-linked Al2O3 nanorods and reduced graphite oxide (rGO) platelets. Then after hot pressing, the hybrid monoliths were obtained, which were utilized for the systematical study of improved physical properties of hybrids. Using the same method, it is noticed that with the 3 h-calcinated hybrid, the Al2O3-rGO monoliths show enhanced electrical conductivity (changes from 5.1 × 10−10 to 6.7 × 101 S m−1), mechanical tensile strength (90% increase), thermal conductivity (80% increase), and a much higher dielectric constant (12 times) than the bare Al2O3. The highest values of electrical conductivity (8.2 × 101 S m−1), thermal conductivity (2.53 Wm−1 K−1), dielectric constant (104), and Young’s modulus (3.7 GPa) are determined for the alumina-rGO hybrid which is calcinated for about 1 h. It was noticed that the functional groups that contain oxygen on GO were useful for the adsorption of aluminum isopropoxide, leading to the dispersion of rGO and the Al2O3, which were obtained during the solvothermal process by the hydrolysis of the aluminum isoropoxide [7]. The improvement in the mechanical properties was caused due to the elongated Al2O3 nanorods, which was indicated by the study of aspect ratio of the nanorods. Graphene platelets, functional groups present, and their surface properties are driving forces for enhancement in the physical properties of alumina-rGO hybrids.
In the past, alumina rGO hybrids have been prepared using sol gel, molecular level mixing, and powder coating methods, but scientists have tried some conventional preparation methods followed by high temperature treatments [7, 11]. Such methods have shown great enhancement in physical properties of hybrids. Here, we discuss one of such advanced methods, that is, the preparation of Al2O3-rGO hybrids using solvothermal-hot press processing route. Al2O3-rGO was prepared by the mixing of GO and with cyclohexane and the aluminum isopropoxide (C9H21AlO3), which was followed by the solvothermal process. The procedure involves 0.1 g of GO being first dispersed in 35 mL of cyclohexane, then 3.5 mL of aluminum isoproperoxide (C9H21AlO3) being added dropwise. The mixture is then stirred continuously at room temperature at the rate of 1000 rpm for several days until the GO powder is dispersed homogeneously but the color of the suspension changes with time. Then the products are separated by centrifugation, and the products were then washed several times with cyclohexane. The solid sample obtained are denoted as Al[O]x/GO. Then it was sent for the hydrothermal treatment. For this, it was dispersed in 50 mL cyclohexane and then transferred to the 100 mL Teflon-lined stainless steel autoclave, after which the reaction was carried out for about 6 h at about 453 K, and the resultant sample was again centrifuged and dried at about 303 K, which is denoted as Al[O]x/rGO. It was then calcined at 723 K for about 1–3 h to form Al2O3/rGO hybrids. The condition of calcination is limited supply of air. The calcination process was controlled by using the quartz tubular furnace with open ends that will allow the calcination to occur in the limited supply of air; also, the furnace was heated to the desired temperature of about 723 K for the calcination times for 1–3 h. In the initial stage, the temperature was increased by using heating rate of about 15°C min−1. As a result, the free standing Al2O3 nanorods were formed as a result of calcination treatment and also the GO was reduced to rGO. The physical properties were studied by obtaining the Al2O3/rGO hybrid powder samples consisting of 16.707, 12.830, and 7.705 wt% using the same solvothermal process. The same process was then used for the preparation of the pure Al2O3 without the addition of GO. The calcination temperature was altered and was set at different temperatures for the processing time of about 1 h. For the analysis of crystallinity, it was set as 500, 600, 650, 700, 750, and 800 K and for the analysis of the effect of calcination temperature and time on the nanorods structure, the calcination time was set as 1, 2, 3, 4, and 5 h for the temperature of 723, 823, and 923 K. Hot pressing of powder samples was carried out in a vacuum furnace. The furnace was fitted with a hydraulic press which compresses the samples in a graphite pressing die. The heating temperature was made such that to increase from the room temperature at the heating rate of 10°C min−1 up to 900°C, which was then maintained constant for about 60 min. When the hybrids reached the set temperature, the pressure of about 25–30 MPa was then applied to the hybrids.
