Design consideration for Imbert and stratified downdraft gasifiers.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"7536",leadTitle:null,fullTitle:"Modern Medical Genetics and Genomics",title:"Modern Medical Genetics and Genomics",subtitle:null,reviewType:"peer-reviewed",abstract:"The field of medical genetics and genomics has been constantly revolutionized by new breakthroughs, which bring more knowledge into the etiology and help improve the health care of individuals with either rare or common diseases. Nevertheless, as technologies evolve, novel challenges emerge, both technically and ethically, so they must be prudentially addressed. Among the myriad applications of genomics in medicine, this book depicts a glimpse of the advances achieved that have been leading us to the personalized/precision medicine era.",isbn:"978-1-83968-143-1",printIsbn:"978-1-83968-142-4",pdfIsbn:"978-1-83968-144-8",doi:"10.5772/intechopen.76597",price:119,priceEur:129,priceUsd:155,slug:"modern-medical-genetics-and-genomics",numberOfPages:104,isOpenForSubmission:!1,isInWos:null,hash:"0809faf783cd9332a668976694b69931",bookSignature:"Israel Gomy",publishedDate:"December 18th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7536.jpg",numberOfDownloads:2396,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:1,hasAltmetrics:0,numberOfTotalCitations:1,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 29th 2018",dateEndSecondStepPublish:"May 21st 2018",dateEndThirdStepPublish:"July 20th 2018",dateEndFourthStepPublish:"October 8th 2018",dateEndFifthStepPublish:"December 7th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"126844",title:"Dr.",name:"Israel",middleName:null,surname:"Gomy",slug:"israel-gomy",fullName:"Israel Gomy",profilePictureURL:"https://mts.intechopen.com/storage/users/126844/images/9892_n.jpg",biography:"Dr. Israel Gomy graduated in Medicine at Pontificia Universidade Católica do Paraná, Curitiba, Brazil. He received his Master´s degree in Biomedical Research at Universidade de São Paulo, Ribeirão Preto, Brazil and his PhD in Oncology at Fundação Antônio Prudente, São Paulo, Brazil. Dr. Gomy is Assistant professor at Faculdades Pequeno Príncipe, Curitiba, Brazil and Assistant physician at Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil.",institutionString:"Federal University Of Parana",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"186",title:"Medical Genetics",slug:"medical-genetics"}],chapters:[{id:"65761",title:"Modern Medical Genetics and Genomics in the Era of Personalized/Precision Medicine",doi:"10.5772/intechopen.84578",slug:"modern-medical-genetics-and-genomics-in-the-era-of-personalized-precision-medicine",totalDownloads:620,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Israel Gomy",downloadPdfUrl:"/chapter/pdf-download/65761",previewPdfUrl:"/chapter/pdf-preview/65761",authors:[{id:"126844",title:"Dr.",name:"Israel",surname:"Gomy",slug:"israel-gomy",fullName:"Israel Gomy"}],corrections:null},{id:"63938",title:"The Genetic and Biochemical Blueprint of Endometrial Receptivity: Past, Present, and Future Factors Involved in Embryo Implantation Success",doi:"10.5772/intechopen.80452",slug:"the-genetic-and-biochemical-blueprint-of-endometrial-receptivity-past-present-and-future-factors-inv",totalDownloads:679,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Almena López-Luna, Dinorah Hernández-Melchor, Leticia Ramírez-Martínez and Esther López-Bayghen",downloadPdfUrl:"/chapter/pdf-download/63938",previewPdfUrl:"/chapter/pdf-preview/63938",authors:[null],corrections:null},{id:"64479",title:"Aneuploidy Rates Inversely Correlate with Implantation during In Vitro Fertilization Procedures: In Favor of PGT",doi:"10.5772/intechopen.81884",slug:"aneuploidy-rates-inversely-correlate-with-implantation-during-em-in-vitro-em-fertilization-procedure",totalDownloads:531,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Elizabeth Schaeffer, Leonardo Porchia, Almena López-Luna, Dinorah Hernández-Melchor and Esther López-Bayghen",downloadPdfUrl:"/chapter/pdf-download/64479",previewPdfUrl:"/chapter/pdf-preview/64479",authors:[null],corrections:null},{id:"68112",title:"Screening (Bi Test, Triple Test, Panorama Test) and Amniocentesis for Early Diagnosis of Congenital Malformations",doi:"10.5772/intechopen.82466",slug:"screening-bi-test-triple-test-panorama-test-and-amniocentesis-for-early-diagnosis-of-congenital-malf",totalDownloads:283,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Gladys Cristina Al Jashi and Isam Al Jashi",downloadPdfUrl:"/chapter/pdf-download/68112",previewPdfUrl:"/chapter/pdf-preview/68112",authors:[null],corrections:null},{id:"64229",title:"Genetic Contributors to Hereditary Cancer Predispositions: Do We Have Enough Information?",doi:"10.5772/intechopen.81870",slug:"genetic-contributors-to-hereditary-cancer-predispositions-do-we-have-enough-information-",totalDownloads:283,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Tom Nolis and Rodney J. Scott",downloadPdfUrl:"/chapter/pdf-download/64229",previewPdfUrl:"/chapter/pdf-preview/64229",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"8171",title:"Genes and Cancer",subtitle:null,isOpenForSubmission:!1,hash:"209b5cea5cbc980442ef0c22782b3792",slug:"genes-and-cancer",bookSignature:"Guy-Joseph Lemamy",coverURL:"https://cdn.intechopen.com/books/images_new/8171.jpg",editedByType:"Edited by",editors:[{id:"182568",title:"Dr.",name:"Guy-Joseph",surname:"Lemamy",slug:"guy-joseph-lemamy",fullName:"Guy-Joseph Lemamy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"59773",slug:"corrigendum-to-systematic-study-of-ethylene-vinyl-acetate-eva-in-the-manufacturing-of-protector-devi",title:"Corrigendum to: Systematic Study of Ethylene-Vinyl Acetate (EVA) in the Manufacturing of Protector Devices for the Orofacial System",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/59773.pdf",downloadPdfUrl:"/chapter/pdf-download/59773",previewPdfUrl:"/chapter/pdf-preview/59773",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/59773",risUrl:"/chapter/ris/59773",chapter:{id:"56614",slug:"systematic-study-of-ethylene-vinyl-acetate-eva-in-the-manufacturing-of-protector-devices-for-the-oro",signatures:"Reinaldo Brito e Dias, Neide Pena Coto, Gilmar Ferreira Batalha and\nLarissa Driemeier",dateSubmitted:"January 25th 2017",dateReviewed:"May 31st 2017",datePrePublished:null,datePublished:"February 14th 2018",book:{id:"5951",title:"Biomaterials in Regenerative Medicine",subtitle:null,fullTitle:"Biomaterials in Regenerative Medicine",slug:"biomaterials-in-regenerative-medicine",publishedDate:"February 14th 2018",bookSignature:"Leszek A. Dobrzański",coverURL:"https://cdn.intechopen.com/books/images_new/5951.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"15880",title:"Prof.",name:"Leszek A.",middleName:null,surname:"Dobrzański",slug:"leszek-a.-dobrzanski",fullName:"Leszek A. Dobrzański"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"204968",title:"Dr.",name:"Neide",middleName:null,surname:"Pena Coto",fullName:"Neide Pena Coto",slug:"neide-pena-coto",email:"neidecoto@gmail.com",position:null,institution:null}]}},chapter:{id:"56614",slug:"systematic-study-of-ethylene-vinyl-acetate-eva-in-the-manufacturing-of-protector-devices-for-the-oro",signatures:"Reinaldo Brito e Dias, Neide Pena Coto, Gilmar Ferreira Batalha and\nLarissa Driemeier",dateSubmitted:"January 25th 2017",dateReviewed:"May 31st 2017",datePrePublished:null,datePublished:"February 14th 2018",book:{id:"5951",title:"Biomaterials in Regenerative Medicine",subtitle:null,fullTitle:"Biomaterials in Regenerative Medicine",slug:"biomaterials-in-regenerative-medicine",publishedDate:"February 14th 2018",bookSignature:"Leszek A. Dobrzański",coverURL:"https://cdn.intechopen.com/books/images_new/5951.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"15880",title:"Prof.",name:"Leszek A.",middleName:null,surname:"Dobrzański",slug:"leszek-a.-dobrzanski",fullName:"Leszek A. Dobrzański"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"204968",title:"Dr.",name:"Neide",middleName:null,surname:"Pena Coto",fullName:"Neide Pena Coto",slug:"neide-pena-coto",email:"neidecoto@gmail.com",position:null,institution:null}]},book:{id:"5951",title:"Biomaterials in Regenerative Medicine",subtitle:null,fullTitle:"Biomaterials in Regenerative Medicine",slug:"biomaterials-in-regenerative-medicine",publishedDate:"February 14th 2018",bookSignature:"Leszek A. Dobrzański",coverURL:"https://cdn.intechopen.com/books/images_new/5951.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"15880",title:"Prof.",name:"Leszek A.",middleName:null,surname:"Dobrzański",slug:"leszek-a.-dobrzanski",fullName:"Leszek A. Dobrzański"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10361",leadTitle:null,title:"Advances in Poultry Nutrition Research",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tMaximum proportion of the total poultry production cost is attributed to the feeds. Improvement in feed efficiency using different feeding and nutritional management strategies is, therefore, of paramount importance for sustainable poultry farming. Moreover, better feeding managements are needed for optimum health and welfare of poultry and to minimize environmental burdens and antimicrobial resistance issues. A great deal of research has been performed to tackle these issues during the last few decades.
\r\n\r\n\tThis book intends to cover wide aspects of latest developments in poultry feeding and nutrition, which includes nutritional evaluations of feed ingredients, mineral sources including nano- and organic forms, amino acids, feed additives (exogenous enzymes, probiotics, prebiotics, synbiotics, postbiotics and plant bioactive compounds), fat supplementation in different physiological stages and diseased conditions in various poultry species including broiler chickens, laying hens, ducks, turkeys and quails with the purpose of improving feed efficiency, gut microbiome balance, barrier and nutrient transport function, health and immunity, meat and egg quality, and welfare, and reducing stress, toxic metal accumulation and environmental pollution. This book will be useful to the researchers, poultry farmers, poultry-related feed industries and policy makers.
",isbn:"978-1-83969-001-3",printIsbn:"978-1-83969-000-6",pdfIsbn:"978-1-83969-002-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"a68c18aa7790ca6fb772998ac9357d8d",bookSignature:"Dr. Amlan Kumar Patra",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10361.jpg",keywords:"Feed Additives, Nutrient Utilization, Enzyme, Feed Efficiency, Gut Health, Heat Stress, Immunity, Nanomineral, Organic Mineral, Probiotic, Postbiotics, Amino Acid Research",numberOfDownloads:5,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 2nd 2020",dateEndSecondStepPublish:"October 30th 2020",dateEndThirdStepPublish:"December 29th 2020",dateEndFourthStepPublish:"March 19th 2021",dateEndFifthStepPublish:"May 18th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Patra is currently the Co-Editor of Animal Feed Science and Technology journal (Elsevier) and an Associate Editor of Journal of the Science of Food and Agriculture (Wiley), Frontiers in Veterinary Science (Frontiers), and Tropical Animal Health and Production (Springer). He has authored around 150 articles in journals, book chapters, and proceedings. His google scholar h-index of 35 and citations of over 5700 are clear indicators of his research merit and impact.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"310962",title:"Dr.",name:"Amlan Kumar",middleName:null,surname:"Patra",slug:"amlan-kumar-patra",fullName:"Amlan Kumar Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",biography:"Amlan K. Patra earned his PhD in 2004 from Indian Veterinary Research Institute in Animal Nutrition. Then, he worked at American Institute for Goat Research of Langston University as a Post-doctoral Research Associate. He joined West Bengal University of Animal and Fishery Sciences as Assistant Professor in 2007. He also worked at The Ohio State University through a BOYSCAST fellowship from India for 18 months and at Free University of Berlin as Humboldt Research fellow. His research has focused on animal nutrition, feed and foraging behaviors, gastrointestinal physiology and microbiology, and livestock-environment interface. He has authored more than 150 articles in journals, book chapters, and proceedings, edited a Springer book with Google Scholar h-index of 37 and over 6000 citations. He is serving on the Editorial Board of a few reputed journals and currently is a Co-Editor of Animal Feed Science and Technology, Associate Editor of Journal of the Science of Food and Agriculture, and Frontiers in Veterinary Science, Tropical Animal Health ad Production as well as Guest Research Topic Editor of Frontiers in Microbiology, Frontiers in Veterinary Science, and Animals. In recognition of his extraordinary contribution in animal science, he received several prestigious national and society awards from India including the best Reviewer award of Asian-Australasian Journal of Animal Sciences (2019) and Frontiers in Veterinary Science (2019).",institutionString:"West Bengal University of Animal and Fishery Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:[{id:"74751",title:"Effect of Environmental Temperature on Water Intake in Poultry",slug:"effect-of-environmental-temperature-on-water-intake-in-poultry",totalDownloads:5,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"53271",title:"Review of Biomass Thermal Gasification",doi:"10.5772/66362",slug:"review-of-biomass-thermal-gasification",body:'\nGasification of biomass is one of the most attractive methods for producing hydrogen rich gas. Syngas production from biomass is an attractive solution for energy crisis. The production of energy from biomass reduces the dependence of developing countries on fossil fuels; as ample biomass is available in the developing countries and is renewable. Downdraft gasifiers are fixed bed gasifiers where the gasifying agent and biomass are flowing downwards, developed for high volatile fuels like wood or biomass gasification. Cocurrent flow regime throughout the oxidation and reduction zones reduces the tars and particulates in syngas, which will reduce the necessity of complicated cleaning methods compared to updraft gasifiers especially if the gas is used as a burnable gas in a small community. It is important to ensure homogenous distribution of gasifying agent at the downdraft gasifier throat [1–3].
