\r\n\tThe aim of this book is to provide the reader with a comprehensive state-of-the-art in artificial neural networks, collecting many of the core concepts and cutting-edge application behind neural networks and deep learning.
",isbn:"978-1-83962-375-2",printIsbn:"978-1-83962-374-5",pdfIsbn:"978-1-83962-376-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"5cc6cd7972551be6cfc4d3c87bf8fb5c",bookSignature:"Dr. Pier Luigi Mazzeo and Dr. Paolo Spagnolo",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10390.jpg",keywords:"Recurrent, Recursive Nets, Face Recognition, Crowd Analysis, Different Applications, Object Detection, Classification, Visual Tracking, Speech Recognition, Grams, Reinforcement Learning, 3-D Map",numberOfDownloads:75,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 25th 2020",dateEndSecondStepPublish:"October 23rd 2020",dateEndThirdStepPublish:"December 22nd 2020",dateEndFourthStepPublish:"March 12th 2021",dateEndFifthStepPublish:"May 11th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Author and co-author of more than 80 works in national and international journals, conference proceedings, and book chapters, with Ph.D. in Computer Science Engineering.",coeditorOneBiosketch:"Dr. Spagnolo received the engineering degree in computer science from the University of Lecce, Italy. Since 2002 he has been with the Italian National Research Council. His work includes more than 80 publications on AI.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",middleName:null,surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo",profilePictureURL:"https://mts.intechopen.com/storage/users/17191/images/system/17191.jpeg",biography:"Pier Luigi Mazzeo received the engineering degree in computer science from the University of Lecce, Lecce, Italy, in 2001. \nSince 2015 he has been with Institute of Applied Sciences and Intelligent Systems of the Italian National Research Council, Lecce, Italy. The most relevant topics, in which he is currently involved, include algorithms for video object tracking , face detection and recognition, facial expression recognition, deep neural network (CNN) and machine learning.\nHe has taken part in several national and international projects and he acts as a reviewer for several international journals and for some book publishers. He has been regularly invited to take part in the Scientific Committees of national and international conferences. \nDr. Mazzeo is author and co-author of more then 80 works in national and international journals, conference proceedings and book chapters.",institutionString:"Institute of Applied Sciences and Intelligent Systems (CNR)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Institute of Applied Science and Intelligent Systems",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:{id:"20192",title:"Dr.",name:"Paolo",middleName:null,surname:"Spagnolo",slug:"paolo-spagnolo",fullName:"Paolo Spagnolo",profilePictureURL:"https://mts.intechopen.com/storage/users/20192/images/system/20192.jpg",biography:"Paolo Spagnolo received the engineering degree in computer science from the University of Lecce, Lecce, Italy, in 2002.\nSince then he has been with the Italian National Research Council.\nHe has been working on several research topics regarding Artificial Intelligence and Computer Vision studying techniques and methodologies for multidimensional digital signal processing; linear and non-linear signal characterization; signal features extraction; supervised and unsupervised classification of signals; deep neural network (CNN).\nDr. Spagnolo is an author of over 80 papers on Artificial Intelligence. He also acts as a reviewer for several international journals.\nHe has also participated in a number of international projects in the area of image and video analysis and has been regularly invited to take part in the Scientific Committees of national and international conferences.",institutionString:"Institute of Applied Sciences and Intelligent Systems (CNR)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Institute of Applied Science and Intelligent Systems",institutionURL:null,country:{name:"Italy"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:[{id:"75265",title:"Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory",slug:"deep-learning-for-subtyping-and-prediction-of-diseases-long-short-term-memory",totalDownloads:32,totalCrossrefCites:0,authors:[{id:"179217",title:"Prof.",name:"Hayrettin",surname:"Okut",slug:"hayrettin-okut",fullName:"Hayrettin Okut"}]},{id:"75193",title:"The Digital Twin of an Organization by Utilizing Reinforcing Deep Learning",slug:"the-digital-twin-of-an-organization-by-utilizing-reinforcing-deep-learning",totalDownloads:32,totalCrossrefCites:0,authors:[null]},{id:"75329",title:"Risk Assessment and Automated Anomaly Detection Using a Deep Learning Architecture",slug:"risk-assessment-and-automated-anomaly-detection-using-a-deep-learning-architecture",totalDownloads:7,totalCrossrefCites:0,authors:[null]},{id:"75342",title:"Application of Deep Learning Methods for Detection and Tracking of Players",slug:"application-of-deep-learning-methods-for-detection-and-tracking-of-players",totalDownloads:13,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8725",title:"Visual Object Tracking with Deep Neural Networks",subtitle:null,isOpenForSubmission:!1,hash:"e0ba384ed4b4e61f042d5147c97ab168",slug:"visual-object-tracking-with-deep-neural-networks",bookSignature:"Pier Luigi Mazzeo, Srinivasan Ramakrishnan and Paolo Spagnolo",coverURL:"https://cdn.intechopen.com/books/images_new/8725.jpg",editedByType:"Edited by",editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"34465",title:"Characteristics of Older Patient with Haemophilia",doi:"10.5772/28547",slug:"characteristics-of-older-patient-with-haemophilia",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/34465.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/34465",previewPdfUrl:"/chapter/pdf-preview/34465",totalDownloads:2839,totalViews:66,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,dateSubmitted:"February 28th 2011",dateReviewed:"July 17th 2011",datePrePublished:null,datePublished:"March 30th 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/34465",risUrl:"/chapter/ris/34465",book:{slug:"hemophilia"},signatures:"Silva Zupančić Šalek, Ana Boban and Dražen Pulanić",authors:[{id:"74329",title:"Prof.",name:"Silva",middleName:null,surname:"Zupancic Salek",fullName:"Silva Zupancic Salek",slug:"silva-zupancic-salek",email:"silva.zupancic-salek@zg.htnet.hr",position:null,institution:{name:"Örebro University Hospital",institutionURL:null,country:{name:"Sweden"}}},{id:"124805",title:"Dr.",name:"Ana",middleName:null,surname:"Boban",fullName:"Ana Boban",slug:"ana-boban",email:"bobanana@gmail.com",position:null,institution:null},{id:"124806",title:"Dr.",name:"Drazen",middleName:null,surname:"Pulanic",fullName:"Drazen Pulanic",slug:"drazen-pulanic",email:"drazen.pulanic@zg.t-com.hr",position:null,institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"695",title:"Hemophilia",subtitle:null,fullTitle:"Hemophilia",slug:"hemophilia",publishedDate:"March 30th 2012",bookSignature:"Angelika Batorova",coverURL:"https://cdn.intechopen.com/books/images_new/695.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"70984",title:"Associate Prof.",name:"Angelika",middleName:null,surname:"Batorova",slug:"angelika-batorova",fullName:"Angelika Batorova"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"34458",title:'\ufeffChapter 1 Profiling of Mutations in the F8 and F9, Causative Genes of Hemophilia A and Hemophilia B"',slug:"profiling-of-mutations-in-the-f8-and-f9-causative-genes-of-hemophilia-a-and-hemophilia-b",totalDownloads:5132,totalCrossrefCites:0,signatures:"Sung Ho Hwang, Hee-Jin Kim and Hye Sun Kim",authors:[{id:"66833",title:"Prof.",name:"Hye Sun",middleName:null,surname:"Kim",fullName:"Hye Sun Kim",slug:"hye-sun-kim"},{id:"77137",title:"Prof.",name:"Hee Jin",middleName:null,surname:"Kim",fullName:"Hee Jin Kim",slug:"hee-jin-kim"},{id:"77138",title:"PhD.",name:"Sung Ho",middleName:null,surname:"Hwang",fullName:"Sung Ho Hwang",slug:"sung-ho-hwang"}]},{id:"34459",title:"Genotype-Phenotype Interaction Analyses in Hemophilia",slug:"genotype-phenotype-interaction-analyses-in-hemophilia",totalDownloads:3842,totalCrossrefCites:0,signatures:"Ana Rebeca Jaloma-Cruz, Claudia Patricia Beltrán-Miranda, Isaura Araceli González-Ramos, José de Jesús López-Jiménez, Hilda Luna-Záizar, Johanna Milena Mantilla-Capacho, Jessica Noemi Mundo-Ayala and Mayra Judith Valdés Galván",authors:[{id:"76600",title:"Dr.",name:"Ana",middleName:"Rebeca",surname:"Jaloma-Cruz",fullName:"Ana Jaloma-Cruz",slug:"ana-jaloma-cruz"}]},{id:"34460",title:"From Genotype to Phenotype - When the Parents Ask the Question",slug:"from-genotype-to-phenotype-when-the-parents-ask-the-question",totalDownloads:1532,totalCrossrefCites:1,signatures:"Rumena Petkova, Stoian Chakarov and Varban Ganev",authors:[{id:"66985",title:"Dr.",name:"Rumena",middleName:null,surname:"Petkova",fullName:"Rumena Petkova",slug:"rumena-petkova"},{id:"76935",title:"Dr.",name:"Stoian",middleName:null,surname:"Chakarov",fullName:"Stoian Chakarov",slug:"stoian-chakarov"},{id:"76936",title:"Prof.",name:"Varban",middleName:null,surname:"Ganev",fullName:"Varban Ganev",slug:"varban-ganev"}]},{id:"34461",title:"Population Evolution in Hemophilia",slug:"population-evolution-in-hemophilia",totalDownloads:1881,totalCrossrefCites:0,signatures:"Myung-Hoon Chung",authors:[{id:"66925",title:"Prof.",name:"Myung-Hoon",middleName:null,surname:"Chung",fullName:"Myung-Hoon Chung",slug:"myung-hoon-chung"}]},{id:"34462",title:"Hemophilia Inhibitors Prevalence, Causes and Diagnosis",slug:"hemophilia-inhibitors-prevalence-and-diagnosis",totalDownloads:5761,totalCrossrefCites:0,signatures:"Tarek M. Owaidah",authors:[{id:"68018",title:"Dr.",name:"Tarek",middleName:null,surname:"Owaidah",fullName:"Tarek Owaidah",slug:"tarek-owaidah"}]},{id:"34463",title:"Prospective Efficacy and Safety of a Novel Bypassing Agent, FVIIa/FX Mixture (MC710) for Hemophilia Patients with Inhibitors",slug:"prospective-efficacy-and-safety-of-a-novel-bypassing-agent-fviia-fx-mixture-mc710-for-hemophilia-pat",totalDownloads:1926,totalCrossrefCites:0,signatures:"Kazuhiko