In the case of hybrids, higher the rGO, higher will be the enhancement in the physical properties such as electrical, thermal, dielectric, and mechanical properties. In the hybrids, the surface area has been increased, and as a result, greater will be the interfacial interaction of the rGO [7, 12]. The higher rGO platelets will improve the physical properties because it provides a large surface area for interfacial interactions at nano-level. Due to higher surface area of graphene, BET surface area has been improved in the hybrids as represented in the Table 1, in comparison with various fabrication methods [7]. Scientists believe that the higher mechanical strength is caused due to the elongated dimensions of nanorods in alumina-rGO hybrids. From the literature, it is found that 90% increase in tensile strength and 75% increase in compressive strength occur when the content of rGO is increased up to 7.707% in the hybrid. The addition of rGO affects the dielectric constant, and it increases by four orders of magnitude through a second percolation threshold [7, 8].
Sample type | BET surface area (m2 g−1) | Bulk density (g/cm3) | ||||||
---|---|---|---|---|---|---|---|---|
Solvothermal-hot press processing method | γ-Al2O3 (1 h calcination time) | γ-Al2O3-rGO (3 h calcination time) | γ-Al2O3-rGO (2 h calcination time) | γ-Al2O3-rGO (1 h calcination time) | γ-Al2O3 (1 h calcination time) | γ-Al2O3-rGO (3 h calcination time) | γ-Al2O3-rGO (2 h calcination time) | γ-Al2O3-rGO (1 h calcination time) |
280 | 361 | 408 | 379 | 2.75 | 1.61 | 1.37 | 0.92 | |
Meso-porous Al2O3-rGO | Al2O3 | Al2O3-rGO | Al2O3 | Al2O3-rGO | ||||
243 | 327 | 2.40 | 1.65 | |||||
Core-shell flakes Al2O3-rGO | Al2O3 | Al2O3-rGO | Al2O3 | Al2O3-rGO | ||||
286.62 | 119.71 | 2.816 | 0.003 | |||||
In situ deposition Al2O3-rGO | Al2O3 | Al2O3-rGO | Al2O3 | Al2O3-rGO | ||||
N/A | 242.4 | N/A | N/A |
BET surface area and density comparison for γ-Al2O3-rGO (1, 2 and 3 h calcination time) and pure γ-Al2O3 (1 h calcination time), compared with various fabrication methods [7].
Further, the hot press processing sustains the quality of rGO in the hybrids. An increase in calcination temperature resulted in enhanced crystallinity in the Al2O3 nanorods and rGO hybrids as also shown in XRD of hybrid (Figure 1a). From the surface science point of view, this may cause enhancement in the diameters and lengths of the nanorods in the hybrid as shown in the Figure 1b. TEM images showing variations in diameters of nano-rod structures with various calcination temperatures are presented in Figure 1c–h. As a result, after calcination and hot-press processing, Al2O3-rGO monoliths were obtained with enhanced physical properties. Researchers have found that with very little rGO in the alumina hybrid, higher electrical conductivity (8.2 × 101 S m−1), higher dielectric constant by four orders of magnitude, and improved thermal conductivity (1.4 Wm−1 K−1) have been achieved [7]. Hot pressing at 900°C ensured the complete reduction of GO and the higher crystallinity of Al2O3, resulting in enhanced physical properties. The elongated and fine Al2O3 nanorod morphology, atomic-level layered structure, and excess surface free electrons of rGO resulted in the best reported BET surface area (408 m2 g−1 in the 2 h-calcinated alumina–rGO), best thermal conductivity (2.53 Wm−1 K−1 in the 1 h-calcinated alumina—rGO), and relatively small density (0.92 g cm3 in the 1 h-calcinated alumina–rGO) and high strength (3.7 GPa in the 1 h-calcinated alumina–rGO), respectively [7].
(a) XRD of γ-Al2O3-rGO hybrids taken from 500 to 800 K, (b) average diameter of nano rods (nm) as function of calcination temperature (K), and (c–h) TEM images showing variations in diameters of nano rod structures with various calcination temperatures. Units for diameters are in (nm).
Hot press processing may have an impact on the physical properties of hybrids; SEM images of hot pressed samples have shown particle-like morphology, as represented in Figure 2.
SEM images of hot pressed samples: (a) γ-Al2O3-rGO (1 h calcination time), (b) γ-Al2O3-rGO (2 h calcination time), (c) γ-Al2O3-rGO (3 h calcination time), and (d) pure γ-Al2O3 (1 h calcination time).