\nGasification is a process under development to utilize the energy conserved in biomass. Gasification can be used as a source of energy in rural and off-grid areas to fill the power gaps. The limited supply and the increasing demands of fossil fuels have led the world to investigate alternative energy sources. Renewable energy sources have been studied widely, and biomass appears as the most promising renewable energy source. Biomass can be used to overcome the depletion of fossil fuels and to reduce the environmental impact of the conventional fuels such as greenhouse gas emissions using one of these four technologies: direct combustion, thermochemical processes, biochemical processes, and agrochemical processes. Biomass is the third energy source after coal and oil. Biomass covers 35% of the energy demand of the developing countries corresponding to 13% of the world energy demand. Biomass is widely available in quantities enough to meet the world energy demand [1–7].
\nThe oldest way to generate energy is to burn biomass. Due to environmental and technical difficulties associated with burning biomass, innovative processes should be developed to utilize biomass [5, 8–10]. Developing more effective techniques to utilize biomass will reduce the disposal problem and create profits. Hydrolysis, pyrolysis, gasification, and hydrogenation are the principal processes for biomass conversion in the literature [7, 11]. Gasification represents efficient and environmentally friendly method for producing the syngas as a biofuel from different sources of biomass [12–14], and to produce second-generation biofuels such as methanol, ethanol, and hydrogen [8, 10, 12, 15]. Gasification can be defined as the partial (incomplete) combustion of biomass, and gasification could extract up to 60–90% of the energy stored in biomass [16, 17]. To develop second-generation biofuels, economical and Feasible clean technologies of syngas are required. [15]. However, economical gasification of biomass may produce burnable gases, which can be used to provide heat requirements instead of LPG [12]. Gasifiers were developed to replace biomass burners. Gasifiers will prevent the necessity of on-site power generation [18, 19]. Gasification is the conversion of biomass into a combustible gas and charcoal by partial oxidation of biomass at temperature range of 800–900°C [6, 19, 20].
\nThe charcoal is finally reduced to H2, CO, CO2, O2, N2, and CH4 [6, 8–10, 21]. Char gasification starts at temperatures above 350°C [7]. The products of gasification consist of the following components: ash, volatile alkali metals, tars, and syngas. Tars represent a challenge for the commercialization of gasification product as an alternative fuel [22]. Frequently using tar may result in complete shutdown and repair of the industrial unit [18, 22]. Tars set and amount vary considerably based on reaction conditions and gasifier type [18]. Gas produced from gasifier can be cleaned by removing tars either physically or chemically [18]. Physical removal can be achieved using bag filters or wet scrubbers. Chemical removal methods depend on converting tars to lighter hydrocarbons either using thermal conversion or catalytic conversion processes [18, 22].
\nGasification of such material may help in reducing the gap between electricity requirements and available energy sources. Decentralized power regeneration units will help to fill power gap in rural and off-grid locations [4]. Yet, it is still difficult to develop a decentralized power generation unit based on biomass energy which can be used to fill the gap in energy needs in rural areas and farms [4]. Technical difficulties prevent further commercialization of gasification units in accordance to lower conversion efficiency [23, 24]. Leung et al. [25] proposed a governmental support to accomplish faster steps toward gasification units commercialization. However, all over the world, biomass energy has been widely incorporated in the power generation system; U.S. started partial and full conversion of conventional power plants to biomass [24]. Throughout this chapter, we will discuss the latest trends in agricultural waste gasification. Our goal is to provide a full description of the process starting from basic understanding and ending by design of a gasification unit.
The reactions taking place in the gasifier can be summarized as indicated below [3, 4, 21]:
\nPartial oxidation:
\nComplete oxidation:
\nWater gas phase reaction:
\nBoudouard reaction:
\nThe heat required for water gas phase and Boudouard reactions is provided by complete and partial oxidation reactions, and complete oxidation provides around 60% of the heat requirements during gasification [3, 17]. In addition to the previous reactions that are common in combustion and gasification, hydrogen, steam, and carbon monoxide undergo further reactions as shown below [3, 24]:
\nWater gas shift reaction:
\nMethane formation:
\nThe water gas shift and methane formation reactions are in equilibrium and the governing parameters are: pressure, temperature, and concentration of reaction species.
The unit design is a very important factor in determining the syngas quality and heating value [15]. The gasifier will hold two processes: conversion of biomass to charcoal and then conversion of charcoal to hydrogen and carbon monoxide. The mixture of hydrogen and carbon monoxide can be used for direct heating in rural areas [16]. Leung et al. [25] identified four types of gasifiers: updraft, open core, downdraft, and circulating fluidized bed (CFB) gasifiers. The maximum efficiency of the updraft, downdraft, and CFB gasifiers may reach to 75%, the maximum energy output is 10E6, 4E6, and 40E6 kJ/h, respectively. According to Chopra and Jain [13], the fixed bed gasifiers can be further divided into: updraft, Imbert downdraft, throatless downdraft, cross draft, and two-stage gasifiers. The fixed-bed gasifier is suitable for producing low heating value gas for small and medium applications [13, 26]. The downdraft gasifier is distinguished by a simple design, high carbon conversion, long residence time, low cost, low pressure, relatively clean gas, and low gas velocity. The downdraft gasifier is suitable for producing low heating value burnable gas or for generating electricity of small-scale systems in the range of 10 kW up to 1 MW [12, 26–28].
\nDowndraft gasifiers are fixed bed gasifiers where the gasifying agent and biomass are flowing downwards, developed for high volatile fuels like wood or biomass gasification. Cocurrent flow regime throughout the oxidation and reduction zones reduces the tars and particulates in syngas, which will reduce the necessity of complicated cleaning methods compared to updraft gasifiers especially if the gas is used as a burnable gas in a small community [12, 17]. It is important to ensure homogenous distribution of gasifying agent at the downdraft gasifier throat.
\nBhavanam and Sastry [24] provided design procedures for different types of downdraft gasifiers. The gasification reaction in a downdraft gasifier undergoes several steps, starting with drying step at 100°C, followed by pyrolysis step between 200 and 300°C resulting in release of around 70% of biomass weight as volatile matter and tars [16, 24]. After pyrolysis, the remaining biomass and volatile matter react with the incoming oxygen in the combustion step. Finally, various reactions take place in the reduction zone including carbon and steam reaction to produce CO and hydrogen, water-gas shift reaction, and CO and steam to form methane and carbon dioxide [24]. The four gasification reaction steps are illustrated in Figure 1. However, a limited experience has been gained in the field of biomass gasification while it represents an attractive renewable energy route [16]. Table 1 illustrates the design specifications for two types of downdraft gasifiers: Imbert and stratified downdraft gasifiers. Table 1 is developed based on extensive discussion in Bhavanam and Sastry [24].
Design considerations | Imbert | Stratified | |
---|---|---|---|
Biomass | Material | Uniform woody | Small size |
Moisture content | <20% | <20% | |
Ash content | <5% | – | |
Reactor type | Packed bed supported on a throat | No-throat cylindrical packed bed with open top | |
Biomass feeding | Hopper | Open top | |
Gas feeding | Nozzle in the combustion zone | Enters from top mixed with biomass | |
Produced gas | Tar oils <1% T = 700°C | Less tar | |
Maximum capacity | 500 kW | Easy to scale up |
Design consideration for Imbert and stratified downdraft gasifiers.
Different reaction zones in downdraft gasifier.
Imbert downdraft gasifier is a cylindrical chamber of varying inner diameter across chamber length. The upper part of the cylindrical chamber is loaded with biomass according to requirement. Air nozzles, attached to distribution manifold, permit air to be drawn into biomass to improve mixing of gasifying agent and biomass. A charcoal balance is established around the nozzles. Below the air nozzles, a classical Imbert hearth forms the reduction part. Insulating the reduction hearth reduces the amount of tars in the produced syngas and increases gasification efficiency. The hot gases are forced to go through the hot zone due to hearth constriction. The char bed on the grate removes the dust, which should be cleaned eventually to prevent clogging, and dropping in airflow or channeling [17].
\nStratified or open-top downdraft gasifier is a uniform diameter gasifier, usually made of a cylindrical vessel with a hearth near the bottom. The stratified gasifier is an improved, easy to design gasifier compared to Imbert downdraft gasifier. The open-top helps in maintaining uniform access of gasifying agent to the pyrolysis zone, which prevents localized heating. Biomass is added through the open-top to the top layer of gasifier. The length of the gasifier can be divided into four reaction zones: unreacted biomass zone at which air enters, the flaming pyrolysis zone at which air reacts with biomass, adiabatic char gasification zone at which gases from flaming pyrolysis zone reacts with charcoal, and finally the unreacted charcoal zone that is located just above the grate which acts as a buffer for ash and charcoal. The stratified downdraft gasifier can be mathematically modeled easily as a plug flow reactor at which air and biomass are uniformly mixed. With such simple design, it is expected that stratified downdraft gasifier will replace the Imbert downdraft gasifier in commercial applications [17].
\nWander et al. [29] illustrated the design of 12 kg/h downdraft stratified gasifier for sawmill dust gasification. The reactor is a cylindrical body of 270 mm internal diameter and 1100 mm of height made of SAE 1020 steel. Internal rods are used to mix the sawdust in the reduction zone. Ash box is used to reduce the ash content of the produced syngas. The reactor is insulated using 50 mm of rock wall. Air was introduced from the open top as a gasifying agent and a secondary air was used to provide air required for internal burner. A gas chromatography was used to analyze the gas samples and three water condensers in an ice bath were used to measure tars and humidity content.
\nZainal et al. [30] developed a downdraft gasifier for the gasification using around 50 kg/h of wood chips. The temperature in the combustion zone may reach 1000°C, which reduces the tar content of produced syngas. The gasifier is made of mild steel pipe with a diameter of 0.6 m and a height of 2.5 m. A cone structure is used inside the gasifier above the combustion zone with an inclination of 60° to facilitate the wood material movement. The air supply was accomplished using a 40 mm diameter stainless-steel pipe with eight 10 mm diameter nozzles. The air is preheated by positioning the supply tube inside the gasifier. The heating value of the produced syngas was in the range of 4.65–5.62 MJ/Nm3 depending on operating conditions.
