DBT conversion and selectivity HYD/DDS (at 40% of DBT conversion) [39].
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"1348",leadTitle:null,fullTitle:"Neuroimaging - Clinical Applications",title:"Neuroimaging",subtitle:"Clinical Applications",reviewType:"peer-reviewed",abstract:'Modern neuroimaging tools allow unprecedented opportunities for understanding brain neuroanatomy and function in health and disease. Each available technique carries with it a particular balance of strengths and limitations, such that converging evidence based on multiple methods provides the most powerful approach for advancing our knowledge in the fields of clinical and cognitive neuroscience. The scope of this book is not to provide a comprehensive overview of methods and their clinical applications but to provide a "snapshot" of current approaches using well established and newly emerging techniques.',isbn:null,printIsbn:"978-953-51-0200-7",pdfIsbn:"978-953-51-6866-9",doi:"10.5772/1814",price:159,priceEur:175,priceUsd:205,slug:"neuroimaging-clinical-applications",numberOfPages:592,isOpenForSubmission:!1,isInWos:1,hash:"d079672454f0551916e81fc3685b846a",bookSignature:"Peter Bright",publishedDate:"March 9th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1348.jpg",numberOfDownloads:120184,numberOfWosCitations:32,numberOfCrossrefCitations:11,numberOfDimensionsCitations:33,hasAltmetrics:0,numberOfTotalCitations:76,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 22nd 2010",dateEndSecondStepPublish:"December 20th 2010",dateEndThirdStepPublish:"April 26th 2011",dateEndFourthStepPublish:"May 26th 2011",dateEndFifthStepPublish:"July 25th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"49019",title:"Prof.",name:"Peter",middleName:null,surname:"Bright",slug:"peter-bright",fullName:"Peter Bright",profilePictureURL:"https://mts.intechopen.com/storage/users/49019/images/2330_n.jpg",biography:"Dr. Peter Bright was educated at the Universities of Surrey (BSc, 1991), Reading (MSc, 1993) and Cambridge (PhD, 1999). His research in the fields of memory and conceptual knowledge are well known. He has held research positions at the MRC Cognition and Brain Sciences Unit in Cambridge (1994-1995), King’s College London (1998-2001), and the University of Cambridge (2001-2005). He currently holds the position of Reader at Anglia Ruskin University in Cambridge (since 2005).",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Anglia Ruskin University",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1008",title:"Radiology Diagnosis",slug:"radiology-diagnosis"}],chapters:[{id:"31404",title:"Congenital Malformation of the Brain",doi:"10.5772/22936",slug:"congenital-malformations-of-the-brain",totalDownloads:16911,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Shahina Bano, Vikas Chaudhary and Sachchidanand Yadav",downloadPdfUrl:"/chapter/pdf-download/31404",previewPdfUrl:"/chapter/pdf-preview/31404",authors:[{id:"49858",title:"Dr.",name:"Shahina",surname:"Bano",slug:"shahina-bano",fullName:"Shahina Bano"},{id:"60644",title:"Dr.",name:"Vikas",surname:"Chaudhary",slug:"vikas-chaudhary",fullName:"Vikas Chaudhary"},{id:"60645",title:"Dr.",name:"Sachchidanand",surname:"Yadav",slug:"sachchidanand-yadav",fullName:"Sachchidanand Yadav"}],corrections:null},{id:"31405",title:"Neuroimaging in Inborn Errors of Metabolism",doi:"10.5772/24803",slug:"neuroimaging-in-inborn-errors-of-metabolism",totalDownloads:11957,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Carlos Casimiro, Paula Garcia, Miguel Cordeiro, Isabel Fineza, Teresa Garcia and Luísa Diogo",downloadPdfUrl:"/chapter/pdf-download/31405",previewPdfUrl:"/chapter/pdf-preview/31405",authors:[{id:"50822",title:"Prof.",name:"Luisa",surname:"Diogo",slug:"luisa-diogo",fullName:"Luisa Diogo"},{id:"59630",title:"Dr.",name:"Carlos",surname:"Casimiro",slug:"carlos-casimiro",fullName:"Carlos Casimiro"},{id:"61288",title:"Dr.",name:"Paula",surname:"Garcia",slug:"paula-garcia",fullName:"Paula