Organic matter derived from plants and animals are known as biomass. It has a great potential to be used as an alternate source of energy by employing thermochemical conversion techniques. Among the available techniques, pyrolysis is considered to be the most efficient technique used for the conversion of biomass-based waste into value-added solid, liquid and gaseous products through heating in an oxygen-limited environment. Biochar (solid fuel) is a carbonaceous material and has multiple applications in various fields such as soil health, climate stability, water resource, energy efficiency and conservation. The yield of biochar depends on organic constituents of biomass and the pyrolytic process parameters such as temperature, time, heating rate, purging gas, particle size, catalyst, flow rate, pressure and types of pyrolysis reactors. Suitable conditions for biochar production were observed to be slow pyrolysis, low carrier gas flow rate, acid-catalysed biomass or biomass mixed with some inorganic salts, low heating rate, large particle size, high pressure, longer residence time, low temperature, feedstocks with high lignin content and pyrolysis reactors with lower bed height. Thermal conversion of biomass could be a possible sustainable alternative to provide economically viable, clean and eco-friendly solid fuel.
Part of the book: Recent Advances in Pyrolysis