Tomokiyo, Yasushi Nakatomi, Takayoshi Hamamoto and Tomohiro Nakagaki",authors:[{id:"72039",title:"Dr.",name:"Kazuhiko",middleName:null,surname:"Tomokiyo",fullName:"Kazuhiko Tomokiyo",slug:"kazuhiko-tomokiyo"},{id:"127635",title:"Mr.",name:"Yasushi",middleName:null,surname:"Nakatomi",fullName:"Yasushi Nakatomi",slug:"yasushi-nakatomi"},{id:"127636",title:"Dr.",name:"Takayoshi",middleName:null,surname:"Hamamoto",fullName:"Takayoshi Hamamoto",slug:"takayoshi-hamamoto"},{id:"127637",title:"Dr.",name:"Tomohiro",middleName:null,surname:"Nakagaki",fullName:"Tomohiro Nakagaki",slug:"tomohiro-nakagaki"}]},{id:"34464",title:"Mixed Genotypes in Hepatitis C Virus Infection",slug:"hepatitis-c-virus-mixed-genotype-infections-in-individuals-with-hemophilia-",totalDownloads:2776,totalCrossrefCites:0,signatures:"Patricia Baré and Raúl Pérez Bianco",authors:[{id:"72772",title:"PhD.",name:"Patricia",middleName:"Cristina",surname:"Bare",fullName:"Patricia Bare",slug:"patricia-bare"},{id:"91267",title:"Prof.",name:"Raul",middleName:null,surname:"Perez Bianco",fullName:"Raul Perez Bianco",slug:"raul-perez-bianco"}]},{id:"34465",title:"Characteristics of Older Patient with Haemophilia",slug:"characteristics-of-older-patient-with-haemophilia",totalDownloads:2839,totalCrossrefCites:0,signatures:"Silva Zupančić Šalek, Ana Boban and Dražen Pulanić",authors:[{id:"74329",title:"Prof.",name:"Silva",middleName:null,surname:"Zupancic Salek",fullName:"Silva Zupancic Salek",slug:"silva-zupancic-salek"},{id:"124805",title:"Dr.",name:"Ana",middleName:null,surname:"Boban",fullName:"Ana Boban",slug:"ana-boban"},{id:"124806",title:"Dr.",name:"Drazen",middleName:null,surname:"Pulanic",fullName:"Drazen Pulanic",slug:"drazen-pulanic"}]}]},relatedBooks:[{type:"book",id:"2607",title:"Blood Cell",subtitle:"An Overview of Studies in Hematology",isOpenForSubmission:!1,hash:"7c47fe55b6adb4aaadb74f8e977e46e5",slug:"blood-cell-an-overview-of-studies-in-hematology",bookSignature:"Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/2607.jpg",editedByType:"Edited by",editors:[{id:"146196",title:"Dr.",name:"Terry E.",surname:"Moschandreou",slug:"terry-e.-moschandreou",fullName:"Terry E. Moschandreou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"39109",title:"Platelets",slug:"platelets",signatures:"Gökhan Cüce and Tahsin Murad Aktan",authors:[{id:"140004",title:"PhD.",name:"Gökhan",middleName:null,surname:"Cüce",fullName:"Gökhan Cüce",slug:"gokhan-cuce"},{id:"143241",title:"Dr.",name:"Tahsin Murad",middleName:null,surname:"Aktan",fullName:"Tahsin Murad Aktan",slug:"tahsin-murad-aktan"}]},{id:"39111",title:"Rediscovering Red Blood Cells: Revealing Their Dynamic Antigens Store and Its Role in Health and Disease",slug:"rediscovering-red-blood-cells-revealing-their-dynamic-antigens-store-and-its-role-in-health-and-dise",signatures:"Mahmoud Rafea and Serhiy Souchelnytskyi",authors:[{id:"86379",title:"Dr.",name:"Serhiy",middleName:null,surname:"Souchelnytskyi",fullName:"Serhiy Souchelnytskyi",slug:"serhiy-souchelnytskyi"},{id:"146369",title:"Dr.",name:"Mahmoud",middleName:"Abdel Wahed",surname:"Rafea",fullName:"Mahmoud Rafea",slug:"mahmoud-rafea"}]},{id:"39114",title:"Homocysteine in Red Blood Cells Metabolism - Pharmacological Approaches",slug:"homocysteine-in-red-blood-cells-metabolism-pharmacological-approaches",signatures:"Filip Cristiana, Zamosteanu Nina and Albu Elena",authors:[{id:"143599",title:"Dr.",name:"Filip",middleName:null,surname:"Cristiana",fullName:"Filip Cristiana",slug:"filip-cristiana"},{id:"143791",title:"Prof.",name:"Albu",middleName:null,surname:"Elena",fullName:"Albu Elena",slug:"albu-elena"},{id:"143792",title:"Dr.",name:"Zamosteanu",middleName:null,surname:"Nina",fullName:"Zamosteanu Nina",slug:"zamosteanu-nina"}]},{id:"39122",title:"Pluripotent Stem Cells in Bone Marrow and Cord Blood",slug:"pluripotent-stem-cells-in-bone-marrow-and-cord-blood",signatures:"Ambreen Shaikh and Deepa Bhartiya",authors:[{id:"139427",title:"Dr.",name:"Deepa",middleName:null,surname:"Bhartiya",fullName:"Deepa Bhartiya",slug:"deepa-bhartiya"},{id:"155709",title:"Ms.",name:"Ambreen",middleName:null,surname:"Shaikh",fullName:"Ambreen Shaikh",slug:"ambreen-shaikh"}]},{id:"39106",title:"C-Reactive Protein",slug:"c-reactive-protein",signatures:"Moneer Faraj and Nihaya Salem",authors:[{id:"140664",title:"Dr.",name:"Moneer",middleName:null,surname:"Faraj",fullName:"Moneer Faraj",slug:"moneer-faraj"},{id:"142565",title:"Dr.",name:"Nihaya",middleName:"Kadhum",surname:"Salem",fullName:"Nihaya Salem",slug:"nihaya-salem"}]},{id:"39115",title:"Whole Blood RNA Analysis, Aging and Disease",slug:"whole-blood-rna-analysis-aging-and-disease",signatures:"Junko Takahashi, Akiko Takatsu, Masaki Misawa and Hitoshi Iwahashi",authors:[{id:"140740",title:"Dr.",name:"Junko",middleName:null,surname:"Takahashi",fullName:"Junko Takahashi",slug:"junko-takahashi"},{id:"155252",title:"Dr.",name:"Masaki",middleName:null,surname:"Misawa",fullName:"Masaki Misawa",slug:"masaki-misawa"},{id:"155254",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Iwahashi",fullName:"Hitoshi Iwahashi",slug:"hitoshi-iwahashi"},{id:"158521",title:"Dr.",name:"Akiko",middleName:null,surname:"Takatsu",fullName:"Akiko Takatsu",slug:"akiko-takatsu"}]},{id:"39107",title:"Proliferation and Differentiation of Hematopoietic Cells and Preservation of Immune Functions",slug:"proliferation-and-differentiation-of-hematopoietic-cells-and-preservation-of-immune-functions",signatures:"Osamu Hayashi",authors:[{id:"142263",title:"Prof.",name:"Osamu",middleName:null,surname:"Hayashi",fullName:"Osamu Hayashi",slug:"osamu-hayashi"}]},{id:"39113",title:"Spontaneous Alternation Behavior in Human Neutrophils",slug:"spontaneous-alternation-behavior-in-human-neutrophils",signatures:"Karen A. Selz",authors:[{id:"143681",title:"Prof.",name:"Karen",middleName:null,surname:"Selz",fullName:"Karen Selz",slug:"karen-selz"}]},{id:"39116",title:"RBC-ATP Theory of Regulation for Tissue Oxygenation-ATP Concentration Model",slug:"rbc-atp-theory-of-regulation-for-tissue-oxygenation-atp-concentration-model",signatures:"Terry E. Moschandreou",authors:[{id:"146196",title:"Dr.",name:"Terry E.",middleName:null,surname:"Moschandreou",fullName:"Terry E. Moschandreou",slug:"terry-e.-moschandreou"}]},{id:"39123",title:"Measurement Techniques for Red Blood Cell Deformability: Recent Advances",slug:"measurement-techniques-for-red-blood-cell-deformability-recent-advances",signatures:"Youngchan Kim, Kyoohyun Kim and YongKeun Park",authors:[{id:"143622",title:"Prof.",name:"YongKeun",middleName:null,surname:"Park",fullName:"YongKeun Park",slug:"yongkeun-park"},{id:"143623",title:"Mr.",name:"Kyoohyun",middleName:null,surname:"Kim",fullName:"Kyoohyun Kim",slug:"kyoohyun-kim"},{id:"143624",title:"Mr.",name:"Sangyeon",middleName:null,surname:"Cho",fullName:"Sangyeon Cho",slug:"sangyeon-cho"}]},{id:"39119",title:"Use of Microfluidic Technology for Cell Separation",slug:"use-of-microfluidic-technology-for-cell-separation",signatures:"Hisham Mohamed",authors:[{id:"140872",title:"Dr.",name:"Hisham",middleName:null,surname:"Mohamed",fullName:"Hisham Mohamed",slug:"hisham-mohamed"}]},{id:"39118",title:"Tigers Blood: Haematological and Biochemical Studies",slug:"tigers-blood-haematological-and-biochemical-studies",signatures:"A.B. Shrivastav and K.P. Singh",authors:[{id:"142314",title:"Dr.",name:"K.P.",middleName:null,surname:"Singh",fullName:"K.P. Singh",slug:"k.p.-singh"}]},{id:"39117",title:"Ascites Syndrome in Broiler Chickens - A Physiological Syndrome Affected by Red Blood Cell",slug:"ascites-syndrome-in-broiler-chickens-a-physiological-syndrome-affected-by-red-blood-cell",signatures:"S. Druyan",authors:[{id:"141932",title:"Dr.",name:"Shelly",middleName:null,surname:"Druyan",fullName:"Shelly Druyan",slug:"shelly-druyan"}]},{id:"39121",title:"The Effects of the Far-Infrared Ray (FIR) Energy Radiation on Living Body",slug:"the-effects-of-the-far-infrared-ray-fir-energy-radiation-on-living-body",signatures:"Kikuji Yamashita",authors:[{id:"106739",title:"Prof.",name:"Kikuji",middleName:null,surname:"Yamashita",fullName:"Kikuji Yamashita",slug:"kikuji-yamashita"}]},{id:"39110",title:"Laboratory Reference Intervals in Africa",slug:"laboratory-reference-intervals-in-africa",signatures:"Clement E. Zeh, Collins O. Odhiambo and Lisa A. Mills",authors:[{id:"141066",title:"Dr",name:"Clement",middleName:null,surname:"Zeh",fullName:"Clement Zeh",slug:"clement-zeh"}]},{id:"39112",title:"Principles of Blood Transfusion",slug:"principles-of-blood-transfusion",signatures:"Nuri Mamak and İsmail Aytekin",authors:[{id:"142390",title:"Prof.",name:"İsmail",middleName:null,surname:"Aytekin",fullName:"İsmail Aytekin",slug:"ismail-aytekin"},{id:"144223",title:"Dr.",name:"Nuri",middleName:null,surname:"Mamak",fullName:"Nuri Mamak",slug:"nuri-mamak"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"73110",title:"Biological Application and Disease of Oxidoreductase Enzymes",doi:"10.5772/intechopen.93328",slug:"biological-application-and-disease-of-oxidoreductase-enzymes",body:'
1. Introduction
Oxidoreductases, which includes oxidase, oxygenase, peroxidase, dehydrogenase, and others, are enzymes that catalyze redox reaction in living organisms and in the laboratory [1]. Interestingly, oxidoreductases catalyze reaction involving oxygen insertion, hydride transfer, proton extraction, and other essential steps. The substrate that is oxidized is considered as hydrogen or electron donor, whereas the substrate that is reduced during reaction as hydrogen/electrons acceptor. Most commonly, oxidoreductase enzymes use NAD, FAD, or NADP as a cofactor [2]. Organisms use this group of enzymes for synthesis of biomolecules, degradation and removal of molecules, metabolism of exogenous molecules like drugs, and so on [3, 4, 5]. Their biochemical property such as efficiency, specificity, good biodegradability, and being studied well make it fit well for industrial purposes. As a result, oxidoreductases are being utilized in nutrition, food processing, medicine, and other chemical synthesis. In the near future, oxidoreductase may be utilized as the best biocatalyst in pharmaceutical, food processing, and other industries [6, 7].
