Endocrine disruptors interfere with endocrine-mediated regulations of cell or organ functions. Estrogens are one of the main hormones altered by endocrine disruptors like bisphenol A (BPA). Stem cells are active from embryogenesis to late stages of adult life. Their unique properties, such as an extended lifespan and low cycling features, render these cell privileged targets of long-term exposure to numerous factors. Therefore, stem cells are likely to be affected following exposure to endocrine disruptors. One of the major signaling pathways involved in stem cell regulation is the bone morphogenetic protein (BMP) pathway. The BMP pathway is known for its involvement in numerous physiological and pathophysiological processes. Exposure of human mammary stem cells to pollutants such as BPA initiates fundamental changes in stem cells, in particular by altering major elements of BMP signaling, such as receptor expression and localization. Lastly, BPA and its substitute bisphenol S (BPS) have similar impacts on BMP signaling despite their different ER-binding properties, supporting the hypothesis that their biological effects cannot be extrapolated only from their interaction with ERα66. We review recent discoveries in this field and discuss their implications for cancer diagnosis, prevention, and treatment, as well as their relevance for studies on endocrine disruptors.
Part of the book: Breast Cancer Biology