Garcia"},{id:"61289",title:"Dr.",name:"Miguel",surname:"Cordeiro",slug:"miguel-cordeiro",fullName:"Miguel Cordeiro"},{id:"61290",title:"Dr.",name:"Isabel",surname:"Fineza",slug:"isabel-fineza",fullName:"Isabel Fineza"},{id:"62860",title:"Dr.",name:"Teresa",surname:"Garcia",slug:"teresa-garcia",fullName:"Teresa Garcia"}],corrections:null},{id:"31406",title:"Acquired Demyelinating Disorders of the CNS in Children",doi:"10.5772/23731",slug:"acquired-demyelinating-disorders-of-the-cns-in-children",totalDownloads:8591,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"R. Govender, Jo M. Wilmshurst and Nicky Wieselthaler",downloadPdfUrl:"/chapter/pdf-download/31406",previewPdfUrl:"/chapter/pdf-preview/31406",authors:[{id:"53450",title:"Dr.",name:"Rajeshree",surname:"Govender",slug:"rajeshree-govender",fullName:"Rajeshree Govender"},{id:"59296",title:"Prof.",name:"Jo",surname:"Wilmshurst",slug:"jo-wilmshurst",fullName:"Jo Wilmshurst"},{id:"59297",title:"Dr.",name:"Nicky",surname:"Wieselthaler",slug:"nicky-wieselthaler",fullName:"Nicky Wieselthaler"}],corrections:null},{id:"31407",title:"Landau Kleffner Syndrome: Neuroradiology Aspect",doi:"10.5772/24924",slug:"landau-kleffner-syndrome-neuroradiology-aspect",totalDownloads:2691,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"José Guevara Campos and Lucía González Guevara",downloadPdfUrl:"/chapter/pdf-download/31407",previewPdfUrl:"/chapter/pdf-preview/31407",authors:[{id:"60434",title:"Dr.",name:"Jose",surname:"Guevara",slug:"jose-guevara",fullName:"Jose Guevara"},{id:"96916",title:"Dr.",name:"Lucia",surname:"González",slug:"lucia-gonzalez",fullName:"Lucia González"}],corrections:null},{id:"31408",title:"Neurocristopathies: Role of Glial Cells, Genetic Basis and Relevance of Brain Imaging for Diagnosis",doi:"10.5772/25086",slug:"neurocristopathies-role-of-glial-cells-genetic-basis-and-relevance-of-brain-imaging-for-diagnosis",totalDownloads:2595,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mª Carmen Carrascosa Romero and Carlos de Cabo de la Vega",downloadPdfUrl:"/chapter/pdf-download/31408",previewPdfUrl:"/chapter/pdf-preview/31408",authors:[{id:"61718",title:"Dr.",name:"María Carmen",surname:"Carrascosa-Romero",slug:"maria-carmen-carrascosa-romero",fullName:"María Carmen Carrascosa-Romero"},{id:"61719",title:"Dr.",name:"Carlos",surname:"De Cabo De La Vega",slug:"carlos-de-cabo-de-la-vega",fullName:"Carlos De Cabo De La Vega"}],corrections:null},{id:"31409",title:"Role of Neuroimaging in Brain Radiosurgery",doi:"10.5772/24393",slug:"role-of-neuroimaging-in-brain-radiosurgery",totalDownloads:1802,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Tomoyuki Koga and Nobuhito Saito",downloadPdfUrl:"/chapter/pdf-download/31409",previewPdfUrl:"/chapter/pdf-preview/31409",authors:[{id:"57100",title:"Dr",name:"Tomoyuki",surname:"Koga",slug:"tomoyuki-koga",fullName:"Tomoyuki Koga"},{id:"61279",title:"Prof.",name:"Nobuhito",surname:"Saito",slug:"nobuhito-saito",fullName:"Nobuhito Saito"}],corrections:null},{id:"31410",title:"The Role of Magnetic Resonance Spectroscopy in the Diagnosis of Ring Enhancing Lesions",doi:"10.5772/23418",slug:"the-role-of-magnetic-resonance-spectroscopy-in-the-diagnosis-of-ring-enhancing-lesions-",totalDownloads:2978,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Eftychia Kapsalaki, Efstathios D. Gotsis, Ioannis Tsougos and Konstantinos N. Fountas",downloadPdfUrl:"/chapter/pdf-download/31410",previewPdfUrl:"/chapter/pdf-preview/31410",authors:[{id:"51986",title:"Prof.",name:"Kostas",surname:"Fountas",slug:"kostas-fountas",fullName:"Kostas Fountas"},{id:"60034",title:"Dr.",name:"Eftychia",surname:"Kapsalaki",slug:"eftychia-kapsalaki",fullName:"Eftychia Kapsalaki"},{id:"60035",title:"Dr.",name:"Ioannis",surname:"Tsougos",slug:"ioannis-tsougos",fullName:"Ioannis Tsougos"},{id:"60052",title:"Dr.",name:"Efstathios",surname:"Gotsis",slug:"efstathios-gotsis",fullName:"Efstathios Gotsis"}],corrections:null},{id:"31411",title:"The Role of Functional MRI in Intracranial