Enzymes like oxidoreductase play great and significant function in the field of disease diagnosis, prognosis, and treatment [8]. By analyzing the activities of enzymes and changes of certain substances in the body fluids, a number of disease conditions can be diagnosed [9, 10]. The determination of the activity of the oxidoreductases is helpful in understanding the metabolic activity of different organs [8, 11]. For example, the activity of oxidoreductase enzymes in Krebs cycle is significantly increased during skin infection [12].
There are different disease conditions resulting from deficiency (quantitative and qualitative) and excess of oxidoreductase, which may contribute to the metabolic abnormalities and decreased normal performance of life [13, 14]. For example, relative decreases in the activities of NADH dehydrogenase and ubiquinol-cytochrome c oxidoreductase are highly associated with the developments of peripheral arterial disease. Another best example is mutation of p450 oxidoreductase (POR) gene, which leads to insufficiency of P450 enzymes characterized by defective steroidogenesis. Similarly, deficiency of mitochondrial acetaldehyde dehydrogenase disturbs normal metabolism of alcohol and leads to accumulation of acetaldehyde [8, 15, 16]. These conditions in turn affect the normal development and reproduction.
2. Oxidoreductase in metabolism of foodstuff
Oxidoreductases are a family of enzymes that catalyze redox reactions. Oxidoreductases catalyze the transfer of electrons from oxidant to reductant [4]. Generally, oxidoreductases catalyze reactions which are similar to A– + B → A + B– where A is the oxidant and B is the reductant [17]. Oxidoreductases can be oxidases where a molecular oxygen acts as an acceptor of hydrogen or electrons and dehydrogenases which are enzymes that oxidize a substrate by transferring hydrogen to an acceptor that is either NAD+/NADP+ or a flavin enzyme. Other classes are oxidoreductases enzymes, peroxidases which are localized in peroxisomes and catalyze the reduction of hydrogen peroxide. Hydroxylases are involved in the addition of hydroxyl groups to their substrates, and oxygenases are key in the incorporation of oxygen from molecular oxygen into organic substrates. And reductase enzymes are involved in the catalysis of reduction reaction [2, 3, 18]. In general, oxidoreductase enzymes play an important role in both aerobic and anaerobic metabolism. They are involved in glycolysis, TCA cycle, oxidative phosphorylation, fatty acid, and amino acid metabolism [5, 19, 20].
3. Oxidoreductase in glycolysis
In glycolysis, the enzyme glyceraldehydes-3-phosphate dehydrogenase catalyzes the reduction of NAD + to NADH. In order to maintain the redox state of the cell, this NADH must be re-oxidized to NAD+, which occurs in the oxidative phosphorylation pathway [21].
A high number of NADH molecules are produced in the TCA cycle. The product of glycolysis, pyruvate, enters the TCA cycle in the form of acetyl-CoA. Except leucine and lysine, all twenty of the amino acids can be degraded to TCA cycle intermediates. And most of the fatty acids are oxidized into acetyl coA through beta oxidation that enter TCA cycle [19, 22].
The precursor for the TCA cycle comes from lipids and carbohydrates, both of which produce the molecule acetyl-CoA. This acetyl-CoA enters the eight-step sequence of reactions that comprise the Krebs cycle, all of which occur inside mitochondria of eukaryotic cells. TCA or Krebs cycle produces NADH and FADH, and the reactions are catalyzed by classes of oxidoreductase enzymes [23].
5. Oxidoreductase in electron transport chain and oxidative phosphorylation
Living cells use electron transport chain to transfer electrons stepwise from substrates (NADH & FADH2) to a molecular oxygen. The proton gradient which is generated through electron transport chain runs downhill to drive the synthesis of ATP. Electron transport chain and oxidative phosphorylation take place in the matrix of mitochondria, and there are oxidoreductase enzymes impregnated in the inner mitochondrial membrane, which catalyze these reactions and are engaged in energy production. NADH:quinone oxidoreductase, also called NADH dehydrogenase (complex I), is responsible for the transfer of electrons from NADH to quinones, coupled with proton translocation across the membrane. Succinate:quinone oxidoreductase, or succinate dehydrogenase (complex II), is an enzyme of the Krebs cycle, which oxidizes succinate and reduces quinones, in the absence of proton translocation. Quilon:cytochrome c oxidoreductase (complex III), which transfers electrons from quinols to cytochrome c and cytochrome c:oxygen oxidoreductase, an aa3-type enzyme (complex IV), which receives these electrons and transfers it to oxygen are both oxidoreductase enzymes involved in electron transport chain and oxidative phosphorylation [19, 24, 25] (Figure 1).
Figure 1.
Oxidoreductase enzymes involved in electron transport chain and oxidative phosphorylation [18].
6. Oxidoreductase in drug metabolism
Liver is the principal organ for drug metabolism. The body uses different strategies to metabolize drugs like oxidation, reduction, hydrolysis, hydration, conjugation, condensation, or isomerization. The main goal of drug metabolism is to make the drug more hydrophilic and excrete easily. Enzymes involved in drug metabolism are found in many tissues and organs but are more concentrated in the liver. Rates of drug metabolism may vary among individuals. Some individuals metabolize a drug so rapidly; in others, metabolism may be so slow and have different effects. Genetic factors, coexisting disorders (particularly chronic liver disorders and advanced heart failure), and drug interactions are responsible factors for variation of rate of drug metabolism among individuals [26].
Generally, drug metabolism can be in three phases. In phase I drug metabolism, oxidoreductase enzymes such as cytochrome P450 oxidases add polar or reactive groups into drugs (xenobiotics). In phase I reaction, drugs are introduced into new or modified functional group through oxidation, reduction, and hydrolysis. In Phase II reactions, modified compounds are in conjugation with an endogenous substance, e.g., glucuronic acid, sulfate, and glycine. Phase II reactions are synthetic, and compounds become more polar and thus, more readily excreted by the kidneys (in urine) and the liver (in bile) than those formed in nonsynthetic reactions. At the end, in phase III reaction, the conjugated drugs (xenobiotics) may be further processed, before being recognized by efflux transporters and pumped out of cells. The metabolism of drug often converts hydrophobic compounds into hydrophilic products that are more readily excreted [27].
In normal cases, human body wants to remove or detoxify any compounds that cannot be metabolized otherwise utilized to serve the needs of the body. This removal process is carried out mainly by the liver. The liver has classes of oxidoreductase enzymes that are extremely effective at detoxification and removal of drugs from the body [5, 18].
6.1 Metabolism of drugs through cytochrome P450 monooxygenase
Oxidation and metabolism of a high number of drugs and endogenous molecules are catalyzed by a class of oxidoreductase enzymes called cytochrome P450 monooxygenases. Even though they are distributed throughout the body, cytochrome P450 enzymes are primarily concentrated in liver cells. The CYP2D6 isozymes play a great role in metabolizing certain opioids, neuroleptics, antidepressants, and cardiac medications. Currently it is going to be understood that difference in the genes for CYP450 enzymes play to inter-individual differences in the serum concentrations of drug metabolites, resulting in interpatient variability in drug efficacy and safety [28].