\nPanwar et al. [31] developed an open-top downdraft gasifier for wood gasification to provide the heat requirement for the food processing industry. The downdraft gasifier was lined with ceramic and designed for a wood input of 60 kg/h equivalent to 180 kW. The gasifier body is made of mild steel. The air distribution system consists of six air tuyeres of 20 mm in diameter. A cyclone was used to remove solid particulates from produced syngas. The complete combustion of the syngas is achieved in a premixed burner to provide heat needed for the food processing industry unit. Note that 30 kg of charcoal and 10 kg of wood were used to provide hear required for gasifier start up.
\nSheth and Babu [1] showed a design of an Imbert downdraft gasifier for wood waste gasification with a total height of 1.1 m. The diameter of pyrolysis zone and reduction zone are 0.31 and 0.15 m, respectively. The gasifier has throated combustion zone, a bed of char supported by a grate follows the combustion zone. The air is supplied through two nozzles in the oxidation zone. The high temperature in the combustion zone ensures cracking of tars into volatiles and water. The diameter of pyrolysis, reduction, and oxidation zones is 310, 150, and 53 mm, respectively. The grate is movable to unclog it for removing ash.
\nVervaeke et al. [32] illustrated the design of a small-scale pilot plant downdraft gasifier equivalent to 100 kW of electricity generation. The downdraft unit used in this study is a pilot scale of the Xylowatt gasifier. The downdraft gasifier is a batch gasifier with a capacity of 90–105 kg. The gasification system consists of downdraft gasifier and inside it are ash collection container, cyclone, filter, and a scrubber.
\nLv et al. [33] developed a downdraft gasifier to produce hydrogen from biomass using air and oxygen/steam as gasifying agents. Total 5 kg of char were supported on the grate to reduce tar content and to act as a catalyst to upgrade syngas. Biomass is pine wood blocks used in cubes cut into 3 cm × 3 cm × 3 cm. The gasifier height is 1.3 m and the diameter is 35 cm. The gasifying agent is preheated in a chamber inside the gasifier. Gas is cleaned using triple-stage spray shower filled with steel wire rings. The internal diameter of the gasifier is calculated according to the power output. The height is calculated based on batch operation time. The internal diameter is calculated in meters using the following equation [26]:
\nwhere FCR is the fuel consumption rate (kg/h) and SGR is the specific gasification rate (kg/h/m2).
\nThe height can be determined in meter using the following equation [26]:
\nwhere t is the operation time (h) and ρ is the feedstock bulk density (kg/m3).
\nThe power output P0 can be calculated in kW from the following equation [26]:
\nwhere HHV is the higher heating value of the feedstock in MJ/kg and η is the efficiency of the gasifier usually around 0.7. The amount of air needed during operation can be calculated in Nm3/h from the following equation [26]:
\nwhere ε is the equivalence ratio, FCR is the fuel consumption rate, SA is the stoichiometric amount of air required for chemical reaction, and ρa is the density of air (1.18 kg/m3). Finally, the size of the air nozzle, which is required for uniform air distribution, can be calculated in mm2 from the following equation [26]:
\nwhere ν is the inlet velocity of air (m/s).
Zhou et al. [34] discussed the ongoing gasification projects taking place in China. The biomass gasification units were divided based on scale: small-, medium-, and large-scale biomass gasification and power generation units. Pretreatment of biomass includes size reduction, size screening, separation of magnetic materials, and storing as wet biomass. Then prior to gasification, drying and storing as dry material are accomplished to reduce the moisture content to 10–15% [35]. Feedstock type and feedstock preparation are important factors affecting the yield and quality of produced syngas. Shredding and drying are two processes conducted to prepare the biomass raw material for gasification process [14]. The main parameters affecting the gasification are clarified below:
\nEquivalence ratio (ER): The equivalence ratio is the air/biomass ratio divided by the theoretical air/biomass ratio. Increasing ER will decrease the heating value of the produced gas due to decreasing H2 and CO concentration and increasing CO2 concentration. Higher ER helps in reducing tars and provides more O2 to react with volatiles. Typical values of ER ranges between 0.2 and 0.4 [24]. Guo et al. [36] reported that increasing ER decreases the concentration of combustible gases (H2, CO, CH4, and CnHm). The heating value was higher than 4 MJ/Nm3 when ER is kept lower than 0.4. Increasing ER improves the reaction temperature and carbon conversion, and reduces the tar yield. For a downdraft stratified gasifier, Wander et al. [29] suggested an equivalence ratio of 0.3:0.35 kg-O2/kg-wood. A higher ratio is required when higher heat loss is expected, an equivalence ratio of 2:2.4 kg-air/kg-wood is optimum for producing a syngas with low heating value of 4–6 MJ/Nm3. For woody material in a downdraft gasifier, Zainal et al. [30] suggested an equivalence ratio of 0.268–0.43 with 0.38 showed optimum value (corresponding to a heating value of 5.62 MJ/Nm3). While Sheth and Babu [1] defined that the optimum equivalence ratio for wood gasification in Imbert downdraft gasifier is 0.205.
\nEffect of biomass characteristics: Biomass characteristic is a major factor affecting produced syngas quality. The physical properties that may have major effect are: absolute and bulk density, and particulate size. The chemical composition parameters that are of major importance to define the syngas [17] quality including volatile matter, moisture content, fixed carbon, ash content, and gross calorific value and the ultimate analysis comprises the carbon, oxygen, nitrogen, and sulfur of the dry biomass on a weight% [19].
\nMoisture content: The moisture content can be determined by complete drying of biomass sample. The moisture content is calculated by subtracting the sample weight after drying from fresh sample weight. Maximum allowable moisture content in downdraft gasifier is 40% on dry weight basis. Updraft gasifier can handle biomass with higher moisture content. The higher moisture content in biomass will increase the consumed energy for drying, and will reduce the pyrolysis of biomass. As a general rule, increasing moisture content decreases the conversion [1, 24].
\nSuperficial velocity: The superficial velocity is the ratio of the syngas production rate at normal conditions and the narrowest cross-sectional area of gasifier. Lower superficial velocity is linked with high yield of char, and large quantities of unburned tars, which may deactivate catalyst, plug lines, and destroy compressors. On the other hand, higher superficial velocity results in reduced amount of char and low overall process efficiency [24].
\nOperating temperature: Operating temperature affects conversion, tar content, gas composition, gas heating value, and char conversion. To select the optimum temperature, gasifier type, and biomass source should be considered. Usually, temperature higher than 800°C should be used to obtain high conversion and low tar content in the produced syngas [24]. Low temperature is associated with low tar content, low H2 and CO content in the produced syngas [12]. Increasing temperature will increase gas yield, hydrogen, heating value, and ash agglomeration. To overcome the ash agglomeration problem, practical temperature does not exceed 750°C [24].
\nGasifying agent: Gasifying agents in use are air, steam, steam/oxygen mixture, and CO2. Gasifying agent affects the heating value of the produced syngas. The heating value increases with increasing steam content of the gasifying agent, while heating value decreases as air increases in the gasifying agent [24]. The steam/oxygen mixture represents a zero nitrogen-gasifying agent which increase heating value and allow liquefying the produced gas after proper treatment [37]. Using almond shells, the lower heating value was 5.9–6.7, 6.3–8.4, and 10.9–11.7 MJ/Nm3 using the gasifying agent: 35 wt.% O2 enriched air, 50 wt.% O2 enriched air, and steam/oxygen mixture, respectively. Campoy et al. [38] reported a heat value of syngas produced from gasification to have an average value of 4–6 and 9–13 MJ/Nm3 using air and oxygen/steam mixture, respectively. In addition to lower efficiency compared to air/steam mixture, enriched oxygen-air requires high capital cost for oxygen [38]. The addition of steam will shift toward the reforming reaction and heterogeneous gasification reactions.
\nResidence time: Residence time has a remarkable impact on the composition and produced tars. Increasing residence time decreases the fraction of oxygen-containing compounds, decreases yield of one and two atomic ring compounds, and increases three and four ring compounds [24].
\nPressure: Atmospheric and higher pressures are commonly used in gasification process. Selecting the optimum pressure depends on the application of the produced syngas. If the syngas is used for producing methanol or synthetic auto-fuels, higher pressures are preferred to improve the process yield and to reduce tar content. For generating burnable gases, atmospheric pressure should be used [12]. High pressure applications are recommended for large-scale gasification, while atmospheric pressure is recommended for small-scale gasification [35]. High pressure gasification is still not well developed and further research is needed to further commercialize such process [39].
\nCatalyst: Catalyst type is a very important factor affecting gasification quality and produced syngas. Catalyst affects the composition of the syngas by manipulating the percentage volume of hydrogen, carbon dioxide, methane, and carbon monoxide. Optimum catalyst should play a role in minimizing the gas content of carbon dioxide and maximizing the gas content of hydrogen, carbon monoxide, and methane [40]. The catalyst type and loading on the gasification of cotton stalks and saw dust were studied. The catalysts selected are USY zeolite, dolomite, CaO, granulated slag, red brick clay, olivine, and cement kiln dust. The results demonstrate that the cement kiln dust and calcium hydroxide are more effective for increasing the gas yield and decreasing the char yield [8, 10].
\nEffect of biomass/steam ratio: Biomass/steam ratio affects hydrogen content in the produced syngas. Contradictory reports are found in literature, while Lv et al. [41] reported a positive effect on hydrogen content when biomass/steam ratio increases. Lv et al. [33] reported a negative effect of biomass/steam ratio increase on syngas hydrogen content. This variation can be understood by considering that biomass/steam ratio effect is altered according to the entire system configuration.
\nLower values of biomass/steam ratio shift the reaction to produce more solid carbon and methane, since number of moles of steam increases in the feed. While at higher values of biomass/steam ratio, Co and H2 are increased in the syngas as carbon and methane produced are decreased consequently.
The cost of any industrial process is governed by the capital cost and the running cost. Selection of best gasifier type depends on cost of fabrication, ease of manufacture, tar content, lower heating value, feedstock elasticity, and application of syngas [26]. The fixed bed gasifiers are more suitable for small- and medium-scale applications, while fluidized bed gasifiers are suitable for large-scale applications (equivalent to >15 MW) [25]. For example in China rice hulls, fluidized bed gasifiers are used in a production scale equivalent to 1–1.2 MW while downdraft gasifiers are used in a production scale equivalent to 60–200 kW [42]. The capital cost of the gasifier is divided into three items: gasifier and gas cleaning system cost, fuel gas utilization equipment cost, and fitting and system construction cost [25]. Cleaning systems and removing tars will add a significant cost to the produced syngas, which reduce the feasibility of using syngas in internal combustion engines [12]. Optimizing tar content can be achieved by varying the operating conditions and feedstock [43].
\nUpgrading using catalytic treatment represents the most economical and efficient method for syngas upgrading since it provides a way for removing tars and other particulates and converting tars to hydrocarbons [12]. Downdraft gasifier represents a reasonable cost production method for generating syngas with low tar content [29]. Especially small gasifiers that has proven economic feasibility [27].Wu et al. [44] recommended implementing biomass gasification depending on the low biomass price. By comparing different technologies to generate electricity based on 1 MW scale, Wu et al. [44] mentioned that the capital cost of fluidized bed gasifier system for biomass gasification-power generation system is 60–70% of the capital cost of coal power station and much lower compared to the capital cost of conventional power station. For producing combustible gases, Bridgwater et al. [45] reported that for syngas produced from fluidized bed, updraft, and downdraft gasifiers: hydrogen volume percentage is 9, 11, and 17%, respectively; CO volume percentage is 14, 24, and 21%, respectively; and a heating value of 5.4, 5.5, and 5.7 MJ/Nm3, respectively. The downdraft represents the ideal solution to produce combustible (burnable) gases for household uses.
\nBiomass gasification economics are very sensitive to the scale of produced MW [44]. Leung et al. [25] mentioned two disadvantages of small- and medium-size gasifiers: capital cost limitation that may prevent incorporating important processes like tar removal, and the environmental demands imposed by new regulations which is difficult to be met by different biomass gasification technologies. Wu et al. [44] identified 160 kW as a critical scale of biomass gasification unit, less than 160 kW biomass gasification units loses the economical attraction. Note that 1–5 MW was recommended as the most competitive size for biomass gasification unit. Lower than a unit capacity of 160 kW, the price of kWh increases sharply from 0.4 to 1.8 Yuan RMB/kWh for very small capacities. For unit with capacities higher than 160 Wh, the price will decrease gradually as the unit size increases. At the 600 kW capacity, the price will be around 0.3 Yuan RMB/kWh; while the price may reach 0.25 for a unit capacity of 1000 kW [44].
