The main focus of this chapter is to modeling the different parts of the wind energy conversion system (WECS) and reviewing the different approaches used in this context. The chapter starts with the aerodynamic and the structural modeling of the wind turbines (WTs), and a description of the steps used to derive a linear time invariant (LTI) model. Thereafter, the chapter introduces models of the electrical actuators in the three phases (abc) and park phases (dq) reference frames, and recalls the assumptions considered. The chapter finishes by presenting the pulse width modulation (PWM) control strategy, the power converters and the pitch actuator models.
Part of the book: Design Optimization of Wind Energy Conversion Systems with Applications
Optimization algorithms have been one of the most important research topics in Computational Intelligence Community. They are widely utilized mathematical functions that solve optimization problems in a variety of purposes via the maximization or minimization of a function. The swarm intelligence (SI) optimization algorithms are an active branch of Evolutionary Computation, they are increasingly becoming one of the hottest and most important paradigms, several algorithms were proposed for tackling optimization problems. The most respected and popular SI algorithms are Ant colony optimization (ACO) and particle swarm optimization (PSO). Fireworks Algorithm (FWA) is a novel swarm intelligence algorithm, which seems effective at finding a good enough solution of a complex optimization problem. In this chapter we proposed a comparison study to reduce the high PAPR (Peak-to-Average Power Ratio) in OFDM systems based on the swarm intelligence algorithms like simulated annealing (SA), particle swarm optimization (PSO), fireworks algorithm (FWA), and genetic algorithm (GA). It turns out from the results that some algorithms find a good enough solutions and clearly outperform the others candidates in both convergence speed and global solution accuracy.
Part of the book: Search Algorithm