6.2 Metabolism of drugs with flavin-containing monooxygenase (FMO) system
Flavin-containing monooxygenases (FMOs) (EC 1.14.13.8) are a family of microsomal NADPH-dependent oxidoreductase, responsible for oxygenation of nucleophilic nitrogen, sulfur, phosphorus, other drugs, and endogenous molecules. Different variants of mammalian FMOs play a significant role in the oxygenation of nucleophilic xenobiotics. FMO utilizes NADPH as a cofactor and contains one FAD as a prosthetic group. FMOs have a broad substrate specificity and their activity is maximal at or above pH 8.4. FMO is a highly abundant enzyme in the liver endoplasmic reticulum and participates in drug metabolism (activation and detoxification) [29].
Before FMOs bind to a substrate, they activate molecular oxygen. First, flavin adenine dinucleotide (FAD), the prosthetic group of FMO, is reduced by NADPH to form FADH, then oxygen is added into the FAD, and hydro-peroxide FADH-4α-OOH is produced. And then, one oxygen atom is transferred to the substrate [30, 31].
6.3 Metabolism of drugs through alcohol dehydrogenase and aldehyde dehydrogenase
Alcohol dehydrogenase (ADH) and mitochondrial aldehyde dehydrogenase (ALDH) are another family of oxidoreductase responsible for metabolizing ethanol. These enzymes are highly expressed in the liver but at lower levels in many tissues and play a great role in detoxification and easy removal of alcohols. Liver is the main organ for ethanol metabolism. Oxidation of ethanol with these enzymes can become a major energy source especially in the liver, and it can interfere metabolism of other nutrients [32].
The first step in ethanol metabolism is its oxidation to acetaldehyde, and this reaction is catalyzed by enzymes called alcohol dehydrogenases (ADHs). The second reaction in ethanol metabolism is oxidation of acetaldehyde into acetate catalyzed by aldehyde dehydrogenase (ALDH) enzymes. There are different ADH and ALDH enzymes encoded by different genes occurring in several alleles and enzymes that have different alcohol metabolizing capacity; thereby, they influence individuals’ alcoholism risk. These are either through rapid oxidation of ethanol to acetaldehyde where there is more active ADH or slower oxidation of acetaldehyde into acetate where there are less active ALDH enzymes. Excess accumulation of acetaldehyde is toxic, which results in different adverse reactions and produces nausea, skin rash, rapid heartbeat, etc. Most commonly, single-nucleotide polymorphisms (SNPs) are responsible for ADH and ALDH gene variants, and these may occur on both coding and non-coding regions of the gene [33, 34].
6.4 Metabolism of drugs by monoamine oxidase (MAO)
Monoamine oxidase is a very important oxidoreductase enzyme mainly responsible for degradation of amine neurotransmitters like norepinephrine, epinephrine, serotonin, and dopamine. Oxidation of different endogenous and exogenous biogenic amines may produce other active or inactive metabolites. Monoamine oxidase (MAO) is found in two isozyme forms: monoamine oxidase A (MAO-A) preferentially deaminates serotonin, norepinephrine, epinephrine, and dietary vasopressors such as tyramine, and MAO-B preferentially deaminates dopamine and phenethylamine. They are integral flavoproteins components of outer mitochondrial membranes in neurons and glia cell. The two isozymes of MAO differ based on substrate specificity and sensitivity to different inhibitors [35].
Monoamine oxidase enzymes catalyze the primary catabolic pathway for 5-HT oxidative deamination. Serotonin is converted into 5-hydroxy-indoleacetaldehyde, and this product is further oxidized by a NAD-dependent aldehyde dehydrogenase to form 5-hydroxyindoleacetic acid (5-HIAA). Immunohistochemical techniques and in situ hybridization histochemistry techniques are used to study the neuroanatomical localization and biochemical nature of the two forms of MAO [36].
Different antidepressant drugs like phenelzine and tranylcypromine inhibit the activity of monoamine oxidase. These are a result of MAO metabolizes biogenic amines such as 5-HT, DA, and NE. In addition, different dopaminergic neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are metabolized by MAO [37].
6.5 NADPH-cytochrome P450 reductase (CPR) in drug metabolism
Another essential class of oxidoreductase enzyme is NADPH-cytochrome P450 reductase (CPR). It is a membrane-bound protein localized in the ER membrane. PR involves in the detoxification and activation of a number of xenobiotics. CPR uses FAD and FMN as cofactors, and it transfers the hydride ion of NADPH to FAD, and then FAD transfers electrons to FMN and other oxidases. Finally, it reduces the P450 enzyme heme center to activate molecular oxygen. Thus, electrons transfer from NADPH to the P450 heme center by CPR, which is central for P450-catalyzed metabolism. Flow of electron can be expressed as follows:
NADPH→FAD→FMN→P450→O2E7
Human cytochrome P450 reductase is encoded by the POR gene. It is a 78-kDa multi domain diflavin reductase that binds both FMN and FAD and is attached to the cytoplasmic side of the endoplasmic reticulum via a transmembrane segment at its N-terminus [5, 15, 38].
7. Industrial application of oxidoreductase enzymes
Several industries such as pharmaceutical, foods, biofuel production, natural gas conversion, and others have used enzyme catalysis at commercial scale [39]. Classes of oxidoreductase enzymes are becoming a target by a number of industries. The family of oxidoreductase like heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases is involved in synthesis and degradation of interested products by the above industries and they are biocatalysts of interest for establishing a bio-based economy. Oxidoreductase enzymes have the highest potential in the production of polymer building blocks, sustainable chemicals, and materials from plant biomass within lignocellulose biorefineries [6, 7, 40].
7.1 Oxidoreductase enzymes in pharmaceutical industries
Enzymes are biological catalysts and have great specificity, efficiency, and selectivity in the reaction they catalyze [39]. Oxidoreductase enzymes have different redox-active centers for doing their functions. These unique features of oxidoreductase enzymes make it valuable targets of pharmaceutical and chemical industries. Advancement in recombinant DNA technology, protein engineering, and bioinformatics is a critical event in the application of enzymes in different industries. A number of dug synthesis processes require the involvement of oxidoreductase enzymes [6].
An oxidoreductase is involved in the synthesis of 3,4-dihydroxylphenyl alanine (DOPA), and 3,4-dihydroxylphenyl alanine is a drug used for treatment of Parkinson’s disease [41]. Similarly, a class of oxidoreductase called monoamine oxidase (MAO) catalyzes enantiomeric desymmetrization of bicyclic proline intermediate, which is an important precursor in the synthesis of boceprevir. Boceprevir is a NS3 protease inhibitor that is used for the treatment of chronic hepatitis C infections. Using MAO in this reaction reduces time and waste product generation and is economically cost-competitive and profitable [42]. Its coenzyme specificity makes oxidoreductase an effective biocatalyst in protein engineering [43]. In vitro different oxidoreductase enzymes are involved in regeneration of coenzymes, pyridine nucleotides, NAD(H) and NADP(H). Alcohol dehydrogenase and format dehydrogenase are frequently used enzymes for recycling of coenzymes, and the intermediate products are useful in the synthesis of pharmaceutical drugs such as mevinic acid [44, 45].
7.2 Oxidoreductase enzymes in agricultural sector
Enzymes are biological catalysts and have a number of applications in agricultural fields. Using enzymes has great efficacy and efficiency over chemical catalysts with respect to their productivity, time, cost, quality, and quantity products. There are different classes of oxidoreductase enzymes nowadays involved in fertilizer production, dairy processing, and other food processing in agricultural sector, and their cost-effectiveness and quality product were confirmed by a number of researches [3].
Manipulation of gene cod for different oxidoreductase in plants can also change the characters of plants in a way that it increases productivity and resists adverse effects of herbicide and environmental changes. For example, modification of DNA for glyphosate oxidoreductase (GOX) enzyme that catalyzes the oxidative cleavage of the C▬N bond on the carboxyl side of glyphosate, resulting in the formation of aminomethylphosphonic acid (AMPA) and glyoxylate thereby augmented expression of GOX plants, results in glyphosate herbicide side effect tolerance [46, 47]. Some families of oxidoreductase like xanthine dehydrogenase in plants are used to metabolize reactive oxygen species associated with plant-pathogen and protect plants from stress-induced oxidative damage. Upregulation of xanthine dehydrogenase expression in plants is helpful to increase productivity [48, 49].
Classes of oxidoreductase are also involved in dairy processing. Glucose oxidase produced by fungal species acts as preservatives in dairy products and other foods. The intermediate and end product of glucose oxidase have antimicrobial effect [50]. Isozyme of xanthine oxidoreductase in bovine milk, which catalyzes reduction of oxygen to generate reactive metabolite is used as an anti-microbial agent in the neonatal gastrointestinal tract [51]. Similarly, peroxidases which are a family of oxidoreductase found in higher plants catalyze the oxidation of many compounds including phenolics, in the presence of hydrogen peroxide responsible in browning or darkening of noodles and pasta and associated with a grain quality defect [52]. Protochlorophyllide oxidoreductase (POR), which exists in two isozymes POR A and POR B, plays a vital role in plant chlorophyll synthesis, and manipulation on these genes can induce plant development [53]. In general, there are a number of oxidoreductase enzymes found in plants, and their normal activity is crucial for qualitative and quantitative productivity of crops, and these were confirmed by a number of active researches. Different interventions are also going on at gene level to control the expression of oxidoreductase enzymes in plant as needed [3].
8. Disease related with oxidoreductase enzyme disorder
Oxidoreductase enzymes are involved in a number of valuable biochemical reactions in the living organism, and their qualitative and quantitative normality is essential. For example, one important class of oxidoreductase is xanthine oxidoreductase (XOR) that catalyzes oxidative hydroxylation of hypoxanthine to xanthine then to uric acid and over activity XOR leads to hyperuricemia and concomitant production of reactive oxygen species. In turn, hyperuricemia is confirmed as an independent risk factor for a number of clinical conditions such as gout, cardiovascular disease, hypertension, and others. Different urate-lowering drugs or XOR inhibitors are nowadays implemented to prevent and manage hyperuricemia disorder [9].