\nIt is recommended to conduct gasification at pilot plant scale to mimic large scale to figure out the approximate industrial process scale economics [38]. The steam enhances the reforming and heterogeneous gasification reactions, the temperature inside the gasifier should be kept enough to support such reactions [38]. Combining gasification unit with heat and power generation systems will improve the economics of the process [3]. Gasification units combined with heat and power generation systems are expected to have an overall efficiency of 85% compared to a maximum efficiency of 35–55% for conventional power station, in addition to a substantial saving in carbon emissions. Total 1000 kg/year of carbon are saved for each MW when gasification units hybrid with heat and power generation systems [3].
\nDowndraft gasifiers are economically competitive even to conventional LPG heating unit. Panwar et al. [31] found that replacing LPG heating system with a downdraft wood gasification system could save $13,850 US for 3000 h of operation. The payback period of the gasification system was only 1100 h. According to the extensive study of literature, the recommended gasification process consists of the following steps [13, 17, 19]:
\nStraw collection and preparation (milling and pelletization of straws).
Belt conveyor for feeding of the gasifier.
Downdraft gasifier.
Blower for suction of air and gas produced.
Gas cleaning and separation of tars.
Gas holder for storage of gas.
Gas distribution net.
Gas application devices.
Gas metering devices.
The aim of this chapter is to illustrate a detailed design of biomass gasification system to generate syngas for household applications. The stratified gasifier is selected based on the following parameters: easiness in design and scaling up, and production of syngas with tar content lower than that of Imbert gasifier [16–18, 26]. The gasification system comprises of a downdraft burnable syngas gasifier followed by a gas cleaning and distributing system. Throughout this chapter, the design specification of the downdraft gasifier is presented. This system can be used to convert solid agricultural waste to a syngas that is a burnable gas used to provide energy requirements for small communities, as shown in Figure 2.
Gasification system for producing burnable gas.
The energy (household) requirements: for 50 families.
\nThe gas demand per day is: 500 m3/day.
\nThe syngas gas will be produced on two batches: Morning and afternoon (each one will last for 250 m3/batch).
\nThe first batch will take place from 7 to 10 am.
\nThe second batch will take place from 2 to 5 pm.
\nThe storage unit will hold around 200 m3 gas and accordingly will provide heating requirements during the period of nonoperation.
\nThe system consists of the following units: biomass shredding, grinding unit, gasification unit, air controlling system, air heating and gas precooling unit, cyclone (acts like cyclone to remove dust), gas cooler, water filter (scrubbing unit), gas distribution system, control system, cork filter, and storage tank.
No. | Object | Cost, Egyptian pounds |
---|---|---|
1 | Gasifier with control system | 30,000 |
2 | Gas cleaner | 10,000 |
3 | Belt conveyor | 15,000 |
4 | Milling and pelletization of biomass | 50,000 |
5 | Gas holder | 15,000 |
6 | Gas distribution system 100 × 500 | 60,000 |
7 | Gas stoves 100 ×350 | 35,000 |
8 | Gas meters 100 ×400 | 40,000 |
9 | Erection | 10,000 |
10 | Contingency (10%) | 26,000 |
Total | 2,90, 000 |
Cost of equipment for gasification system
$ = 8.5 Egyptian pounds.
Assume that:
Cost of material = 300 L.E/ton
Cost of preparation = 100 L.E/ton
Cost of raw materials = 0.25 ×400 × 360 = 36 000 L.E/year
Labors required = 2 ×1500 = 3000 L.E/month = 3000 ×12 = 36000 L.E/year
Income gas production = 500 m3/day
≈60 kg L.P.G/day
= 60 × 360 = 21,600 Kg/year
= 21,600 × 7 = 151,200 L.E/year
Profit = income − raw material − depreciation
Profit = 151,200 – 36,000 – 36,000 – 29,000 = 49,400
Return on Investment = profit/initial cost
Return on Investment = (49,400/290,000)×100 = 17%
Therefore, the payback period is about 6 years based on the international prices of L.P.G.
The cost of land required for erection of the plant is not included in this calculation of the feasibility study.
Gasification represents a viable solution to overcome the energy shortage by developing commercial gasification units in rural and off-grid areas. An integrated system comprising a gasification-electrical generation method represents an ideal solution from the technical and economical points of view.
\nHowever, due to the wide varieties of available biomass feedstock, it is recommended to manipulate different systems in each location depending on the feedstock, produced syngas, and energy demands. Downdraft gasifier is recommended for small-scale applications in rural areas. The co-current nature of air and biomass flow reduces the tar content and increases CO and H2 in the produced syngas. The syngas produced from downdraft gasifier can be used after a simple purification process in thermal applications. From a cost study, the payback period of a gasification system is around 5 years.
The authors would like to express deepest thanks for the Science and Technology Development Fund (STDF Egypt) for financing and supporting the development of the thermal gasification of biomass.
The nose is composed of two nasal cavities separated by an osteocartilaginous structure called nasal septum. The initial portion is called nasal vestibule, while the next part is called nasal cavity. The nasal cavity borders on the nasopharynx, from which it is separated by the choanae. In the most cranial portion of the nasal fossa, we find the olfactory fissure. This region is responsible for the perception of odorous stimuli. The nasal cavities are occupied by osseous structures with mucous lining called turbinates. These are divided as follows: the inferior turbinate that through its cavernous vascular tissue contributes to humidify and heat the inspired air, the middle turbinate that anatomically defines a sort of pre-sinus space, and at last the superior turbinate. In some cases we also recognize a fourth turbinate called supreme [1].
\nWe observe four different nasal epithelia. A layered keratinized floor epithelium covers the region of the nasal vestibule, and an epithelium called transitional is located at the level of the valve. On the other hand, the nasal cavities are covered by a mucosa with pseudostratified ciliated epithelium (enriched with olfactory cells at the level of the olfactory fissure). The ciliated pseudostratified epithelium is composed of four types of cells: ciliated cells, muciparous cells, columnar cells, and basal cells, anchored by desmosomes and hemidesmosomes. This epithelium is separated from the underlying tonaca propria by a basal membrane. In the context of the tonaca propria, we can find three layers. At the beginning, just below the basement membrane, we can find the lymphoid layer, which is characterized by the richness of lymphocytes (nasal-associated lymphoid tissue (NALT)). Then we have the glandular layer, characterized by glands that have a significant immune function producing secretions rich in lysozyme and IgA. Last, we can find the vascular layer, characterized by important vascular representation, especially in the mucosa of the inferior turbinate [2].
\nThis brief description of microscopic anatomy of the nasal mucosa allows us to highlight the many important physiological functions it performs.
\nFirst of all, in the respiratory epithelium, the mucociliary clearing action is carried out thanks to the cooperation of ciliated and muciparous cells. This process is fundamental in determining the circulation of mucus, and therefore it performs a nasal cleaning with immuno-protective tasks [3]. At the level of the superficial mucous layer (thanks to the presence of lymphatic tissue) and at the level of the intermediate glandular layer (thanks to the secretion of lysozyme and IgA), immunocompetence functions are also performed. At last, the vascular layer, thanks to the presence of cavernous tissue, allows to change the physical-chemical characteristics of the air inhaled before its passage in the middle and lower respiratory tract [2]. With the passage of air through the nasal cavities, water vapor is transferred through the mucosa of the inferior turbinates with consequent lowering of oxygen partial pressures [4]. Furthermore, due to the contact between the mucosal surface of the turbinate and the air, the heating of the same is ensured [5].
\nThe pathology of the rhinosinusal district appears to be varied and diversified [2], and it is characterized by many different types of clinical entities that sometimes are present individually, sometimes they overlap: this creates, in our opinion, classification difficulties. Another critical aspect for clinicians is to understand the real extent of rhinosinus disease, that is, if we are dealing with an exclusively nasal or sinus involvement or an involvement of both districts.
\nOur experience has led us to use in diagnosis of a rhinosinusopathy both a cytological examination of the nasal mucosa that will allow us to identify the problem and a radiological study (better if using cone beam CT) to define the real extent of the problem.
\nIn this discussion we will explain how to perform a cytological examination and how to interpret it, and we will try to define a systematic classification of rhinopathies relying on the analysis of cytological compartments of patients affected by rhinopathy from our Center in the last 5 years.
\nFor about 10 years, we have been analyzing cytological samples from the lower turbinate mucosa in patients with chronic rhinopathies. This type of evaluation allowed us to study the microscopic characteristics of the healthy nasal mucosa and to identify the characteristic aspects of the different forms of rhinopathy. Performing a cytological examination is simple, rapid, and minimally invasive. It is also a cost-effective investigation.
\nFrom October 2013 to September 2018, we performed cytological sampling and subsequent microscopic analysis on the sample obtained from 300 patients with chronic rhinopathy. These patients reported suffering from several months or even years of nasal respiratory obstruction, rhinorrhea, in some cases complaining of recurrent headache or hyposmia or sneezing and nasal itching.
\nThe cytological examination of each patient was performed according to the Italian Academy of Nasal Cytology (AICNA) procedures. We briefly summarized the modalities in the following paragraph.
\nThrough a small spoon called Rhino-Probe®, we collect mucous material joined to cells of the nasal mucosa, exerting a slight pressure on the body of the inferior turbinate. This technique is called nasal scraping (there are other sampling techniques such as brushing, nasal swab, and the washing that we report but of which we have no experience).
\nThe material taken is distributed on a special slide, while avoiding to touch the surface of the slide with your fingers while always using gloves.
\nWe proceed to fix the material taken on the slide, then we apply the May-Grunwald-Giemsa (MGG) coloration. In our experience, we have been using a fast-acting MGG staining method (MGG Quick Stain®) for some years now. Cytological staining method is very numerous and each of them has its own specificity and application. In nasal cytology the most widely used is the MGG method which is able to easily differentiate the various cells found in the nasal mucosa.
\nThrough a specific synthetic product (Bio Mount HM®) the cover slip is applied above the slide. This way, the sample is ready to be observed.
\nThe analysis of the sample of cytology material mounted on the slide is done with an optical microscope equipped with multiple objectives, each with different magnification power.
\nInitially, a general inspection of the material is carried out with a lower magnification objective (4×/0.10). Once the most significant part of the sample has been identified, the evaluation will be carried out with increasingly powerful objectives to exploit the maximum possible magnification (100×/1.25) with the help of oil for immersion.
\nIn accordance with the guidelines of the Italian Academy of Nasal Cytology (AICNA), for each sample taken, we analyze at least 50 fields at maximum magnification (100×/25) by counting the different types of cells found. The observed data are then shown in a Table 1.
\nClassification of rhinosinusitis.
We have collected in Figure 1 the results of the cytological tests performed from October 2013 to September 2018 (Figure 1).
\nType of cells in nasal pathology.
Of the 300 patients studied, 154 (equal to 53.66%) were affected by a pathology of the nasal mucosa of neutrophilic type that is characterized by the presence of more or less numerous neutrophil granulocytes. The majority of them, 136 patients (88.31%), had chronic nonpolyposis pathology, while only 18 (11.69%) of them presented a polyposis pathology (Figure 2). The patients with nonpolyposis pathology were subjected to cone beam computed tomography (CBCT). Ninety-seven patients (71.32%) showed a pathological thickening of the paranasal sinuses mucosa. This situation indicates an involvement of the paranasal sinuses by the pathology and suggests a diagnosis of chronic rhinosinusitis (Figure 3).
\nNeutrophil pathology: presence of polyps.
Neutrophil nonpolypoid pathology: mucosal thickening.
Thirty-four patients, equal to 11.85% of the total, showed a significant presence in the nasal mucosa of eosinophilic granulocytes. Of these, 29.41% of patients (10) had polyposis, while 70.59% of patients (24) had nonpolyposis (Figure 4).
\nEosinophil pathology: presence of polyps.