Moreover, well-aligned, elongated, and fine nanorod morphology of alumina is the reason for improvement in the mechanical strength [7, 13, 14]. Aspect ratio studies have confirmed that alumina-rGO hybrids (1 h calcinated) have more strength compared to hybrids that are calcined at more time (2 and 3 h), as shown in Figure 3.
Young’s modulus as a function of average aspect ratio of nano-rods in hot pressed samples γ-Al2O3-rGO hybrids with 1, 2, and 3 h calcination time.
Thus, nano-hybrids of alumina monoliths and rGO can be further applied as electrolytes, catalysts, and electrochemically active materials because of nanometer dimensions and improved physical properties [7, 15].
Improved physical properties may be achieved for
In brief preparation using solvothermal-hot press processing route [8], GO is mixed with cylcohexane and ethylsilicate (
Researchers have developed a hydrothermal-hot press processing technique, a simple and efficient method that can improve the thermal, electrical, dielectric, and mechanical properties of the hybrid [8, 20]. By a hydrothermal reaction, GO is dispersed in cyclohexane and ethylsilicate to produce hybrids composed of rGO and silica monoliths [20, 21]. The SEM morphology of hybrids has shown sphere-particle-like morphology with thin layers of rGO, which act as a support for elongated matrix, as shown in Figure 4.
SEM images of (a) SiO2-rGO-6.75% (sample b) and (b) SiO2-rGO-10.80% (sample c) fabricated at calcination temperature of 800 K for 1-h. (c) TEM images of the same SiO2-rGO-10.80% (sample c) at lower magnification and (d) at higher magnifications.
SEM images of SiO2-rGO-1.55% (sample a) at various temperatures are shown in Figure 5. At all temperatures, hybrids have shown sphere-like morphology, but sphere size changes at various temperatures [9, 22].
SEM images of SiO2-rGO-1.55% (sample a) at a calcination temperature of (a) 500 K, (b) 600 K, (c) 700 K, and (d) 800 K, respectively.
The solvothermal-hot press processing method shows the best reported electrical conductivity (0.143
Table 2 have shown BET surface area and mesoporous volume % analysis for the hybrids. From the table, it is confirmed that BET surface area has been increased with more rGO in the hybrids, while mesoporous volume % increased with more silica [8, 24].
Sample type | BET surface area (m2 g−1) | Total volume (cm3 g−1) | Mesoporous volume (cm3 g−1) | Microporous volume (cm3 g−1) | Mesoporous volume (%) |
---|---|---|---|---|---|
Pure SiO2 | 333.07 | 0.3821 | 0.3459 | 0.0362 | 90.52 |
SiO2-rGO-1.55 | 611.21 | 0.4580 | 0.3694 | 0.0886 | 80.65 |
SiO2-rGO-6.75 | 677.53 | 0.5521 | 0.3571 | 0.1950 | 64.68 |
SiO2-rGO-10.8% | 712.01 | 0.6812 | 0.3891 | 0.2921 | 57.11 |
BET surface area, mesoporous volume % of SiO2 (sample d), SiO2-rGO-1.55% (sample a), SiO2-rGO-6.75% (sample b), and SiO2-rGO-10.82% (sample c).
The dielectric properties of the SiO2-rGO hybrids and bare SiO2 were measured using an LCR meter as shown in Figure 6. The dielectric properties of the hybrids were measured at a frequency of 1 kHz. For SiO2, its dielectric constant is found to be around 3.79, which is closer to that of pure silica. For sample a, the dielectric constant significantly increased by a value of 497, which indicates the presence and proximity of a first percolation threshold.
Dielectric constant as a function of % rGO in the hybrid; inset is dielectric loss as a function of % rGO in the hybrid.
The enhanced dielectric constant (up to order of 105 and 107) was determined for samples b and c, which is much higher compared to that for sample d. Formation of conductive pathways is one of the main reasons for an increase in the overall dielectric constants. In sample c, significant leakage current leads to higher dielectric loss (300). By further increasing the rGO, the dielectric constant increased by seven orders of magnitude, indicating the presence of a second percolation threshold, which is achieved through the higher value of dielectric constant. Similarly, the dielectric loss indicates very similar behavior in the real part of the dielectric constant as shown in the inset of Figure 6. Scientists have experimentally proved that a small amount of rGO in hybrids can enhance dielectric properties to a great extent. The existence of a double percolation threshold in SiO2 and the rGO hybrids can be significant for applied applications because it can be used to enhance the dielectric permittivity (up to 107) with the addition of a small percentage of rGO in the hybrids. Silica-rGO hybrids may be used as dielectric materials for high-temperature applications due to better dielectric properties [7, 8, 23, 25].