Another important class of oxidoreductase enzyme is cytochrome P450 oxidoreductase (POR) that is essential for multiple metabolic processes. Cytochrome P450 enzymes are involved in metabolism of steroid hormones, drugs, and xenobiotics. Nowadays, more than 200 different mutations and polymorphisms in POR gene have been identified and cause a complex set of disorders. Deficiency of cytochrome P450 oxidoreductase affects normal production of hormone; specifically, it affects steroid hormones, which are needed for normal development and reproduction. This is highly linked with the reproductive system, skeletal system, and other functions. Signs and symptoms can be seen from birth to adult age with different severities. Individuals with moderate cytochrome P450 oxidoreductase deficiency may have ambiguous external genitalia and have a high chance of infertility but a normal skeletal structure [5, 16, 18].
Aldehyde dehydrogenase 2 (ALDH2) deficiency known as Asian glow or alcohol flushing syndrome is a common genetic health problem that interferes with alcohol metabolism, and ALDH2 is a classical family of oxidoreductase enzymes. It was confirmed that ALDH2 deficiency results in the accumulation acetaldehyde, which is a toxic metabolite of alcohol metabolism and responsible for a number of health challenges like esophageal, head, and neck cancer. A number of researches conclude that acetaldehyde is a group 1 carcinogenic metabolite [33, 54]. Similarly, monoamine oxidase deficiency, which is a family oxidoreductase enzyme, affects the normal metabolism of serotonin and catecholamines. It is a rare X-linked disorder characterized by mild intellectual disability, and behavioral challenges appear at earlier age. Monoamine oxidase-A deficiency that occurs almost exclusively in males has episodes of skin flushing, excessive sweating, headaches, and diarrhea. Monoamine oxidase-A deficiency can be diagnosed by finding an elevated urinary concentration of the monoamine oxidase-A substrates in combination with reduced amounts of the monoamine oxidase products [36, 55].
Mitochondria generate huge amounts of energy (ATP) to eukaryotic cells through oxidation of fats and sugars; and fatty acid β-oxidation and oxidative phosphorylation are two metabolic pathways that are central to this process. Qualitative and quantitative normality of oxidoreductase enzymes involved in oxidative phosphorylation and fatty acid oxidations are essential to get sufficient energy (ATP) form metabolism. Deficiency of a complex I (NADH-CoQ oxidoreductase) is common, and a well-characterized mitochondrial problem causes reduced ATP production [56]. Complex I (NADH-CoQ oxidoreductase) is responsible for recycling of NADH to NAD+, and in turn, this is essential to sustain Krebs cycle and glycolysis. Mutations in both nuclear and mitochondrial DNA for Complex I gene are responsible for mitochondrial disease. Individuals with mitochondrial diseases suffer from an energy insufficiency characterized by myopathies, neuropathy, delayed development, cardiomyopathy, lactic acidosis, and others. Furthermore, since mitochondria are a hub of metabolism, mitochondrial dysfunctions are highly associated with metabolic diseases like hypertension, obesity, diabetes, neurodegenerative diseases, and even aging. Deficiency of complex I leads to elevation of NADH levels in the mitochondria that inhibit pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. This condition completely inhibits Krebs cycle, and it is measured by CO2 evolution from [14C] labeled precursors. Similarly, complex II (succinate:ubiquinone oxidoreductase) deficiency affects both fatty acid oxidation and electron transport chain, and it induces retinopathies and encephalopathies [57, 58].
Deficiency of the pyruvate dehydrogenase complex (PDHC), another class of oxidoreductase enzymes, causes similar clinical and biochemical alteration in energy production with complex I (NADH-CoQ oxidoreductase) [59]. Both TCA cycle and respiratory chain can be affected by succinate dehydrogenase deficiency. Deficiency of oxidoreductase enzymes involved in Krebs cycle affects all carbohydrate, protein, fat, and nucleic acid metabolism as it is a common pathway for metabolism of the above macromolecules [60].
Oxidoreductase enzymes are also involved in bile acid synthesis. Classes of oxidoreductase enzymes called 3beta-hydroxy-Delta (5)-C (27)-steroid oxidoreductase catalyze an early step of bile acids synthesis from cholesterol and are encoded by HSD3B7 gene on chromosome 16p11.2-12. Mutations of HSD3B7 gene affect bile acids synthesis, cause development of progressive liver disease characterized by cholestatic jaundice, malabsorption of lipids, and lipid-soluble vitamins from the gastrointestinal tract, and finally progress to cirrhosis and liver failure [61].
One important biomolecule that acts as a precursor for other molecules and a component of cell membrane is cholesterol. Mammalian cells can get cholesterol from de novo biosynthesis or uptake of exogenously derived cholesterol associated with plasma low-density lipoprotein (LDL). 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which is a class of oxidoreductase, catalyzes the rate-limiting steps of de novo cholesterol biosynthetic pathway and target for manipulation pharmacologically. Under or over activity of HMG-CoA reductase can disturb cholesterol homeostasis and lead to either hypercholesterolemia or hypocholesterolemia. And disturbed cholesterol level associated with number serious clinical problem like atherosclerosis [62, 63].
Conflict of interests
The authors declare that they have no competing interests.
Authors’ contributions
Mezgeu Legesse Habte drafted the paper and write the literature review.
Etsegenet Assefa assisted in guidance, critical assessment and peer review of the writing. Both authors have given their final approval of this version to be published. Both authors read and approved the final manuscript.
Ethical statement
Availability of data and material: All necessary data and materials related to the article are included in the article.
Funding: This review article is not funded by any person or organization (not funded).
\n',keywords:"biocatalyst, biological application, disease, metabolism, mutation, oxidoreductase",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/73110.pdf",chapterXML:"https://mts.intechopen.com/source/xml/73110.xml",downloadPdfUrl:"/chapter/pdf-download/73110",previewPdfUrl:"/chapter/pdf-preview/73110",totalDownloads:121,totalViews:0,totalCrossrefCites:0,dateSubmitted:"May 24th 2020",dateReviewed:"July 6th 2020",datePrePublished:"September 1st 2020",datePublished:"February 17th 2021",dateFinished:"September 1st 2020",readingETA:"0",abstract:"In biochemistry, oxidoreductase is a large group of enzymes that are involved in redox reaction in living organisms and in the laboratory. Oxidoreductase enzymes catalyze reaction involving oxygen insertion, hydride transfer, proton extraction, and other essential steps. There are a number of metabolic pathways like glycolysis, Krebs cycle, electron transport chain and oxidative phosphorylation, drug transformation and detoxification in liver, photosynthesis in chloroplast of plants, etc. that require the direct involvements of oxidoreductase enzymes. In addition, degradation of old and unnecessary endogenous biomolecules is catalyzed by a family of oxidoreductase enzymes, e.g., xanthine oxidoreductase. Oxidoreductase enzymes use NAD, FAD, or NADP as a cofactor and their efficiency, specificity, good biodegradability, and being studied well make it fit well for industrial applications. In the near future, oxidoreductase may be utilized as the best biocatalyst in pharmaceutical, food processing, and other industries. Oxidoreductase play a significant role in the field of disease diagnosis, prognosis, and treatment. By analyzing the activities of enzymes and changes of certain substances in the body fluids, the number of disease conditions can be diagnosed. Disorders resulting from deficiency (quantitative and qualitative) and excess of oxidoreductase, which may contribute to the metabolic abnormalities and decreased normal performance of life, are becoming common.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/73110",risUrl:"/chapter/ris/73110",signatures:"Mezgebu Legesse Habte and Etsegenet Assefa Beyene",book:{id:"9731",title:"Oxidoreductase",subtitle:null,fullTitle:"Oxidoreductase",slug:"oxidoreductase",publishedDate:"February 17th 2021",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"321940",title:"M.Sc.",name:"Mezgebu Legesse",middleName:null,surname:"Habte",fullName:"Mezgebu Legesse Habte",slug:"mezgebu-legesse-habte",email:"mezgebulegesse@gmail.com",position:null,institution:null},{id:"322372",title:"MSc.",name:"Etsegenet Assefa",middleName:null,surname:"Beyene",fullName:"Etsegenet Assefa Beyene",slug:"etsegenet-assefa-beyene",email:"roseassefa@gmail.com",position:null,institution:{name:"Addis Ababa University",institutionURL:null,country:{name:"Ethiopia"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Oxidoreductase in metabolism of foodstuff",level:"1"},{id:"sec_3",title:"3. Oxidoreductase in glycolysis",level:"1"},{id:"sec_4",title:"4. Oxidoreductase in TCA cycle",level:"1"},{id:"sec_5",title:"5. Oxidoreductase in electron transport chain and oxidative phosphorylation",level:"1"},{id:"sec_6",title:"6. Oxidoreductase in drug metabolism",level:"1"},{id:"sec_6_2",title:"6.1 Metabolism of drugs through cytochrome P450 monooxygenase",level:"2"},{id:"sec_7_2",title:"6.2 Metabolism of drugs with flavin-containing monooxygenase (FMO) system",level:"2"},{id:"sec_8_2",title:"6.3 Metabolism of drugs through alcohol dehydrogenase and aldehyde dehydrogenase",level:"2"},{id:"sec_9_2",title:"6.4 Metabolism of drugs by monoamine oxidase (MAO)",level:"2"},{id:"sec_10_2",title:"6.5 NADPH-cytochrome P450 reductase (CPR) in drug metabolism",level:"2"},{id:"sec_12",title:"7. Industrial application of oxidoreductase enzymes",level:"1"},{id:"sec_12_2",title:"7.1 Oxidoreductase enzymes in pharmaceutical industries",level:"2"},{id:"sec_13_2",title:"7.2 Oxidoreductase enzymes in agricultural sector",level:"2"},{id:"sec_15",title:"8. Disease related with oxidoreductase enzyme disorder",level:"1"},{id:"sec_19",title:"Conflict of interests",level:"1"},{id:"sec_16",title:"Authors’ contributions",level:"1"},{id:"sec_17",title:"Ethical statement",level:"1"}],chapterReferences:[{id:"B1",body:'Trisolini L, Gambacorta N, Gorgoglion R, et al. FAD/NADH dependent oxidoreductases: From different amino acid sequences to similar protein shapes for playing an ancient function. Journal of Clinical Medicine. 