Only five patients (1.74% of the total) showed instead a significant presence of mast cells in the nasal mucosa, and in no case we observed a form of polyposis. Finally, 32.75% of patients (94) had a mixed cell infiltration in the samples of nasal mucosa (Figure 1). Of these, 23.40% (22 patients) presented a polyposis pathology (Figure 5).
\nMixed pathology: presence of polyps.
We analyzed the cytotypes of the “mixed cellularity rhinosinusopathy” category, distinguishing four subclasses: neutrophil-eosinophil forms (50 patients, equal to 53.19%), neutrophil-mast cell forms (8 patients equal to 8.51%), neutrophil-eosinophil-mastocyte forms (24 patients equal to 25.53%), and eosinophil-mast cell forms (12 patients equal to 12.77%) as indicated in Figure 6.
\nTypes of cells in mixed rhinosinusitis.
In 33 patients (equal to 11% of the total patients studied), we did not find any pathological changes in the nasal mucosa.
\nThe picture that emerged from this evaluation allowed us to distinguish nasal pathologies in a practical and clear way on the basis of cytological aspects and therefore, in our opinion, to simplify their classification. Furthermore, the cytological characterization allows us to address the therapy in a very personal way and, in addition, to periodically evaluate the results in a more rigorous way.
\nWe therefore distinguished the nasosinusal pathologies in groups based on the inflammatory cytotype most significantly represented in the analyzed sample:
Neutrophilic rhinosinusitis
Eosinophilic rhinosinusitis
Mast cell rhinosinusitis
However, in some patients we found that it was not possible to define a dominant cytotype as the nasal mucosa was quantitatively similarly affected by more than one cell type. In these cases we use the term rhinosinusitis with mixed cellularity.
\nWe then divided the mixed cellular rhinosinusitis into four subclasses:
Neutrophilic-eosinophilic form
Neutrophilic-mast cell form
Neutrophil-eosinophil-mastocitary form
Eosinophilic-mast cell form
In our experience, it represents the most frequently encountered pathology. This condition is characterized by the more or less significant presence of inflammatory cells called neutrophils granulocytes.
\nThe neutrophil granulocyte has a roundish shape and presents a clear (“neutral”) cytoplasm with a purplish-red polylobate nucleus after MGG staining. The neutrophil granulocytes are distinguished in six different types based on the shape of the nucleus [2]. It is possible that the number of lobes is related to the age of the cell. In fact, in young granulocytes the nucleus often appears to be reniform, while in the older ones, it has different lobes.
\nThe neutrophilic granulocyte plays an important immune function defending us from pathogenic microorganisms [6] and other irritating substances toward which it has an effective phagocytic activity. Once the phagocytosis process has been performed, a “killing” function is performed against pathogens thanks to the intracytoplasmic release of substances with a lithic action including hydrogen peroxide, superoxide ion, and some enzymes as elastase, lysozyme, collagenase, phosphatase, and lactoferrin.
\nAccording to Gelardi et al., the presence of sporadic neutrophils in the nasal mucosa would not represent an index of pathology. Instead, we have to make a diagnosis in case of high number of neutrophils. With infectious rhinosinusitis, the number of neutrophil granulocytes increases significantly. They are called back in the nasal mucosa in order to engulf the pathogenic microorganisms and eliminate them [7]. We observe in Figure 7 some granulocytes with intracytoplasmic bacteria. In this image the moment immediately following the phagocytosis is shown, before the lithic enzymes are activated for digestive purposes. In the proposed image, we observe a bacterial infectious pathology. Microscopic observation can help us to differentiate the various types of germs involved in infection. We can in fact recognize the round shape of the bacteria as the Staphylococcus Au, the Streptococcus Pn, and the Moraxella C. or the elongated shape of the haemophilus I and the diphtheroids. Neutrophilic rhinosinusopathy with an infectious etiology may also present a viral or fungal etiology. In the latter case, we will observe the presence of fungal spores that present themselves with a particular “bulb” shape.
\nPhagocytosis (neutrophil granulocyte with intracytoplasmic bacteria).
In infectious neutrophil rhinosinusitis, in addition to the increase in neutrophils and the presence of microbial agents (Figure 8), we will also be able to see an increase in lymphocytes, macrophages, and plasma cells and an increase in mucipar cells associated with decreased ciliated cells.
\nInfectious neutrophil rhinosinusitis.
We found very interesting the observation of bluish areas that we define “infectious spots” [2]. Those represent the expression of bacterial biofilm or an exopolysaccharide matrix within which fungal bacteria and spores live. The structure of the biofilm would correspond to a sort of shell that guarantees pathogens a greater resistance to drugs.
\nIn the forms of viral etiology, we will not be able to find pathogenic microorganisms due to the insufficient magnification power of the optical microscope. However, we can observe some indirect signs of ciliated cells strongly suggestive of viral infection. In fact, they can present both alterations of the nuclear structure (polynucleation) and of the cytoplasmic component (inclusions and separations). Also usually in the viral infection, we observe an important increase of the lymphocytes. The finding of neutrophils in the nasal mucosa, however, also occurs in cases of noninfectious diseases. In these cases we can observe a variable number of neutrophil granulocytes without the cytological aspects described above. In this case, we are talking about a form of irritating rhinosinusitis in which often the etiologic agent is represented by a substance with an irritating action, which can be exogenous (powders, environmental pollutants, tobacco smoke, and toxic substances present in the professional field) or endogenous (gastroesophageal reflux disease) (Figure 9) [8].
\nNoninfectious neutrophil rhinosinusitis.
In addition to the already described presence of neutrophils we can observe an alteration of the normal relationship between ciliate cells and muciparous cells. In fact, we often observe a reduction of the former and an increase in the latter. In other cases we can observe areas of squamous epithelium. According to some authors the severity of these rhinopathies would be associated with the number of neutrophils present.
\nIn fact, by releasing their lithic enzymes and their toxic substances, they would cause damage to the respiratory mucosa proportional to the quantity of substances released.
\nFurthermore, in these patients, chronic mucosal damage and consequent alteration of mucociliary clearness would favor greater nasal fragility and a greater risk of contracting respiratory infections.
\nThis condition is represented by the presence in the nasal mucosa of eosinophilic granulocytes. The eosinophilic granulocyte belongs, as well as neutrophil, to the group of leukocytes and also presents a roundish form, although of slightly greater dimensions. Frequently the nucleus appears bilobed (Figure 10).
\nEosinophilous (frequently the nucleus appears bilobed).
The cytoplasm is of variable color from orange to intense pink, very distinctive and unmistakable. Inside, small granules are observed that contain substances such as the major basic protein (MBP), the eosinophilic cationic protein, and the eosinophilic peroxidase [9]. These substances have a cytotoxic and antibacterial function. In the cytoplasm of eosinophils, we also find enzymes (collagenase, phosphatase, and phospholipase) and substances derived from the metabolism of arachidonic acid as leukotrienes and prostaglandins (LTC4, PGD2, PGE1). These substances play a fundamental role in the mechanisms of inflammation, especially in the delayed phase of the allergic reaction (Figure 11).
\nEosinophil rhinosinusitis (we observed an important degranulation reaction).
The LTC4 leukotriene in particular has a bronchoconstriction action as well as prostaglandin PGD2, while prostaglandin E1 has a vasodilatory action. Other substances present in nongranular form in the cytoplasm of eosinophils are released for chemotactic and amplification of the inflammatory processes. We recall among these IL2, which performs chemotactic action toward mast cells, IL3 with chemotactic action toward eosinophils, and IL5 with chemotactic action toward neutrophils [10].
\nFrequently we have found eosinophilic rhinosinusitis. Of 34 patients with this type of pathology, 38.24% (or 13 patients) had allergic rhinitis, the remainder suffered from other forms of rhinitis.
\nWe have found in the 32.35% of subjects (11 patients) a vasomotoria rhinitis and in the 29.41% (10 patients) a nasal polyposis.
\nEosinophilic rhinosinusitis has very specific clinical features. Affected patients complain of a very troublesome symptomatology, often characterized by sneezing and rhinorrhea, nasal itching, and nasal congestion. Symptoms can be triggered suddenly by the contact of the nasal mucosa with a known allergen, but also by the occurrence of some particular stimuli (such as sudden changes in temperature or humidity, contact with intense perfumes, tobacco smoke).
\nPatients with eosinophilic rhinosinusitis are often affected by other eosinophilic phenotype disorders such as bronchial asthma. For a long time, we have known that the course of the nasal pathology has a singular influence on the prognosis of the associated bronchial pathology. For this reason, a correct treatment and a good control of the nasal pathology are to be considered necessary.
\nWe know that some granular components of eosinophils, such as major basic protein (MBP), have the ability to attack the desmosomal junctions by weakening the barrier action of the respiratory mucosa and exposing it to the action harmful to infectious chemical or physical agents [11]. Therefore patients suffering from eosinophilic rhinosinusitis not only suffer from symptoms that we could define direct and that are related to the action of components such as prostaglandins and leukotrienes but also indirect symptoms (purulent rhinorrhea, headache, pharyngodynia, cough, recurrent fever, episodes of dyspnea) derived from the overlap of other diseases favored by the weakening of the mucosal barrier and by the inefficiency of mucociliary clearance.
\nThis condition is characterized by the presence of mast cells in the nasal mucosa. The mast cell is presented to the observation with a variable optical microscope: it can be vaguely roundish or lozenge shaped. It is characterized by a marked basophilia and has a coarsely oval nucleus generally covered by numerous granules (Figure 12). They are generally larger in size than eosinophilic granules.
\nMast cell with degranulation.
The surface of mast cells is characterized by the presence of IgE receptors. When they bind to these receptors, the mast cell releases by exocytosis its granules with the substances contained therein including histamine, a preformed substance with multiple actions [12].
\nIn fact, it acts on the vascular receptors favoring vasodilation and edema of the surrounding tissues. It also acts on the nasal glands, feeding the rhinorrhea, and stimulates the nerve endings favoring itching and sneezing. The mast cell through its granules also eliminates some preformed chemotactic factors such as IL4, IL5, and IL13. Arachidonic acid is also synthesized by newly formed metabolites such as PGD2 and LTC4, whose actions on smooth muscles and vessels have already been described previously.
\nThe mast cell, once stimulated, determines immediate symptoms. This rapidity of action can be observed in the early phase of the allergic reaction [13]. However, this cell is able, through the release of chemotactic factors, to influence also late phlogistic reactions.
\nAs we can show in Figure 1, mast cells are rarely the only cells involved in the pathogenesis of a rhinopathy. In fact, we found only 5 cases of mastocytic rhinosinusitis in 300 patients studied (1.67%). Of these patients two presented an allergic disease, while three patients had a nonallergic disease.
\nOn the other hand, cases of mixed cellular pathologies with the presence of mast cells are very frequent.
\nMast cell rhinosinusitis are characterized by very intense symptoms, characterized by marked nasal obstruction, serous rhinorrhoea, nasal pruritus, and sneezing. Also in this case as in eosinophilous cellularity diseases, we have reestablished an association with other pathologies with a similar phenotype such as bronchial asthma.
\nWe found a mixed rhinosinusitis in 94 patients corresponding to 32.75% of patients with rhinosinusitis and inflammatory phenotype (Figure 1). As we can see from the graph below, mixed rhinosinusitis is characterized by the presence in the nasal mucosa of several inflammatory cytotypes (Figures 13 and 14).
\nMixed rhinosinusitis with neutrophil (N), mast cell (M), and lymphocyte (L).
Mixed rhinosinusitis with neutrophil (N) and eosinophil (E).
In 53.19% of the cases (50 patients), we found a pathology characterized by neutrophil and eosinophilic infiltration; in 25.53% of cases (24 patients), a type with neutrophilia-eosinophilia-mast cell; in 12.77% of cases (12 patients), eosinophilic and mast cell type and in 8; and 51% of the cases (8 patients), we found neutrophils and mast cells in the nasal mucosa. In many cases, mixed rhinosinusitis is found in allergic patients. We have observed that a low intensity but stable and protracted allergenic stimulation, as in the case of allergies to Dermatophagoides, produces at a cytological level a framework defined by Gelardi et al. “Minimal persistent inflammation” is characterized by the presence of numerous neutrophil granulocytes and a small number of eosinophils or mast cells. Another interesting aspec is the greater association of the mixed forms with nasal polyposis compared to the other forms of rhinosinusitis as shown in the graph below (Figures 15 and 16).
