High pure titanium, which is a critical material used for integrated circuit (IC) manufacturing, can be extracted by molten salt-electrolysis process. It will be widely used in the future for the process, is simple and easy, to achieve continuous production. However, some scientific questions need to be clarified at present. (1) Current efficiency needs to be enhanced by way of electrolyte designing and selection; (2) Product quality needs to be improved by means of electrolyte purification; (3) Electrolytic parameters need to be optimized for obtaining a better morphology. Above on, this chapter aims to explore the behaviors of titanium ions in various molten salts by means of chemical analysis and electrochemical testing. The complexes will be discussed for clarifying the influence of electrolytic compositions on kinetics mechanisms of the electrolysis process and the properties of the molten salt. A quantitative method for estimating oxygen content will be also discussed for the purpose of optimizing the composition of electrolytes. The chapter will provide a better understanding mechanism of kinetics of high pure titanium electrolysis, and the basic theory and experimental data can be used for reference in the industrialization process.
Part of the book: Recent Advancements in the Metallurgical Engineering and Electrodeposition