2019;8:2117'},{id:"B2",body:'McDonald A. The Enzyme List Class 1—Oxidoreductases. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB); 2019'},{id:"B3",body:'Gramss G, Rudeschko O. Activities of oxidoreductase enzymes in tissue extracts and sterile root exudates of three crop plants, and some properties of the peroxidase component. New Phytology. 1998;138:401-409'},{id:"B4",body:'Braune A, Gütschow M, Blau M. An NADH-dependent reductase from Eubacterium ramulus catalyzes the stereospecific heteroring cleavage of flavanones and flavanonols. Applied and Environmental Microbiology. 2019. DOI: 10.1128/AEM.01233-19'},{id:"B5",body:'Rendic S, Guengerich FP. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chemical Research in Toxicology. 2015;28:38-42'},{id:"B6",body:'Martíneza AT, Ruiz-Dueñasa FJ, Camareroa S, et al. Oxidoreductases on their way to industrial biotransformations. Biotechnology Advances. 2017;35:815-831'},{id:"B7",body:'Chapman J, Ismail AE, Dinu CZ. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts. 2018;8:238'},{id:"B8",body:'Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. The Journal of Physiology. 2004;555(3):589-606'},{id:"B9",body:'Chen C, Lü J-M, Yao Q. Hyperuricemia and XOR inhibitors. Medical Science Monitor. 2016;22:2501-2512'},{id:"B10",body:'Raja MMM, Raja A, Imran MM, Santha AMI, Devasena K. Enzyme application in diagnostic application. Biotechnology. 2011;10(1):51-59'},{id:"B11",body:'Hoidal JR, Xu R, Huecksteadt T, Sanders KA, Pfeffer K, Sturrock AB. Lung injury and oxidoreductases. Environmental Health Perspectives. 1998;106(5):1235-1239'},{id:"B12",body:'Uravleva GF. Histochemical investigation of the activity of oxidoreductases in the skin lesions of lepromatous leprosy patients. Bulletin of the World Health Organization. 1972;46:813-819'},{id:"B13",body:'Pey AL, Megarity CF, Timson DJ. NAD(P)H quinone oxidoreductase (NQO1): An enzyme which needs just enough mobility, in just the right places. Bioscience Reports. 2019;39(1)'},{id:"B14",body:'Brass EP, Hiatt WR, Gardner AW, Hoppe CL. Decreased NADH dehydrogenase and ubiquinolcytochrome c oxidoreductase in peripheral arterial disease. American Journal of Physiology. Heart and Circulatory Physiology. 2001;280:H603-H609'},{id:"B15",body:'Fang Y, Gao N, Tian X, Zhou J, et al. Effect of P450 oxidoreductase polymorphisms on the metabolic activities of ten cytochrome P450s varied by polymorphic CYP genotypes in human liver microsomes. Cellular Physiology and Biochemistry. 2018;47:1604-1616'},{id:"B16",body:'Flück CE, Tajima T, Pandey AV, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nature Genetics. 2004;36(3)'},{id:"B17",body:'Younus H. Oxidoreductase: An overview and practical application. In: Biocatalysis. 2019. pp. 39-55'},{id:"B18",body:'Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics. 2013;138:103-141'},{id:"B19",body:'Ramsay RR. Electron carriers and energy conservation in mitochondrial respiration. ChemTexts. 2019;5:9'},{id:"B20",body:'Porpaczy Z, Sumegi SB, Alkonyi I. Interaction between NAD-dependent isocitrate dehydrogenase, a-ketoglutarate dehydrogenase complex, and NADH:Ubiquinone oxidoreductase. Journal of Biochemistry. 1987;262(20):950-9514'},{id:"B21",body:'Shestov AA, Liu X, Ser Z, et al. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. Biochemistry Human Biology and Medicine. 2014;3:e03342'},{id:"B22",body:'Mailloux RJ. Still at the center of it all; novel functions of the oxidative Krebs cycle. Bioenergetics. 2015;4:122. DOI: 10.4172/21677662.1000122'},{id:"B23",body:'Ponizovskiy MR. Role of Krebs cycle in the mechanism of stability internal medium and internal energy in an organism in norm and in mechanisms of cancer pathology. Modern Chemistry and Applications. 2016;4:191. DOI: 10.4172/2329-6798.1000191'},{id:"B24",body:'Kotb MI. Biological Oxidation (Electron transport chain—Chemiosmosis Oxidative Phosphorylation—Uncouplers). Presentation. Bio II-Spring; 2017'},{id:"B25",body:'Matsubayashi M, Inaoka DK, Komatsuya K, et al. Novel characteristics of mitochondrial electron transport chain from Eimeria tenella. Genes. 2019;10:29'},{id:"B26",body:'Ozougwu J. Physiology of liver. Research Gate. 2017;4:13-24'},{id:"B27",body:'Penner N, Woodward C, Prakash C. Drug metabolizing enzymes and biotransformation reactions. Oxidative Enzymes. 2012:546-565'},{id:"B28",body:'Schenkman JB. Historical Background and Description of the Cytochrome P450 Monooxygenase System. 1993'},{id:"B29",body:'Başaran R, Eke BC. Flavin containing monooxygenases and metabolism of xenobiotics. Turkish Journal of Pharmaceutical Sciences. 2017;14(1):90-94'},{id:"B30",body:'Basaran R, Benay CA. Flavin containing monooxygenases and metabolism of xenobioics. Turkish journal of pharmaceutical sciences. 2017;14(1):90'},{id:"B31",body:'Rossner R, Kaeberlein M, Leiser S. Flavin containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. The Journal of Biological Chemistry. 2017;292(27):11138-11146'},{id:"B32",body:'Haseba T, Ohno YA. New view of alcohol metabolism and alcoholism—Role of the high-Km Class III alcohol dehydrogenase (ADH3). International Journal of Environmental Research and Public Health. 2010;7(3):1076-1092'},{id:"B33",body:'Chang JS, Hsiao J-R, Chen C-H. ALDH2 polymorphism and alcohol-related cancers in Asians: A public health perspective. Journal of Biomedical Science. 2017;24:19'},{id:"B34",body:'Agarwal DP et al. Alcohol Metabolism, Alcohol Intolerance, and Alcoholism. Berlin Heidelberg: Springer-Verlag; 1990'},{id:"B35",body:'Yeung AK, Georgieva MG, Atanasov AG, Tzvetkovetics NT. Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience. Research literature analysis. Frontiers in molecular neuroscience. 2019;12:143'},{id:"B36",body:'Müller T, Möhr J-D. Pharmacokinetics of monoamine oxidase B inhibitors in Parkinson’s disease. Drug Metabolism & Toxicology. 2019;15(5):429-435'},{id:"B37",body:'Zhang Z, Hamada H, Gerk PM. Selectivity of dietary phenolics for inhibition of human monoamine oxidases A and B. BioMed Research International. 2019;23:2019'},{id:"B38",body:'Scott RR, Miller WL. Genetic and clinical features of P450 oxidoreductase deficiency. Hormonal Research. 2008;69:266-275'},{id:"B39",body:'Abdelraheem EMM, Busch H, Hanefeld U, Tonin F. Biocatalysis explained: From pharmaceutical to bulk chemical production. Reaction Chemistry and Engineering. 2019;4:1878-1894'},{id:"B40",body:'Fernandes P. Enzymes in food processing: Condensed overview on strategies for better biocatalysts. Enzyme Research. 2010;2010(1):1-20'},{id:"B41",body:'Stefano AD, Marinelli L, Eusepi P, et al. Synthesis and biological evaluation of novel selenyl and sulfur-l-dopa derivatives as potential anti-Parkinson’s disease agents. Biomolecules. 2019;9:239'},{id:"B42",body:'Bhalerao DS, Kumar A, Arkala R, et al. Synthesis and process optimization of boceprevir: A protease inhibitor drug. Organic Process Research and Development. 2015;19(11):1559-1567'},{id:"B43",body:'Howe AYM, Venkatraman S. The discovery and development of boceprevir: A novel, first-generation inhibitor of the hepatitis C virus NS3/4A serine protease. Journal of Clinical and Translational Hepatology. 2013;1:22-32'},{id:"B44",body:'Daiju D, Takumi O, Yosifumi M, et al. Formate oxidase, an enzyme of the glucose-methanol-choline oxidoreductase family, has a His-Arg pair and 8-formyl-FAD at the catalytic site. Bioscience, Biotechnology, and Biochemistry. 2011;75(9):1662-1667'},{id:"B45",body:'Chánique AM, Parra LP. Protein engineering for nicotinamide coenzyme specificity in oxidoreductases: Attempts and challenges. Frontiers in Microbiology. 2018;9:194'},{id:"B46",body:'Pollegioni L, Schonbrunn E, Siehl D. Molecular basis of glyphosate resistance—Different approaches through protein engineering. The FEBS Journal. 2011;278(16):2753-2766'},{id:"B47",body:'Kumar K, Gambhir G, Dass A, et al. Genetically modified crops: Current status and future prospects. Planta. 2020;251:91'},{id:"B48",body:'Zdunek-Zastocka E, Lips HS. Is xanthine dehydrogenase involved in response of pea plants (Pisum sativum L.) to salinity or ammonium treatment? Acta Physiologiae Plantarum. 2003;25:395-401'},{id:"B49",body:'Hofmann NR. Opposing functions for plant xanthine dehydrogenase in response to powdery mildew infection: Production and scavenging of reactive oxygen species. The Plant Cell. 2016;28(5):1001'},{id:"B50",body:'Buchert J, Autio K. Using crosslinking enzymes to improve textural and other properties of food. Novel Enzyme Technology for Food Applications. 2007'},{id:"B51",body:'Di Maio G, Pittia P, Mazzarino L, Maraschin M, Kuhnen S. Cow milk enriched with nanoencapsulated phenolic extract of jaboticaba (plinia peruviana). Journal of Food Science and technology. 2019;56(3):1165-1173'},{id:"B52",body:'Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN. Comprehensive review on function and application of plant peroxidases. Journal of Biochemistry & Analytical Biochemistry. 