\nPrevalence of polyposis in mixed rhinosinusitis.
Prevalence of polyposis in other types of rhinosinusitis.
We have indeed observed that in the category of rhinosinusitis with mixed cellularity, 23.40% of patients had developed a nasal polyposis, while in the other forms of rhinosinusitis, the percentage of patients who developed a nasal polyposis is lower (14.51%). The symptoms of this kind of disease varies according to the most characterizing cytotype. In any case we must remember how these forms are particularly harmful for the nasal mucosa and for mucociliary function, as they, according to our clinical experience, contribute in favoring an increased risk of respiratory inflammation in those affected.
\nOur experience has allowed us to consider the nasal cytological examination as indispensable diagnostic tools for a better understanding of chronic inflammatory diseases of the rhinosinusal district.
\nThanks to the information provided by the cytological examination, we can define the etiopathogenetic characteristics of the disease. Obviously the collection of the anamnesis represents a complementary and indispensable diagnostic element.
\nBy carrying out these three diagnostic aspects, we are able to trace the identification of the pathology very precisely.
\nDaily experience has led us to acknowledge the necessity of a simplification regarding the classification of rhinosinusal diseases.
\nOnce there was a clear demarcation between pathological processes at nasal localization, the rhinitis, from those with sinus localization, the sinusitis.
\nIn agreement with the European guidelines present in the EPOS12 [14], we argue that very often the two pathologies are closely related, so that a clear border between the two is impossible. We therefore think it is practical as well as appropriate to use in clinical practice a single term that includes the two old forms of nasosinusal pathology. For these reasons, we will talk about chronic rhinosinusitis about any chronic inflammatory process that affects the rhinosinusal district.
\nThe teaching of the pulmonologists, as explained in the GINA guidelines, led us to consider the nasal pathology narrow related to the bronchial situation. This is the reason why the phenotypic classification adopted for asthma is, in our opinion, extremely suitable also for the rhinosinusal pathology.
\nWe have therefore redesigned the pneumological experience in order to use in our daily practice a simple and immediate distinction for the various forms of chronic rhinosinusitis. We have distinguished 2 large groups of pathologies based on the phenotype:
Cellular rhinosinusites
Noncellular rhinosinusitis
This first distinction in the 2 phenotypic classes arises from the firm belief that the clinical characteristics of the sinonasal pathology are closely related to the type of cell involved in the inflammatory process.
\nAs shown in Table 1, in the cellular rhinosinusitis group, we contemplate the neutrophilic, eosinophilous, mast cell, and mixed cell forms. In the second group, (noncellular rhinosinusitis) we contemplate pathologies characterized by a normal cytological expression but equally characterized by sinonasal symptoms. Among these we include the iatrogenic forms, the hormonal forms, the atrophic forms, the mechanical forms (associated with septal dysmorphism), and the decubitus forms (characterized by significant nasal respiratory obstruction when the patient lies supine). In our case series, the number of patients affected by this type of pathology was much lower than patients affected by cellular rhinosinusitis. Precisely the individuals affected was 13 (equal to about 4.5%).
\nIndeed, the number of negative rhinocitograms was superior, almost three times as high. However, we have also included in the cellular group patients with negative cytological examination; in those cases we knew that the negative result originated from temporal circumstances. This applies, for example, to certain diseases with seasonal or recurring cellular characterizations. We have therefore attributed to the group of eosinophilic rhinosinusitis also those patients with clearly allergic symptoms and in which sensitization to seasonal allergens was ascertained despite having found in them a normal rhinocytogram. This situation occurs when we performed the sampling outside the allergy period.
\nWe are sure of the central role of the cytotype in the sinonasal pathology manifestation, and we have also distinguished the mixed rhinosinusitis in four subclasses: the neutrophil-eosinophilic cellular form, the neutrophil-mast cell form, the neutrophil-eosinophil-mast cell form, and the eosinophilic-mast cell form.
\nThis classification, with the support of an adequate imaging and with a correct anamnestic study, allows clinicians to diagnose all types of rhinosinusitis by means of an easy and intuitive classification.
\nThe diagnostic classification performed by cytological examination allows a targeted therapeutic planning. In fact, the knowledge of the etiopathogenetic and cytological principles of a pathology allows a “tailor made” therapeutic planning and also allows to achieve a precise monitoring of the pathology. This leads to optimal control of symptoms and an inevitable prognostic improvement of chronic inflammatory diseases.
\nThe classification of rhinosinusitis is still very complex and diversified today. Thanks to the information we can obtain from the nasal cytology and the anamnesis, we are able to easily frame the majority of rhinosinus pathologies in order to obtain a targeted therapeutic planning and adequate monitoring.
\nWe have listed the pathologies observed and classified from the cytological point of view in 5 years of experience, and we have come to propose a simple and versatile classification that takes into account the different clinical and etiopathogenetic characteristics of the pathologies observed.
\nBased on the phenotype, we distinguished cellular rhinosinusitis from noncellular rhinosinusitis. The former are divided into four classes (the neutrophil form, the eosinophilic form, the mast cell form, and the mixed form). These types of rhinosinusitis are characterized by a specific cytological framework. We then grouped rhinosinusitis with a negative rhinocytogram in the noncellular phenotype. Among these we remember the iatrogenic forms, the forms on a hormonal base, the positional and decubitus, the atrophic, and the mechanical forms.
\nAccording to us, the distinction we have proposed is simple and immediate.
\nThe author would like to thank Mauro Corinti for his contribution in photographic materials.
\nThe author declares that there is no conflict of interest regarding the publication of this paper.
\nThanks to Giorgia Bottani for general support and assistance.
\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}},{id:"101208",title:"Prof.",name:"Abdel Karim",middleName:"Mohamad",surname:"El Hemaly",slug:"abdel-karim-el-hemaly",fullName:"Abdel Karim El Hemaly",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101208/images/733_n.jpg",biography:"OBGYN.net Editorial Advisor Urogynecology.\nAbdel Karim M. A. El-Hemaly, MRCOG, FRCS � Egypt.\n \nAbdel Karim M. A. El-Hemaly\nProfessor OB/GYN & Urogynecology\nFaculty of medicine, Al-Azhar University \nPersonal Information: \nMarried with two children\nWife: Professor Laila A. Moussa MD.\nSons: Mohamad A. M. El-Hemaly Jr. MD. Died March 25-2007\nMostafa A. M. El-Hemaly, Computer Scientist working at Microsoft Seatle, USA. \nQualifications: \n1.\tM.B.-Bch Cairo Univ. June 1963. \n2.\tDiploma Ob./Gyn. Cairo Univ. April 1966. \n3.\tDiploma Surgery Cairo Univ. Oct. 1966. \n4.\tMRCOG London Feb. 1975. \n5.\tF.R.C.S. Glasgow June 1976. \n6.\tPopulation Study Johns Hopkins 1981. \n7.\tGyn. Oncology Johns Hopkins 1983. \n8.\tAdvanced Laparoscopic Surgery, with Prof. Paulson, Alexandria, Virginia USA 1993. \nSocieties & Associations: \n1.\t Member of the Royal College of Ob./Gyn. London. \n2.\tFellow of the Royal College of Surgeons Glasgow UK. \n3.\tMember of the advisory board on urogyn. FIGO. \n4.\tMember of the New York Academy of Sciences. \n5.\tMember of the American Association for the Advancement of Science. \n6.\tFeatured in �Who is Who in the World� from the 16th edition to the 20th edition. \n7.\tFeatured in �Who is Who in Science and Engineering� in the 7th edition. \n8.\tMember of the Egyptian Fertility & Sterility Society. \n9.\tMember of the Egyptian Society of Ob./Gyn. \n10.\tMember of the Egyptian Society of Urogyn. \n\nScientific Publications & Communications:\n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Asim Kurjak, Ahmad G. Serour, Laila A. S. Mousa, Amr M. Zaied, Khalid Z. El Sheikha. \nImaging the Internal Urethral Sphincter and the Vagina in Normal Women and Women Suffering from Stress Urinary Incontinence and Vaginal Prolapse. Gynaecologia Et Perinatologia, Vol18, No 4; 169-286 October-December 2009.\n2- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nFecal Incontinence, A Novel Concept: The Role of the internal Anal sphincter (IAS) in defecation and fecal incontinence. Gynaecologia Et Perinatologia, Vol19, No 2; 79-85 April -June 2010.\n3- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nSurgical Treatment of Stress Urinary Incontinence, Fecal Incontinence and Vaginal Prolapse By A Novel Operation \n"Urethro-Ano-Vaginoplasty"\n Gynaecologia Et Perinatologia, Vol19, No 3; 129-188 July-September 2010.\n4- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n5- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n6- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n7-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n8-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n9-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n10-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n11-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n12- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n13-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n14- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n15-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n\n16-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n17- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis\n\n18-Maternal Mortality in Egypt, a cry for help and attention. The Second International Conference of the African Society of Organization & Gestosis, 1998, 3rd Annual International Conference of Ob/Gyn Department � Sohag Faculty of Medicine University. Feb. 11-13. Luxor, Egypt. \n19-Postmenopausal Osteprosis. The 2nd annual conference of Health Insurance Organization on Family Planning and its role in primary health care. Zagaziz, Egypt, February 26-27, 1997, Center of Complementary Services for Maternity and childhood care. \n20-Laparoscopic Assisted vaginal hysterectomy. 10th International Annual Congress Modern Trends in Reproductive Techniques 23-24 March 1995. Alexandria, Egypt. \n21-Immunological Studies in Pre-eclamptic Toxaemia. Proceedings of 10th Annual Ain Shams Medical Congress. Cairo, Egypt, March 6-10, 1987. \n22-Socio-demographic factorse affecting acceptability of the long-acting contraceptive injections in a rural Egyptian community. Journal of Biosocial Science 29:305, 1987. \n23-Plasma fibronectin levels hypertension during pregnancy. The Journal of the Egypt. Soc. of Ob./Gyn. 13:1, 17-21, Jan. 1987. \n24-Effect of smoking on pregnancy. Journal of Egypt. Soc. of Ob./Gyn. 12:3, 111-121, Sept 1986. \n25-Socio-demographic aspects of nausea and vomiting in early pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 35-42, Sept. 1986. \n26-Effect of intrapartum oxygen inhalation on maternofetal blood gases and pH. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 57-64, Sept. 1986. \n27-The effect of severe pre-eclampsia on serum transaminases. The Egypt. J. Med. Sci. 7(2): 479-485, 1986. \n28-A study of placental immunoreceptors in pre-eclampsia. The Egypt. J. Med. Sci. 7(2): 211-216, 1986. \n29-Serum human placental lactogen (hpl) in normal, toxaemic and diabetic pregnant women, during pregnancy and its relation to the outcome of pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:2, 11-23, May 1986. \n30-Pregnancy specific B1 Glycoprotein and free estriol in the serum of normal, toxaemic and diabetic pregnant women during pregnancy and after delivery. Journal of the Egypt. Soc. of Ob./Gyn. 12:1, 63-70, Jan. 1986. Also was accepted and presented at Xith World Congress of Gynecology and Obstetrics, Berlin (West), September 15-20, 1985. \n31-Pregnancy and labor in women over the age of forty years. Accepted and presented at Al-Azhar International Medical Conference, Cairo 28-31 Dec. 1985. \n32-Effect of Copper T intra-uterine device on cervico-vaginal flora. Int. J. Gynaecol. Obstet. 23:2, 153-156, April 1985. \n33-Factors affecting the occurrence of post-Caesarean section febrile morbidity. Population Sciences, 6, 139-149, 1985. \n34-Pre-eclamptic toxaemia and its relation to H.L.A. system. Population Sciences, 6, 131-139, 1985. \n35-The menstrual pattern and occurrence of pregnancy one year after discontinuation of Depo-medroxy progesterone acetate as a postpartum contraceptive. Population Sciences, 6, 105-111, 1985. \n36-The menstrual pattern and side effects of Depo-medroxy progesterone acetate as postpartum contraceptive. Population Sciences, 6, 97-105, 1985. \n37-Actinomyces in the vaginas of women with and without intrauterine contraceptive devices. Population Sciences, 6, 77-85, 1985. \n38-Comparative efficacy of ibuprofen and etamsylate in the treatment of I.U.D. menorrhagia. Population Sciences, 6, 63-77, 1985. \n39-Changes in cervical mucus copper and zinc in women using I.U.D.�s. Population Sciences, 6, 35-41, 1985. \n40-Histochemical study of the endometrium of infertile women. Egypt. J. Histol. 8(1) 63-66, 1985. \n41-Genital flora in pre- and post-menopausal women. Egypt. J. Med. Sci. 4(2), 165-172, 1983. \n42-Evaluation of the vaginal rugae and thickness in 8 different groups. Journal of the Egypt. Soc. of Ob./Gyn. 9:2, 101-114, May 1983. \n43-The effect of menopausal status and conjugated oestrogen therapy on serum cholesterol, triglycerides and electrophoretic lipoprotein patterns. Al-Azhar Medical Journal, 12:2, 113-119, April 1983. \n44-Laparoscopic ventrosuspension: A New Technique. Int. J. Gynaecol. Obstet., 20, 129-31, 1982. \n45-The laparoscope: A useful diagnostic tool in general surgery. Al-Azhar Medical Journal, 11:4, 397-401, Oct. 1982. \n46-The value of the laparoscope in the diagnosis of polycystic ovary. Al-Azhar Medical Journal, 11:2, 153-159, April 1982. \n47-An anaesthetic approach to the management of eclampsia. Ain Shams Medical Journal, accepted for publication 1981. \n48-Laparoscopy on patients with previous lower abdominal surgery. Fertility management edited by E. Osman and M. Wahba 1981. \n49-Heart diseases with pregnancy. Population Sciences, 11, 121-130, 1981. \n50-A study of the biosocial factors affecting perinatal mortality in an Egyptian maternity hospital. Population Sciences, 6, 71-90, 1981. \n51-Pregnancy Wastage. Journal of the Egypt. Soc. of Ob./Gyn. 11:3, 57-67, Sept. 1980. \n52-Analysis of maternal deaths in Egyptian maternity hospitals. Population Sciences, 1, 59-65, 1979. \nArticles published on OBGYN.net: \n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n2- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n3- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n4-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n5-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n6-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n7-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n8-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n9- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n10-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n11- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n12-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n13-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n14- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis",institutionString:null,institution:{name:"Al Azhar University",country:{name:"Egypt"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",middleName:null,surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",country:{name:"Egypt"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:1683},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"10454",title:"Technology in Agriculture",subtitle:null,isOpenForSubmission:!0,hash:"dcfc52d92f694b0848977a3c11c13d00",slug:null,bookSignature:"Dr. Fiaz Ahmad and Prof. Muhammad Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/10454.jpg",editedByType:null,editors:[{id:"338219",title:"Dr.",name:"Fiaz",surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10502",title:"Aflatoxins",subtitle:null,isOpenForSubmission:!0,hash:"34fe61c309f2405130ede7a267cf8bd5",slug:null,bookSignature:"Dr. Lukman Bola Abdulra'uf",coverURL:"https://cdn.intechopen.com/books/images_new/10502.jpg",editedByType:null,editors:[{id:"149347",title:"Dr.",name:"Lukman",surname:"Abdulra'uf",slug:"lukman-abdulra'uf",fullName:"Lukman Abdulra'uf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10572",title:"Advancements in Chromophore and Bio-Chromophore Research",subtitle:null,isOpenForSubmission:!0,hash:"4aca0af0356d8d31fa8621859a68db8f",slug:null,bookSignature:"Dr. Rampal Pandey",coverURL:"https://cdn.intechopen.com/books/images_new/10572.jpg",editedByType:null,editors:[{id:"338234",title:"Dr.",name:"Rampal",surname:"Pandey",slug:"rampal-pandey",fullName:"Rampal Pandey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10581",title:"Alkaline Chemistry and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4ed90bdab4a7211c13cd432aa079cd20",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10581.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10697",title:"Raman Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ab2446daed0caa4d243805387a2547ee",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"c935253773c8ed0220e7b8a6fd90c4c6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10702",title:"Polyimide",subtitle:null,isOpenForSubmission:!0,hash:"325bb1a83145389746e590eb13131902",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10702.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"113",title:"Chemical Engineering",slug:"engineering-chemical-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:38,numberOfAuthorsAndEditors:1203,numberOfWosCitations:1892,numberOfCrossrefCitations:931,numberOfDimensionsCitations:2470,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"engineering-chemical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7353",title:"Paraffin",subtitle:"an Overview",isOpenForSubmission:!1,hash:"37902d2ff0f7e495b628ab41622be6e4",slug:"paraffin-an-overview",bookSignature:"Fathi Samir Soliman",coverURL:"https://cdn.intechopen.com/books/images_new/7353.jpg",editedByType:"Edited by",editors:[{id:"270842",title:"Dr.",name:"Fathi Samir",middleName:null,surname:"Soliman",slug:"fathi-samir-soliman",fullName:"Fathi Samir Soliman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7323",title:"Processing of Heavy Crude Oils",subtitle:"Challenges and Opportunities",isOpenForSubmission:!1,hash:"a019fb5c826a5049700528cfc505f0db",slug:"processing-of-heavy-crude-oils-challenges-and-opportunities",bookSignature:"Ramasamy Marappa Gounder",coverURL:"https://cdn.intechopen.com/books/images_new/7323.jpg",editedByType:"Edited by",editors:[{id:"209620",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Marappa Gounder",slug:"ramasamy-marappa-gounder",fullName:"Ramasamy Marappa Gounder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8448",title:"Glycerine Production and Transformation",subtitle:"An Innovative Platform for Sustainable Biorefinery and Energy",isOpenForSubmission:!1,hash:"63834d3e01c2550240908758fb0fbe34",slug:"glycerine-production-and-transformation-an-innovative-platform-for-sustainable-biorefinery-and-energy",bookSignature:"Marco Frediani, Mattia Bartoli and Luca Rosi",coverURL:"https://cdn.intechopen.com/books/images_new/8448.jpg",editedByType:"Edited by",editors:[{id:"53209",title:"Dr.",name:"Marco",middleName:null,surname:"Frediani",slug:"marco-frediani",fullName:"Marco Frediani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6829",title:"Petroleum Chemicals",subtitle:"Recent Insight",isOpenForSubmission:!1,hash:"058919afbb548d3448e70238b4637e84",slug:"petroleum-chemicals-recent-insight",bookSignature:"Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/6829.jpg",editedByType:"Edited by",editors:[{id:"92105",title:"Dr.",name:"Mansoor",middleName:null,surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6770",title:"Laboratory Unit Operations and Experimental Methods in Chemical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"a139364b1ca4b347f2321a0430079830",slug:"laboratory-unit-operations-and-experimental-methods-in-chemical-engineering",bookSignature:"Omar M. Basha and Badie I. Morsi",coverURL:"https://cdn.intechopen.com/books/images_new/6770.jpg",editedByType:"Edited by",editors:[{id:"174770",title:"Dr.",name:"Omar M.",middleName:null,surname:"Basha",slug:"omar-m.-basha",fullName:"Omar M. Basha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7230",title:"Recent Advances in Ionic Liquids",subtitle:null,isOpenForSubmission:!1,hash:"cebbba5d7b2b6c41fafebde32f87f90b",slug:"recent-advances-in-ionic-liquids",bookSignature:"Mohammed Muzibur Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/7230.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6186",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",subtitle:null,isOpenForSubmission:!1,hash:"720a601cd2b5476cbeb817906a4ab2dd",slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",bookSignature:"Iyad Karamé, Janah Shaya and Hassan Srour",coverURL:"https://cdn.intechopen.com/books/images_new/6186.jpg",editedByType:"Edited by",editors:[{id:"145512",title:"Prof.",name:"Iyad",middleName:null,surname:"Karamé",slug:"iyad-karame",fullName:"Iyad Karamé"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6730",title:"Palm Oil",subtitle:null,isOpenForSubmission:!1,hash:"96d058f3abbc8d0660dcd56042a8ece8",slug:"palm-oil",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/6730.