A process called one-step carbonization-activation which is used to transform frozen tofu, mainly a source of carbon (C) and nitrogen (N), into a co-doped porous carbon having N (0.6–6.7 wt%) and O (3.6–9.5 wt %) and bearing a specific area of about 3134 m2 g−1. Mesopores and micropores constitute a high volume of this hierarchy carbon, i.e. 1.11 cm3 g−1 consists of mesopores and 0.71 cm3 g−1 of micropores with a regular pore size appropriation somewhere in the range of 0.8–4 nm [9, 26]. When used as electrodes in supercapacitors, this porous carbon shows a specific capacitance of 243 F g−1 with sulfuric acid used as electrolyte and retains 93% of its initial capacitance after 10,000 cycles. In 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), a specific resistance of 170 F g−1 and a reliable rate capability can be observed using above prepared carbon which also provides an energy density of 72 W h kg−1 (calculated at an average power density of 889 W kg−1). A total of 25 light emitting diodes (LEDs) which are connected in parallel fashion may be empowered immediately for more than 2 min in the wake of being charged for 25 s, using supercapacitors comprising of porous carbon, at a current density of 10 A g−1. What’s more, the porous carbon displays a high reversible charge capacity of 2120 mA h g−1 in the first cycle (estimated at 0.1 A g−1) or 1035 mA h g−1 after 300 cycles (estimated at 1 A g−1), when used as an anode for Li-ion batteries [9, 26, 27].
Devices having energy due to chemical reactions are getting more fame than other energy storage devices due to their considerable potential applications [28]. An instantaneous charging and discharging capability, which leads toward an efficient power density of about 10 kW kg−1, can be observed in supercapacitors. The fabrication flowchart for porous carbon is shown in Figure 7.
The fabrication flow chart for porous carbon through one-step carbonization [9].
On the other hand, in spite of having longer charging time, a high energy density of about 100–200 W h kg−1 can be referred in lithium-ion batteries (LIBs). There are two fundamental processes by which the energy can be stored in supercapacitors, which are as follows: (i) pseudocapacitive electrodes store ions based on quick faradaic reactions at the electrode-electrolyte interface, and (ii) electrical double-layer capacitive electrodes store energy by the adsorption and desorption of ions on the large surface area of the porous material [29, 30]. The working of lithium-ion batteries depends upon the transfer of lithium ions in between the cathode and the anode. The mechanism by which the lithium ions are stored or released, in lithium-ion batteries, depends upon the nature of the material of which the electrode is made [31]. High electrical conductivity, tailored porosity, and chemical stability are the main features of carbon materials that make their extensive use in many devices such as commercial supercapacitors and lithium-ion batteries (LIBs) [32]. Scientists reveal that in supercapacitors, mesopores and micropores are the main constituents of porous carbon as they provide ion buffering reservoirs, movement of ions and then storage site for ions, respectively. In lithium-ion batteries, the reversible Li-ion storage capacity is retained to an approximation of 372 mA h g−1, for graphite, using graphite anode in lithium-ion batteries which interacts with Li-ions to produce a compound, LiC6, that retains the reversible storage capacity to its mention value. In addition, because of the permeable structure, the use of carbon materials as a framework of electrodes, that is, in lithium-ion batteries and other energy storage devices, is increasing nowadays [33]. It is believed that the supercapacitors cannot fulfill the energy requirements of future electrical devices because of their low energy density (less than 6 W h kg−1). Also, the capacity and rate capability of electrodes in LIBs are below to standards. To approach the above-mentioned requirements, porous carbon having good electrical conductivity and a modified 3-dimensional structure is required [34].