2017;6:308'},{id:"B53",body:'Garrone A, Archipowa N, Zipfel PF, Hermann G, Dietzek B. Plant Protochlorophyllide Oxidoreductases A and B – Catalytic Efficiency and Initial Reaction Steps. Journal of biological chemistry. 2015;290(47):28530-28539'},{id:"B54",body:'Ho T, Chang C, Wu J, Huang I, et al. Recombinant expression of aldehyde dehydrogenase 2 (ALDH2) in Escherichia coli nissle 1917 for oral delivery in ALDH2-deficient individuals. bioRxiv. 2019. preprint'},{id:"B55",body:'Shi Y, van Rhijn JR, Bormann M, Mossink B, et al. Brunner syndrome associated MAOA dysfunction in human induced dopaminergic neurons results in dysregulated NMDAR expression and increased network activity. bioRxiv. 2019. preprint'},{id:"B56",body:'Nsiah-Sefaa A, McKenzie M. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Bioscience Reports. 2016;36 art: e00313'},{id:"B57",body:'Chen X, Qi F, Dash RK, Beard DA. Kinetics and regulation of mammalian NADH-ubiquinone oxidoreductase (Complex I). Biophysical Journal. 2010;99:1426-1436'},{id:"B58",body:'Scheffler IE. Mitochondrial disease associated with complex I (NADH-CoQ oxidoreductase) deficiency. Journal of Inherited Metabolic Disease. 2015;38(3):405-415'},{id:"B59",body:'Gupta N, Rutledge C. Pyruvate dehydrogenase complex deficiency: An unusual cause of recurrent lactic acidosis in a paediatric critical care unit. Journal of Critical Care Medicine. 2019;5(2):71-75'},{id:"B60",body:'Dean B, Chrisp GL, Quartararo M, et al. P450 oxidoreductase deficiency: A systematic review and meta-analysis of genotypes, phenotypes, and their relationships. The Journal of Clinical Endocrinology and Metabolism. 2020;105(3):e42-e52'},{id:"B61",body:'Cheng JB et al. Molecular genetics of 3beta-hydroxy-delta5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. The Journal of Clinical Endocrinology and Metabolism. 2003;88(4):1833-1841'},{id:"B62",body:'Lacher S, Bruttger J, Kalt B, et al. HMG-CoA reductase promotes protein prenylation and therefore is indispensible for T-cell survival. Cell Death & Disease. 2017;8:e2824'},{id:"B63",body:'Göbel A, Breining D, Rauner M, Hofbauer LC, Rachner TD. Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells. Cell Death & Disease. 2019;10(2):91'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Mezgebu Legesse Habte",address:"mezgebulegesse@gmail.com",affiliation:'
Department of Biochemistry, Harmaya University, School of Medicine and College of Health Sciences, Ethiopia
Department of Biochemistry, College of Health and Medical Sciences, Addis Ababa University, Ethiopia
'}],corrections:null},book:{id:"9731",title:"Oxidoreductase",subtitle:null,fullTitle:"Oxidoreductase",slug:"oxidoreductase",publishedDate:"February 17th 2021",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"311931",title:"Dr.",name:"Sangeeta",middleName:null,surname:"Obrai",email:"obrais@nitj.ac.in",fullName:"Sangeeta Obrai",slug:"sangeeta-obrai",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{title:"Quantum Computational Chemistry: Modeling and Calculation of S-Block Metal Ion Complexes",slug:"quantum-computational-chemistry-modeling-and-calculation-of-s-block-metal-ion-complexes",abstract:"The computational study of some s-block metal nitrophenolate complexes, [Ca(THEEN)(PIC)]+ (1), [Ca(THPEN)(H2O)2]2+ (2), Ba(THPEN)(PIC)2 (3) [Na(THPEN)]22+ (4), [Sr(THPEN)(H2O)2]22+ (5) and [Ba(THPEN)(H2O)2]22+ (6) (where THEEN (N,N,N′,N′-Tetrakis(2-hydroxyethyl)ethylenediamine) and THPEN (N,N,N′,N′-Tetrakis(2-hydroxypropyl)ethylenediamine) are tetrapodal ligands and PIC− is 2,4,6-trinitrophenolate anion), is presented here using density functional theory (DFT) in its hybrid form B3LYP. The geometries of the title complexes are described by the quantum-chemical approach using input coordinates obtained from the previously synthesized and X-ray characterized diffraction data of [Ca(THEEN)(PIC)](PIC), [Ca(THPEN)(H2O)2](PIC)2, Ba(THPEN)(PIC)2, [Na(THPEN)]2(PIC)2, [Sr(THPEN)(H2O)2]2(DNP)4 and [Ba(THPEN)(H2O)2]2(DNP)4 (where DNP is 3,5-dinitrophenolate). Only the primary coordination sphere of complexes (1–6) is optimized in the gaseous phase. Calculations of the energy gaps of frontier orbitals (HOMO-LUMO), 13C-NMR shifts and vibrational bands are carried out using B3LYP/6-31 g + (d,p)/LANL2DZ level of theory. The calculated geometric and spectral parameters reproduced the experimental data with a well agreement.",signatures:"Rakesh Kumar and Sangeeta Obrai",authors:[{id:"311930",title:"Dr.",name:"Rakesh",surname:"Kumar",fullName:"Rakesh Kumar",slug:"rakesh-kumar",email:"rakesh_nitj@yahoo.co.in"},{id:"311931",title:"Dr.",name:"Sangeeta",surname:"Obrai",fullName:"Sangeeta Obrai",slug:"sangeeta-obrai",email:"obrais@nitj.ac.in"}],book:{title:"Density Functional Theory Calculations",slug:"density-functional-theory-calculations",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"32498",title:"Dr.",name:"Daniel",surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32498/images/system/32498.jpg",biography:"Dr. Daniel Glossman-Mitnik has a degree in Chemistry from the University of Buenos Aires and a Ph.D. in Physical Chemistry from the University of La Plata. He has done postdoctoral studies at UNC (USA), UPR (Puerto Rico), and UVA (Spain), as well as being an Invited Professor at the University of the Balearic Islands (Spain). He currently serves as Senior Researcher Level C at CIMAV, and is a member of SNI - CONACYT, with Level III. His specialty is Computational Chemistry and Molecular Modeling with emphasis on Computational Medicinal Nanochemistry. He has published over 200 papers in indexed international scientific journals and has made over 250 presentations at national and international scientific conferences.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",institutionURL:null,country:{name:"Mexico"}}},{id:"154505",title:"Dr.",name:"Norma",surname:"Flores-Holguín",slug:"norma-flores-holguin",fullName:"Norma Flores-Holguín",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"176017",title:"Prof.",name:"Sergio Ricardo De",surname:"Lazaro",slug:"sergio-ricardo-de-lazaro",fullName:"Sergio Ricardo De Lazaro",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/176017/images/system/176017.png",biography:"Prof. Sergio Ricardo de Lazaro is married, and he has two daughters living in Ponta Grossa, Paraná. Currently, he is a Full Professor in the Department of Chemistry of the State University of Ponta Grossa (UEPG). He has his Ph.D. degree in Chemistry and has published manuscripts with researchers from other countries. His development of studies in Material Chemistry or Molecules applies the Density Functional Theory (DFT). In scientific journals, his recognized documents internationally contribute to environmental, energy, and potential drugs from photocatalysis, charge transfer, and molecular reactivity. His research interests include theoretical analysis of the structural, electronic, magnetic, and morphological properties proposed paths to clarify chemical mechanisms associated with massive problems. He acts as a reviewer of manuscripts in international scientific journals.",institutionString:"Ponta Grossa State University",institution:{name:"Ponta Grossa State University",institutionURL:null,country:{name:"Brazil"}}},{id:"214504",title:"Dr.",name:"Juan",surname:"Frau",slug:"juan-frau",fullName:"Juan Frau",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"269630",title:"Dr.",name:"Muraleedharan",surname:"Karuvanthodi",slug:"muraleedharan-karuvanthodi",fullName:"Muraleedharan Karuvanthodi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"311930",title:"Dr.",name:"Rakesh",surname:"Kumar",slug:"rakesh-kumar",fullName:"Rakesh Kumar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"316579",title:"Prof.",name:"Guocai",surname:"Tian",slug:"guocai-tian",fullName:"Guocai Tian",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Kunming University of Science and Technology",institutionURL:null,country:{name:"China"}}},{id:"317311",title:"Prof.",name:"Alexander",surname:"D'Yachenko",slug:"alexander-d'yachenko",fullName:"Alexander D'Yachenko",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"317338",title:"Prof.",name:"Ivan",surname:"Mitropolsky",slug:"ivan-mitropolsky",fullName:"Ivan Mitropolsky",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"320959",title:"Mr.",name:"Weizhong",surname:"Zhou",slug:"weizhong-zhou",fullName:"Weizhong Zhou",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kunming University of Science and Technology",institutionURL:null,country:{name:"China"}}}]},generic:{page:{slug:"open-access-funding-funders-list",title:"List of Funders by Country",intro:"
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
IMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
