Anthocyanidins under the effects of solvents water, ethanol, n-hexane, and methanol are interesting due to their suitability as natural dyes for photocatalytic applications. In this chapter, DFT and TDDFT methodologies are used to study their electronic structure. The results displayed include HOMO, LUMO, HOMO-LUMO gap, chemical properties, and reorganization energies for the ground states, and excited state data are also displayed. Malvidin in gas phase has lower gap energy. After addition of solvents, gap energy increases in all cases but malvidin with n-hexane presents narrower gap. Conceptual DFT results show that cyanidin and malvidin may have good charge transfer. Cyanidin presented lower electron reorganization energy (λe) using solvent water; however, ethanol and methanol had similar values. TDDFT is used to calculate excited states, and absorption data show wavelength main peak between 479.1 and 536.4 nm. UV-Vis absorption spectra were generated and solvent effects on each molecule is discussed. Anthocyanidins work well in the visible region with the stronger peak at the green region. These pigments are good options for photocatalysis application and cyanidin and malvidin, in this order, may be the best choices for dye sensitization applications.
Part of the book: Solvents, Ionic Liquids and Solvent Effects