In the recent decades, a number of techniques named activation, self-assembly, and templating have been used for the production of porous carbon materials. But activation exceeds other techniques owing to the fact that it tends to produce a carbon of a large specific surface area of about 200 m2 g−1 and other useful properties. Activation can also play an important role in the production of novel carbon by doing a proper processing of nanostructured carbon precursors [35]. For instance, graphene platelets can be rebuilt thoroughly to a 3D porous carbon having a specific surface area of approximately 3100 m2 g−1 and pore size appropriation somewhere in between 0.6 and 5 nm, during the activation of microwave-exfoliated graphite oxide in the presence of KOH. Moreover, in graphite grids, the n-type can be brought up using the atoms like nitrogen which has the ability to donate electrons. The carbon doped with nitrogen finds its applications as anode in lithium-ion batteries because the hybridization between the lone pair electrons of nitrogen with π electrons of carbon can assist lithium lodging [36, 37]. Porous carbon materials derived from biomass are more sustainable than derived from other materials like coal, pitch, polymers, etc. Scientists have indicated that porous carbons for energy stockpiling applications can be acquired from different biomass sources, for example, rice husks, rice straw, algae, what’s more, water bamboo. For instance, lithium and other confrere elements experience a one-step pyrolysis-activation synthesis to transform willow catkin into a cross-linked layered porous carbon which is co-doped with two metals, that is, nitrogen (N) and sulfur (S). The carbon thus produced exhibits some outstanding features related to chemical performance like it shows a specific capacitance of 298 F g−1 at 0.5 A g−1 in 1 molar solution of Na2SO4 with the great cycling stability along with the capacitance loss of only 2% when checked after 10,000 cycles at 5 A g−1.
Tofu, rich in moisture, proteins, sugars, and follow sums of minerals, is a bounteous asset and has been viewed as a characteristic source of carbon and nitrogen [9, 36, 38]. It is obvious from the above discussion that tofu is a favorable predecessor material in the manufacture of carbon materials used for energy storage devices, but further developments are required for better performance like enhanced capacitance in symmetric supercapacitors and rate capability/cyclic stability in lithium-ion batteries. The features like large surface area, hierarchical (permeable) porous structure, and heteroatomic doping make the use of porous carbon samples (obtained from tofu) suitable for the material used as an anode in Li-ion batteries [9, 35, 38].
This study presented some novel and modified fabrication techniques for ceramics-graphene hybrids. The improved physical properties may be used to set ceramics-graphene hybrids as a standard for electrical, mechanical, thermal, and energy applications. Further, silica-rGO hybrids may be used as dielectric materials for high temperature applications due to improved dielectric properties. The fabricated nano-assembly is important for a technological point of view, which may be further applied as electrolytes, catalysts, and conductive, electrochemically active, and dielectric materials for the high-temperature applications. In addition, the porous carbon as a massive source of electrochemical energy for supercapacitors and lithium-ion batteries is also addressed.
The authors have declared no ‘conflict of interest’.
License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
\n\n',metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"Formats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Formats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:187},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"221",title:"Astrophysics",slug:"astrophysics",parent:{title:"Physics",slug:"physics"},numberOfBooks:3,numberOfAuthorsAndEditors:42,numberOfWosCitations:9,numberOfCrossrefCitations:12,numberOfDimensionsCitations:14,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"astrophysics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7357",title:"New Ideas Concerning Black Holes and the