This chapter presents one of the ways of solving a problem ensuring reliability reducing instability and emergence of the power generators during its work. Its way use hybrid electro-optic sensors (HFOS) with capacitive mechanical sensors at their structure of the fault diagnosis system of hydro generators for measurement parameters of machine mechanical defects as quality parameters of air gap, shaft out, core compression ratio and other. So this chapter also contains: principle of measurement of the sensor, which based on measuring the mutual displacement of the flatness of the generator structural element relative to coplanar sensor electrodes surface; the design principle for developing HFOS with capacitive mechanical sensor which combines the benefits of microelectronic and fiber-optic technology; determination response characteristics of the sensitive sensor (capacitive sensors with coplanar electrodes) of HFOS for monitoring air gap defects and power accumulators of core clamping system and system of control; analytical calculations and experimental studies of air gap HFOS with the AD7746 at its operating excitation frequency using; optimum geometry calculation of air gap sensor electrodes for bulb hydro generators type SGK 538/160-70М; analyze application the air gap HFOS for the control system in the bulb hydro generators type SGK 538/160-70М.
Part of the book: Advances in Modelling and Control of Wind and Hydrogenerators