Wellcome Trust (Funding available only to Wellcome-funded researchers/grantees)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118189},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"6216",title:"Complexity in Biological and Physical Systems",subtitle:"Bifurcations, Solitons and Fractals",isOpenForSubmission:!0,hash:"c511a26efc1b9c0638c8f9244240cb93",slug:"complexity-in-biological-and-physical-systems-bifurcations-solitons-and-fractals",bookSignature:"Ricardo López-Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/6216.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",surname:"Lopez-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo Lopez-Ruiz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!0,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editedByType:"Edited by",editors:[{id:"103742",title:"Dr.",name:"Richard",surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:15},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1},{group:"topic",caption:"Environmental Pollution",value:133,count:1},{group:"topic",caption:"Dynamical Systems Theory",value:966,count:1}],offset:12,limit:12,total:192},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5227},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"303",title:"Veterinary Genetics",slug:"veterinary-genetics",parent:{title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"},numberOfBooks:3,numberOfAuthorsAndEditors:32,numberOfWosCitations:10,numberOfCrossrefCitations:10,numberOfDimensionsCitations:23,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"veterinary-genetics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6647",title:"Animal Genetics",subtitle:"Approaches and Limitations",isOpenForSubmission:!1,hash:"8c7e69892d305f7231a5600de2acdc16",slug:"animal-genetics-approaches-and-limitations",bookSignature:"Dana Liana Pusta",coverURL:"https://cdn.intechopen.com/books/images_new/6647.jpg",editedByType:"Edited by",editors:[{id:"90748",title:"Prof.",name:"Dana Liana",middleName:null,surname:"Pusta",slug:"dana-liana-pusta",fullName:"Dana Liana Pusta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5543",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",subtitle:null,isOpenForSubmission:!1,hash:"3d2bf9a6dccb151b4c68b986ec4e59d6",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",bookSignature:"Rosa Estela Quiroz-Castañeda",coverURL:"https://cdn.intechopen.com/books/images_new/5543.jpg",editedByType:"Edited by",editors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"5405",title:"Trends and Advances in Veterinary Genetics",subtitle:null,isOpenForSubmission:!1,hash:"b81ca0dfa8e83073171dd1b5c29b2232",slug:"trends-and-advances-in-veterinary-genetics",bookSignature:"Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/5405.jpg",editedByType:"Edited by",editors:[{id:"112070",title:"Dr.",name:"Muhammad",middleName:null,surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"52715",doi:"10.5772/65804",title:"Major Histocompatibility Complex-Associated Resistance to Infectious Diseases: The Case of Bovine Leukemia Virus Infection",slug:"major-histocompatibility-complex-associated-resistance-to-infectious-diseases-the-case-of-bovine-leu",totalDownloads:1917,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"trends-and-advances-in-veterinary-genetics",title:"Trends and Advances in Veterinary Genetics",fullTitle:"Trends and Advances in Veterinary Genetics"},signatures:"Silvina Elena Gutiérrez, Eduardo Néstor Esteban, Claudia María\nLützelschwab and Marcela Alicia Juliarena",authors:[{id:"188776",title:"Dr.",name:"Silvina Elena",middleName:null,surname:"Gutiérrez",slug:"silvina-elena-gutierrez",fullName:"Silvina Elena Gutiérrez"},{id:"189290",title:"Dr.",name:"Marcela Alicia",middleName:null,surname:"Juliarena",slug:"marcela-alicia-juliarena",fullName:"Marcela Alicia Juliarena"},{id:"189291",title:"Dr.",name:"Eduardo Néstor",middleName:null,surname:"Esteban",slug:"eduardo-nestor-esteban",fullName:"Eduardo Néstor Esteban"},{id:"189293",title:"Dr.",name:"Claudia María",middleName:null,surname:"Lützelschwab",slug:"claudia-maria-lutzelschwab",fullName:"Claudia María Lützelschwab"}]},{id:"59305",doi:"10.5772/intechopen.74008",title:"Avian Coccidiosis, New Strategies of Treatment",slug:"avian-coccidiosis-new-strategies-of-treatment",totalDownloads:2813,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Rosa Estela Quiroz-Castañeda",authors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}]},{id:"58461",doi:"10.5772/intechopen.72638",title:"Natural Compounds as an Alternative to Control Farm Diseases: Avian Coccidiosis",slug:"natural-compounds-as-an-alternative-to-control-farm-diseases-avian-coccidiosis",totalDownloads:1429,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Mayra E. Cobaxin-Cárdenas",authors:[{id:"223051",title:"Dr.",name:"Mayra E.",middleName:null,surname:"Cobaxin-Cárdenas",slug:"mayra-e.-cobaxin-cardenas",fullName:"Mayra E. Cobaxin-Cárdenas"}]}],mostDownloadedChaptersLast30Days:[{id:"59305",title:"Avian Coccidiosis, New Strategies of Treatment",slug:"avian-coccidiosis-new-strategies-of-treatment",totalDownloads:2820,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Rosa Estela Quiroz-Castañeda",authors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}]},{id:"52940",title:"Beyond Fifty Shades: The Genetics of Horse Colors",slug:"beyond-fifty-shades-the-genetics-of-horse-colors",totalDownloads:2580,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"trends-and-advances-in-veterinary-genetics",title:"Trends and Advances in Veterinary Genetics",fullTitle:"Trends and Advances in Veterinary Genetics"},signatures:"Adriana Pires Neves, Eduardo Brum Schwengber, Fabiola Freire\nAlbrecht, José Victor Isola and Liana de Salles van der Linden",authors:[{id:"188768",title:"Associate Prof.",name:"Adriana",middleName:null,surname:"Pires Neves",slug:"adriana-pires-neves",fullName:"Adriana Pires Neves"},{id:"188993",title:"Dr.",name:"Eduardo",middleName:null,surname:"Brun Schwengber",slug:"eduardo-brun-schwengber",fullName:"Eduardo Brun Schwengber"},{id:"188994",title:"Mrs.",name:"Fabiola",middleName:null,surname:"Freire Albrecht",slug:"fabiola-freire-albrecht",fullName:"Fabiola Freire Albrecht"},{id:"188996",title:"Ph.D. Student",name:"Liana",middleName:null,surname:"de Salles van der Linden",slug:"liana-de-salles-van-der-linden",fullName:"Liana de Salles van der Linden"},{id:"188997",title:"Mr.",name:"José Victor",middleName:null,surname:"Vieira Isola",slug:"jose-victor-vieira-isola",fullName:"José Victor Vieira Isola"}]},{id:"58730",title:"Metagenomics and Diagnosis of Zoonotic Diseases",slug:"metagenomics-and-diagnosis-of-zoonotic-diseases",totalDownloads:1141,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Laura Inés Cuervo-Soto, Silvio Alejandro López-Pazos and Ramón\nAlberto Batista-García",authors:[{id:"201362",title:"Dr.",name:"Ramón Alberto",middleName:null,surname:"Batista-García",slug:"ramon-alberto-batista-garcia",fullName:"Ramón Alberto Batista-García"}]},{id:"53771",title:"Genetics in Domestic Animal Reproduction",slug:"genetics-in-domestic-animal-reproduction",totalDownloads:3011,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-and-advances-in-veterinary-genetics",title:"Trends and Advances in Veterinary Genetics",fullTitle:"Trends and Advances in Veterinary Genetics"},signatures:"Sven Budik",authors:[{id:"187490",title:"Dr.",name:"Sven",middleName:null,surname:"Budik",slug:"sven-budik",fullName:"Sven Budik"}]},{id:"52715",title:"Major Histocompatibility Complex-Associated Resistance to Infectious Diseases: The Case of Bovine Leukemia Virus Infection",slug:"major-histocompatibility-complex-associated-resistance-to-infectious-diseases-the-case-of-bovine-leu",totalDownloads:1919,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"trends-and-advances-in-veterinary-genetics",title:"Trends and Advances in Veterinary Genetics",fullTitle:"Trends and Advances in Veterinary Genetics"},signatures:"Silvina Elena Gutiérrez, Eduardo Néstor Esteban, Claudia María\nLützelschwab and Marcela Alicia Juliarena",authors:[{id:"188776",title:"Dr.",name:"Silvina Elena",middleName:null,surname:"Gutiérrez",slug:"silvina-elena-gutierrez",fullName:"Silvina Elena Gutiérrez"},{id:"189290",title:"Dr.",name:"Marcela Alicia",middleName:null,surname:"Juliarena",slug:"marcela-alicia-juliarena",fullName:"Marcela Alicia Juliarena"},{id:"189291",title:"Dr.",name:"Eduardo Néstor",middleName:null,surname:"Esteban",slug:"eduardo-nestor-esteban",fullName:"Eduardo Néstor Esteban"},{id:"189293",title:"Dr.",name:"Claudia María",middleName:null,surname:"Lützelschwab",slug:"claudia-maria-lutzelschwab",fullName:"Claudia María Lützelschwab"}]},{id:"53215",title:"Genetic and Breeding Aspects of Lactation",slug:"genetic-and-breeding-aspects-of-lactation",totalDownloads:1261,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"trends-and-advances-in-veterinary-genetics",title:"Trends and Advances in Veterinary Genetics",fullTitle:"Trends and Advances in Veterinary Genetics"},signatures:"Vijay Kumar",authors:[{id:"190718",title:"Dr.",name:"Vijay",middleName:null,surname:"Kumar",slug:"vijay-kumar",fullName:"Vijay Kumar"}]},{id:"58389",title:"Zoonotic Trematodiasis",slug:"zoonotic-trematodiasis",totalDownloads:919,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Estefan Miranda Miranda",authors:[{id:"195819",title:"Dr.",name:"Estefan",middleName:null,surname:"Miranda Miranda",slug:"estefan-miranda-miranda",fullName:"Estefan Miranda Miranda"}]},{id:"58461",title:"Natural Compounds as an Alternative to Control Farm Diseases: Avian Coccidiosis",slug:"natural-compounds-as-an-alternative-to-control-farm-diseases-avian-coccidiosis",totalDownloads:1433,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Mayra E. Cobaxin-Cárdenas",authors:[{id:"223051",title:"Dr.",name:"Mayra E.",middleName:null,surname:"Cobaxin-Cárdenas",slug:"mayra-e.-cobaxin-cardenas",fullName:"Mayra E. Cobaxin-Cárdenas"}]},{id:"59436",title:"Pathogenomics and Molecular Advances in Pathogen Identification",slug:"pathogenomics-and-molecular-advances-in-pathogen-identification",totalDownloads:1046,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Rosa Estela Quiroz-Castañeda",authors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}]},{id:"64899",title:"Introductory Chapter: Challenges and Advances in Animal Genetics",slug:"introductory-chapter-challenges-and-advances-in-animal-genetics",totalDownloads:656,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"animal-genetics-approaches-and-limitations",title:"Animal Genetics",fullTitle:"Animal Genetics - Approaches and Limitations"},signatures:"Dana Liana Pusta",authors:[{id:"90748",title:"Prof.",name:"Dana Liana",middleName:null,surname:"Pusta",slug:"dana-liana-pusta",fullName:"Dana Liana Pusta"}]}],onlineFirstChaptersFilter:{topicSlug:"veterinary-genetics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/311931/sangeeta-obrai",hash:"",query:{},params:{id:"311931",slug:"sangeeta-obrai"},fullPath:"/profiles/311931/sangeeta-obrai",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()