Universe",subtitle:null,isOpenForSubmission:!1,hash:"0c081ffdc6173f4c7d7d2d47231f61b9",slug:"new-ideas-concerning-black-holes-and-the-universe",bookSignature:"Eugene Tatum",coverURL:"https://cdn.intechopen.com/books/images_new/7357.jpg",editedByType:"Edited by",editors:[{id:"261441",title:"Dr.",name:"Eugene",middleName:"Terry",surname:"Tatum",slug:"eugene-tatum",fullName:"Eugene Tatum"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6768",title:"Cosmic Rays",subtitle:null,isOpenForSubmission:!1,hash:"1578350f18d0bc3abfbcf62278630739",slug:"cosmic-rays",bookSignature:"Zbigniew Szadkowski",coverURL:"https://cdn.intechopen.com/books/images_new/6768.jpg",editedByType:"Edited by",editors:[{id:"67836",title:"Prof.",name:"Zbigniew Piotr",middleName:null,surname:"Szadkowski",slug:"zbigniew-piotr-szadkowski",fullName:"Zbigniew Piotr Szadkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5918",title:"Trends in Modern Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"6fbfd7e2f33ac06d54517d3b52005231",slug:"trends-in-modern-cosmology",bookSignature:"Abraao Jesse Capistrano de Souza",coverURL:"https://cdn.intechopen.com/books/images_new/5918.jpg",editedByType:"Edited by",editors:[{id:"52362",title:"Dr.",name:"Abraao",middleName:"Jesse",surname:"Capistrano",slug:"abraao-capistrano",fullName:"Abraao Capistrano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"54849",doi:"10.5772/68113",title:"Superfluid Quantum Space and Evolution of the Universe",slug:"superfluid-quantum-space-and-evolution-of-the-universe",totalDownloads:1231,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Valeriy I. Sbitnev and Marco Fedi",authors:[{id:"93881",title:"Dr.",name:"Valeriy",middleName:null,surname:"Sbitnev",slug:"valeriy-sbitnev",fullName:"Valeriy Sbitnev"},{id:"200600",title:"Dr.",name:"Marco",middleName:null,surname:"Fedi",slug:"marco-fedi",fullName:"Marco Fedi"}]},{id:"60002",doi:"10.5772/intechopen.75426",title:"Cosmic Ray Muons as Penetrating Probes to Explore the World around Us",slug:"cosmic-ray-muons-as-penetrating-probes-to-explore-the-world-around-us",totalDownloads:735,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Paola La Rocca, Domenico Lo Presti and Francesco Riggi",authors:[{id:"18197",title:"Dr.",name:"Francesco",middleName:null,surname:"Riggi",slug:"francesco-riggi",fullName:"Francesco Riggi"},{id:"18200",title:"Dr.",name:"Paola",middleName:null,surname:"La Rocca",slug:"paola-la-rocca",fullName:"Paola La Rocca"},{id:"243971",title:"Dr.",name:"Domenico",middleName:null,surname:"Lo Presti",slug:"domenico-lo-presti",fullName:"Domenico Lo Presti"}]},{id:"54705",doi:"10.5772/68116",title:"The Impact of Baryons on the Large-Scale Structure of the Universe",slug:"the-impact-of-baryons-on-the-large-scale-structure-of-the-universe",totalDownloads:1147,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Weiguang Cui and Youcai Zhang",authors:[{id:"199688",title:"Dr.",name:"Weiguang",middleName:null,surname:"Cui",slug:"weiguang-cui",fullName:"Weiguang Cui"},{id:"205491",title:"Dr.",name:"Youcai",middleName:null,surname:"Zhang",slug:"youcai-zhang",fullName:"Youcai Zhang"}]}],mostDownloadedChaptersLast30Days:[{id:"60002",title:"Cosmic Ray Muons as Penetrating Probes to Explore the World around Us",slug:"cosmic-ray-muons-as-penetrating-probes-to-explore-the-world-around-us",totalDownloads:734,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Paola La Rocca, Domenico Lo Presti and Francesco Riggi",authors:[{id:"18197",title:"Dr.",name:"Francesco",middleName:null,surname:"Riggi",slug:"francesco-riggi",fullName:"Francesco Riggi"},{id:"18200",title:"Dr.",name:"Paola",middleName:null,surname:"La Rocca",slug:"paola-la-rocca",fullName:"Paola La Rocca"},{id:"243971",title:"Dr.",name:"Domenico",middleName:null,surname:"Lo Presti",slug:"domenico-lo-presti",fullName:"Domenico Lo Presti"}]},{id:"60664",title:"Galactic Cosmic Rays from 1 MeV to 1 GeV as Measured by Voyager beyond the Heliopause",slug:"galactic-cosmic-rays-from-1-mev-to-1-gev-as-measured-by-voyager-beyond-the-heliopause",totalDownloads:613,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"William R. Webber",authors:[{id:"114311",title:"Prof.",name:"William R",middleName:null,surname:"Webber",slug:"william-r-webber",fullName:"William R Webber"}]},{id:"60125",title:"Galactic Cosmic Rays and Low Clouds: Possible Reasons for Correlation