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",middleName:null,surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6631",title:"Heat Transfer",subtitle:"Models, Methods and Applications",isOpenForSubmission:!1,hash:"18bd3ce3b071e4f0cb9d4f58ac33c2fa",slug:"heat-transfer-models-methods-and-applications",bookSignature:"Konstantin Volkov",coverURL:"https://cdn.intechopen.com/books/images_new/6631.jpg",editedByType:"Edited by",editors:[{id:"118184",title:"Dr.",name:"Konstantin",middleName:null,surname:"Volkov",slug:"konstantin-volkov",fullName:"Konstantin Volkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5758",title:"Pyrolysis",subtitle:null,isOpenForSubmission:!1,hash:"536c8699f8fa7504a63a23de45158a24",slug:"pyrolysis",bookSignature:"Mohamed Samer",coverURL:"https://cdn.intechopen.com/books/images_new/5758.jpg",editedByType:"Edited by",editors:[{id:"175050",title:"Prof.",name:"Mohamed",middleName:null,surname:"Samer",slug:"mohamed-samer",fullName:"Mohamed Samer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5452",title:"Distillation",subtitle:"Innovative Applications and Modeling",isOpenForSubmission:!1,hash:"ec5881c323f1825291a733ddb8356285",slug:"distillation-innovative-applications-and-modeling",bookSignature:"Marisa Fernandes Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/5452.jpg",editedByType:"Edited by",editors:[{id:"35803",title:"Dr.",name:"Marisa",middleName:null,surname:"Mendes",slug:"marisa-mendes",fullName:"Marisa Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5143",title:"Chemical Enhanced Oil Recovery (cEOR)",subtitle:"a Practical Overview",isOpenForSubmission:!1,hash:"a0b7842ba790370b5485de1694611376",slug:"chemical-enhanced-oil-recovery-ceor-a-practical-overview",bookSignature:"Laura Romero-Zeron",coverURL:"https://cdn.intechopen.com/books/images_new/5143.jpg",editedByType:"Edited by",editors:[{id:"109465",title:"Dr.",name:"Laura",middleName:null,surname:"Romero-Zerón",slug:"laura-romero-zeron",fullName:"Laura Romero-Zerón"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:38,mostCitedChapters:[{id:"13254",doi:"10.5772/13474",title:"Insight Into Adsorption Thermodynamics",slug:"insight-into-adsorption-thermodynamics",totalDownloads:6541,totalCrossrefCites:58,totalDimensionsCites:152,book:{slug:"thermodynamics",title:"Thermodynamics",fullTitle:"Thermodynamics"},signatures:"Papita Saha and Shamik Chowdhury",authors:[{id:"13943",title:"Dr.",name:"Papita",middleName:null,surname:"Saha",slug:"papita-saha",fullName:"Papita Saha"},{id:"24184",title:"Mr.",name:"Shamik",middleName:null,surname:"Chowdhury",slug:"shamik-chowdhury",fullName:"Shamik Chowdhury"}]},{id:"23520",doi:"10.5772/20206",title:"Dissolution Trapping of Carbon Dioxide in Reservoir Formation Brine – A Carbon Storage Mechanism",slug:"dissolution-trapping-of-carbon-dioxide-in-reservoir-formation-brine-a-carbon-storage-mechanism",totalDownloads:5056,totalCrossrefCites:30,totalDimensionsCites:80,book:{slug:"mass-transfer-advanced-aspects",title:"Mass Transfer",fullTitle:"Mass Transfer - Advanced Aspects"},signatures:"Stefan Iglauer",authors:[{id:"37799",title:"Dr.",name:"Stefan",middleName:null,surname:"Iglauer",slug:"stefan-iglauer",fullName:"Stefan Iglauer"}]},{id:"13466",doi:"10.5772/13548",title:"Microwave Heating Applied to Pyrolysis",slug:"microwave-heating-applied-to-pyrolysis",totalDownloads:5115,totalCrossrefCites:18,totalDimensionsCites:76,book:{slug:"advances-in-induction-and-microwave-heating-of-mineral-and-organic-materials",title:"Advances in Induction and Microwave Heating of Mineral and Organic Materials",fullTitle:"Advances in Induction and Microwave Heating of Mineral and Organic Materials"},signatures:"Yolanda Fernandez, Ana Arenillas and J. Angel Menendez",authors:[{id:"14045",title:"Dr.",name:"J. Angel",middleName:null,surname:"Menéndez Díaz",slug:"j.-angel-menendez-diaz",fullName:"J. Angel Menéndez Díaz"},{id:"15134",title:"Dr.",name:"Ana",middleName:null,surname:"Arenillas",slug:"ana-arenillas",fullName:"Ana Arenillas"},{id:"15135",title:"Dr.",name:"Yolanda",middleName:null,surname:"Fernandez",slug:"yolanda-fernandez",fullName:"Yolanda Fernandez"}]}],mostDownloadedChaptersLast30Days:[{id:"56034",title:"Pyrolysis: A Sustainable Way to Generate Energy from Waste",slug:"pyrolysis-a-sustainable-way-to-generate-energy-from-waste",totalDownloads:5239,totalCrossrefCites:12,totalDimensionsCites:16,book:{slug:"pyrolysis",title:"Pyrolysis",fullTitle:"Pyrolysis"},signatures:"Chowdhury Zaira Zaman, Kaushik Pal, Wageeh A. Yehye, Suresh\nSagadevan, Syed Tawab Shah, Ganiyu Abimbola Adebisi, Emy\nMarliana, Rahman Faijur Rafique and Rafie Bin Johan",authors:[{id:"198251",title:"Dr.",name:"Zaira",middleName:null,surname:"Chowdhury",slug:"zaira-chowdhury",fullName:"Zaira Chowdhury"},{id:"208451",title:"Associate Prof.",name:"Kaushik",middleName:null,surname:"Pal",slug:"kaushik-pal",fullName:"Kaushik Pal"}]},{id:"44033",title:"Ion-Exchange Chromatography and Its Applications",slug:"ion-exchange-chromatography-and-its-applications",totalDownloads:26992,totalCrossrefCites:6,totalDimensionsCites:16,book:{slug:"column-chromatography",title:"Column Chromatography",fullTitle:"Column Chromatography"},signatures:"Özlem Bahadir Acikara",authors:[{id:"109364",title:"Dr.",name:"Özlem",middleName:null,surname:"Bahadır Acıkara",slug:"ozlem-bahadir-acikara",fullName:"Özlem Bahadır Acıkara"}]},{id:"59836",title:"Carbon Dioxide Conversion to Methanol: Opportunities and Fundamental Challenges",slug:"carbon-dioxide-conversion-to-methanol-opportunities-and-fundamental-challenges",totalDownloads:3874,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Sajeda A. Al-Saydeh and Syed Javaid Zaidi",authors:[{id:"193992",title:"Prof.",name:"Syed",middleName:null,surname:"Zaidi",slug:"syed-zaidi",fullName:"Syed Zaidi"},{id:"233125",title:"MSc.",name:"Sajeda",middleName:null,surname:"Alsaydeh",slug:"sajeda-alsaydeh",fullName:"Sajeda Alsaydeh"}]},{id:"57510",title:"Solvents for Carbon Dioxide Capture",slug:"solvents-for-carbon-dioxide-capture",totalDownloads:2155,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"carbon-dioxide-chemistry-capture-and-oil-recovery",title:"Carbon Dioxide Chemistry, Capture and Oil Recovery",fullTitle:"Carbon Dioxide Chemistry, Capture and Oil Recovery"},signatures:"Fernando Vega, Mercedes Cano, Sara Camino, Luz M. Gallego\nFernández, Esmeralda Portillo and Benito Navarrete",authors:[{id:"10704",title:"Prof.",name:"Benito",middleName:null,surname:"Navarrete",slug:"benito-navarrete",fullName:"Benito Navarrete"},{id:"209759",title:"Dr.",name:"Fernando",middleName:null,surname:"Vega",slug:"fernando-vega",fullName:"Fernando Vega"},{id:"218843",title:"Dr.",name:"Mercedes",middleName:null,surname:"Cano",slug:"mercedes-cano",fullName:"Mercedes Cano"},{id:"218844",title:"Mrs.",name:"Sara",middleName:null,surname:"Camino",slug:"sara-camino",fullName:"Sara Camino"},{id:"218845",title:"Mrs.",name:"Luz. M.",middleName:null,surname:"Gallego Fernández",slug:"luz.-m.-gallego-fernandez",fullName:"Luz. M. Gallego Fernández"},{id:"218846",title:"Mrs.",name:"Esmeralda",middleName:null,surname:"Portillo",slug:"esmeralda-portillo",fullName:"Esmeralda Portillo"}]},{id:"52155",title:"EOR Processes, Opportunities and Technological Advancements",slug:"eor-processes-opportunities-and-technological-advancements",totalDownloads:4275,totalCrossrefCites:9,totalDimensionsCites:12,book:{slug:"chemical-enhanced-oil-recovery-ceor-a-practical-overview",title:"Chemical Enhanced Oil Recovery (cEOR)",fullTitle:"Chemical Enhanced Oil Recovery (cEOR) - a Practical Overview"},signatures:"Lezorgia Nekabari Nwidee, Stephen Theophilus, Ahmed Barifcani,\nMohammad Sarmadivaleh and Stefan Iglauer",authors:[{id:"37799",title:"Dr.",name:"Stefan",middleName:null,surname:"Iglauer",slug:"stefan-iglauer",fullName:"Stefan Iglauer"},{id:"179076",title:"Dr.",name:"Lezorgia",middleName:"Nekabari",surname:"Nwidee",slug:"lezorgia-nwidee",fullName:"Lezorgia Nwidee"},{id:"179077",title:"Prof.",name:"Ahmed",middleName:null,surname:"Barifcani",slug:"ahmed-barifcani",fullName:"Ahmed Barifcani"},{id:"179078",title:"Prof.",name:"Stephen",middleName:null,surname:"Theophilus",slug:"stephen-theophilus",fullName:"Stephen Theophilus"},{id:"189371",title:"Dr.",name:"Mohammad",middleName:null,surname:"Sarmadivaleh",slug:"mohammad-sarmadivaleh",fullName:"Mohammad Sarmadivaleh"}]},{id:"54078",title:"Distillation Techniques in the Fruit Spirits Production",slug:"distillation-techniques-in-the-fruit-spirits-production",totalDownloads:3679,totalCrossrefCites:6,totalDimensionsCites:12,book:{slug:"distillation-innovative-applications-and-modeling",title:"Distillation",fullTitle:"Distillation - Innovative Applications and Modeling"},signatures:"Nermina Spaho",authors:[{id:"189124",title:"Associate Prof.",name:"Nermina",middleName:null,surname:"Spaho",slug:"nermina-spaho",fullName:"Nermina Spaho"}]},{id:"51915",title:"Microbial Enhanced Oil Recovery",slug:"microbial-enhanced-oil-recovery-2016-10-14",totalDownloads:3895,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"chemical-enhanced-oil-recovery-ceor-a-practical-overview",title:"Chemical Enhanced Oil Recovery (cEOR)",fullTitle:"Chemical Enhanced Oil Recovery (cEOR) - a Practical Overview"},signatures:"Aliya Yernazarova, Gulzhan Kayirmanova, Almagul Baubekova and\nAzhar Zhubanova",authors:[{id:"178534",title:"Ph.D.",name:"Aliya",middleName:null,surname:"Yernazarova",slug:"aliya-yernazarova",fullName:"Aliya Yernazarova"},{id:"179203",title:"Dr.",name:"Gulzhan",middleName:null,surname:"Kaiyrmanova",slug:"gulzhan-kaiyrmanova",fullName:"Gulzhan Kaiyrmanova"},{id:"191673",title:"Dr.",name:"Almagul",middleName:null,surname:"Baubekova",slug:"almagul-baubekova",fullName:"Almagul Baubekova"},{id:"194422",title:"Dr.",name:"Azhar",middleName:null,surname:"Zhubanova",slug:"azhar-zhubanova",fullName:"Azhar Zhubanova"}]},{id:"60752",title:"Biomaterial from Oil Palm Waste: Properties, Characterization and Applications",slug:"biomaterial-from-oil-palm-waste-properties-characterization-and-applications",totalDownloads:1653,totalCrossrefCites:7,totalDimensionsCites:11,book:{slug:"palm-oil",title:"Palm Oil",fullTitle:"Palm Oil"},signatures:"Rudi Dungani, Pingkan Aditiawati, Sri Aprilia, Karnita Yuniarti, Tati\nKarliati, Ichsan Suwandhi and Ihak Sumardi",authors:[{id:"220081",title:"Dr.",name:"Pingkan",middleName:null,surname:"Aditiawati",slug:"pingkan-aditiawati",fullName:"Pingkan Aditiawati"},{id:"234728",title:"Dr.",name:"Rudi",middleName:null,surname:"Dungani",slug:"rudi-dungani",fullName:"Rudi Dungani"},{id:"249537",title:"Dr.",name:"Sri",middleName:null,surname:"Aprilia",slug:"sri-aprilia",fullName:"Sri Aprilia"},{id:"249539",title:"Dr.",name:"Karnita",middleName:null,surname:"Yuniarti",slug:"karnita-yuniarti",fullName:"Karnita Yuniarti"},{id:"249541",title:"Dr.",name:"Tati",middleName:null,surname:"Karliati",slug:"tati-karliati",fullName:"Tati Karliati"},{id:"249542",title:"Dr.",name:"Ichsan",middleName:null,surname:"Suwandi",slug:"ichsan-suwandi",fullName:"Ichsan Suwandi"},{id:"249543",title:"Dr.",name:"Ihak",middleName:null,surname:"Sumardi",slug:"ihak-sumardi",fullName:"Ihak Sumardi"},{id:"256251",title:"Dr.",name:"Sri",middleName:null,surname:"Hartati",slug:"sri-hartati",fullName:"Sri Hartati"}]},{id:"58728",title:"Techniques for the Fabrication of Super-Hydrophobic Surfaces and Their Heat Transfer Applications",slug:"techniques-for-the-fabrication-of-super-hydrophobic-surfaces-and-their-heat-transfer-applications",totalDownloads:1615,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"heat-transfer-models-methods-and-applications",title:"Heat Transfer",fullTitle:"Heat Transfer - Models, Methods and Applications"},signatures:"Hafiz Muhammad Ali, Muhammad Arslan Qasim, Sullahuddin Malik\nand Ghulam Murtaza",authors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",middleName:null,surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"},{id:"233669",title:"MSc.",name:"Arslan",middleName:null,surname:"Qasim",slug:"arslan-qasim",fullName:"Arslan Qasim"},{id:"236423",title:"MSc.",name:"Sullahuddin",middleName:null,surname:"Malik",slug:"sullahuddin-malik",fullName:"Sullahuddin Malik"},{id:"236424",title:"MSc.",name:"Ghulam",middleName:null,surname:"Murtaza",slug:"ghulam-murtaza",fullName:"Ghulam Murtaza"}]},{id:"38711",title:"Hydrogen Storage for Energy Application",slug:"hydrogen-storage-for-energy-application",totalDownloads:11222,totalCrossrefCites:11,totalDimensionsCites:20,book:{slug:"hydrogen-storage",title:"Hydrogen Storage",fullTitle:"Hydrogen Storage"},signatures:"Rahul Krishna, Elby Titus, Maryam Salimian, Olena Okhay, Sivakumar Rajendran, Ananth Rajkumar, J. M. G. Sousa, A. L. C. Ferreira, João Campos Gil and Jose Gracio",authors:[{id:"25491",title:"Dr.",name:"Elby",middleName:null,surname:"Titus",slug:"elby-titus",fullName:"Elby Titus"}]}],onlineFirstChaptersFilter:{topicSlug:"engineering-chemical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/309949/duaa-al-dosary",hash:"",query:{},params:{id:"309949",slug:"duaa-al-dosary"},fullPath:"/profiles/309949/duaa-al-dosary",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()