Reversal",slug:"galactic-cosmic-rays-and-low-clouds-possible-reasons-for-correlation-reversal",totalDownloads:817,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Svetlana Veretenenko, Maxim Ogurtsov, Markus Lindholm and\nRisto Jalkanen",authors:[{id:"83636",title:"Dr.",name:"Maxim",middleName:null,surname:"Ogurtsov",slug:"maxim-ogurtsov",fullName:"Maxim Ogurtsov"},{id:"239574",title:"D.Sc.",name:"Svetlana",middleName:null,surname:"Veretenenko",slug:"svetlana-veretenenko",fullName:"Svetlana Veretenenko"},{id:"245213",title:"Dr.",name:"Markus",middleName:null,surname:"Lindholm",slug:"markus-lindholm",fullName:"Markus Lindholm"},{id:"245214",title:"Dr.",name:"Risto",middleName:null,surname:"Jalkanen",slug:"risto-jalkanen",fullName:"Risto Jalkanen"}]},{id:"54849",title:"Superfluid Quantum Space and Evolution of the Universe",slug:"superfluid-quantum-space-and-evolution-of-the-universe",totalDownloads:1226,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Valeriy I. Sbitnev and Marco Fedi",authors:[{id:"93881",title:"Dr.",name:"Valeriy",middleName:null,surname:"Sbitnev",slug:"valeriy-sbitnev",fullName:"Valeriy Sbitnev"},{id:"200600",title:"Dr.",name:"Marco",middleName:null,surname:"Fedi",slug:"marco-fedi",fullName:"Marco Fedi"}]},{id:"54580",title:"The Importance of Cosmology in Culture: Contexts and Consequences",slug:"the-importance-of-cosmology-in-culture-contexts-and-consequences",totalDownloads:2572,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Nicholas Campion",authors:[{id:"200410",title:"Dr.",name:"Nicholas",middleName:null,surname:"Campion",slug:"nicholas-campion",fullName:"Nicholas Campion"}]},{id:"54784",title:"Neutrino Interactions with Nuclei and Dark Matter",slug:"neutrino-interactions-with-nuclei-and-dark-matter",totalDownloads:1044,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Paraskevi C. Divari",authors:[{id:"200618",title:"Prof.",name:"Paraskevi",middleName:null,surname:"Divari",slug:"paraskevi-divari",fullName:"Paraskevi Divari"}]},{id:"67823",title:"A Heuristic Model of the Evolving Universe Inspired by Hawking and Penrose",slug:"a-heuristic-model-of-the-evolving-universe-inspired-by-hawking-and-penrose",totalDownloads:428,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-ideas-concerning-black-holes-and-the-universe",title:"New Ideas Concerning Black Holes and the Universe",fullTitle:"New Ideas Concerning Black Holes and the Universe"},signatures:"Eugene Terry Tatum",authors:[{id:"261441",title:"Dr.",name:"Eugene",middleName:"Terry",surname:"Tatum",slug:"eugene-tatum",fullName:"Eugene Tatum"}]},{id:"61639",title:"Exploration of Solar Cosmic Ray Sources by Means of Particle Energy Spectra",slug:"exploration-of-solar-cosmic-ray-sources-by-means-of-particle-energy-spectra",totalDownloads:526,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Jorge Perez-Peraza and Juan C. Márquez-Adame",authors:[{id:"92548",title:"Dr.",name:"Jorge",middleName:null,surname:"Perez-Peraza",slug:"jorge-perez-peraza",fullName:"Jorge Perez-Peraza"},{id:"248825",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Marquez Adame",slug:"juan-carlos-marquez-adame",fullName:"Juan Carlos Marquez Adame"}]},{id:"55093",title:"Relativistic Celestial Metrology: Dark Matter as an Inertial Gauge Effect",slug:"relativistic-celestial-metrology-dark-matter-as-an-inertial-gauge-effect",totalDownloads:875,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Luca Lusanna and Ruggero Stanga",authors:[{id:"113030",title:"Dr.",name:"Luca",middleName:null,surname:"Lusanna",slug:"luca-lusanna",fullName:"Luca Lusanna"},{id:"201395",title:"Dr.",name:"Ruggero",middleName:null,surname:"Stanga",slug:"ruggero-stanga",fullName:"Ruggero Stanga"}]},{id:"54917",title:"Deformed Phase Space in Cosmology and Black Holes",slug:"deformed-phase-space-in-cosmology-and-black-holes",totalDownloads:1023,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"E.A. Mena-Barboza, L.F. Escamilla-Herrera, J.C. López-Domínguez\nand J. Torres-Arenas",authors:[{id:"58258",title:"Dr.",name:"Eri",middleName:"Atahualpa",surname:"Mena",slug:"eri-mena",fullName:"Eri Mena"}]}],onlineFirstChaptersFilter:{topicSlug:"astrophysics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/316413/mariya-leont-eva",hash:"",query:{},params:{id:"316413",slug:"mariya-leont-eva"},fullPath:"/profiles/316413/mariya-leont-eva",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()