Glioma Resection",doi:"10.5772/25040",slug:"the-role-of-functional-mri-in-intracranial-glioma-resection",totalDownloads:1659,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Eftychia Z. Kapsalaki, Dimitrios Verganelakis, Ioannis Z. Kapsalakis, Efstathios D. Gotsis and Kostas N. Fountas",downloadPdfUrl:"/chapter/pdf-download/31411",previewPdfUrl:"/chapter/pdf-preview/31411",authors:[{id:"51986",title:"Prof.",name:"Kostas",surname:"Fountas",slug:"kostas-fountas",fullName:"Kostas Fountas"},{id:"60034",title:"Dr.",name:"Eftychia",surname:"Kapsalaki",slug:"eftychia-kapsalaki",fullName:"Eftychia Kapsalaki"},{id:"60052",title:"Dr.",name:"Efstathios",surname:"Gotsis",slug:"efstathios-gotsis",fullName:"Efstathios Gotsis"},{id:"61251",title:"Dr.",name:"Dimitrios",surname:"Verganelakis",slug:"dimitrios-verganelakis",fullName:"Dimitrios Verganelakis"},{id:"61252",title:"Dr.",name:"Ioannis",surname:"Kapsalakis",slug:"ioannis-kapsalakis",fullName:"Ioannis Kapsalakis"}],corrections:null},{id:"31412",title:"Neuroimaging in Epileptic Disorders",doi:"10.5772/22770",slug:"neuroimaging-in-epileptic-disorders",totalDownloads:1918,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"José Augusto Bragatti",downloadPdfUrl:"/chapter/pdf-download/31412",previewPdfUrl:"/chapter/pdf-preview/31412",authors:[{id:"49134",title:"Dr.",name:"Jose Augusto",surname:"Bragatti",slug:"jose-augusto-bragatti",fullName:"Jose Augusto Bragatti"}],corrections:null},{id:"31413",title:"MRI Abnormalities Induced by Seizures",doi:"10.5772/24725",slug:"mri-abnormalities-induced-by-seizures",totalDownloads:17347,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Nuno Canas and Pedro Soares",downloadPdfUrl:"/chapter/pdf-download/31413",previewPdfUrl:"/chapter/pdf-preview/31413",authors:[{id:"59099",title:"Dr.",name:"Nuno",surname:"Canas",slug:"nuno-canas",fullName:"Nuno Canas"},{id:"98131",title:"Dr.",name:"Pedro",surname:"Soares",slug:"pedro-soares",fullName:"Pedro Soares"}],corrections:null},{id:"31414",title:"Central Nervous System Findings on Magnetic Resonance Imaging in Children with Epilepsy",doi:"10.5772/23801",slug:"central-nervous-system-findings-on-magnetic-resonance-imaging-in-children-with-epilepsy",totalDownloads:2099,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Teodoro Durá-Travé, Maria Eugenia Yoldi-Petri, Joaquin Esparza-Estaún, Fidel Gallinas-Victoriano, Sergio Aguilera-Albesa and Amaia Sagastibelza-Zabaleta",downloadPdfUrl:"/chapter/pdf-download/31414",previewPdfUrl:"/chapter/pdf-preview/31414",authors:[{id:"53819",title:"Prof.",name:"Teodoro",surname:"Durá-Travé",slug:"teodoro-dura-trave",fullName:"Teodoro Durá-Travé"},{id:"60540",title:"Dr.",name:"Maria Eugenia",surname:"Yoldi-Petri",slug:"maria-eugenia-yoldi-petri",fullName:"Maria Eugenia Yoldi-Petri"},{id:"60541",title:"Dr.",name:"Fidel",surname:"Gallinas-Victoriano",slug:"fidel-gallinas-victoriano",fullName:"Fidel Gallinas-Victoriano"},{id:"127535",title:"Dr.",name:"Joaquin",surname:"Esparza-Estaún",slug:"joaquin-esparza-estaun",fullName:"Joaquin Esparza-Estaún"},{id:"127536",title:"Dr.",name:"Sergio",surname:"Aguilera-Albesa",slug:"sergio-aguilera-albesa",fullName:"Sergio Aguilera-Albesa"},{id:"127537",title:"Dr.",name:"Amaia",surname:"Sagastibelza-Zabaleta",slug:"amaia-sagastibelza-zabaleta",fullName:"Amaia Sagastibelza-Zabaleta"}],corrections:null},{id:"31415",title:"Robotic Arm and Imaging in Neurosurgical Stereotactic Interventions: Oblique Insular Electrodes Implanted in Patients with Epilepsy",doi:"10.5772/24509",slug:"robotic-arm-and-imaging-in-neurosurgical-stereotactic-interventions-oblique-insular-electrodes-impla",totalDownloads:2013,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Afif Afif",downloadPdfUrl:"/chapter/pdf-download/31415",previewPdfUrl:"/chapter/pdf-preview/31415",authors:[{id:"57840",title:"Dr.",name:"Afif",surname:"Afif",slug:"afif-afif",fullName:"Afif Afif"}],corrections:null},{id:"31416",title:"Multimodal MRI of Cerebral Small Vessel Disease",doi:"10.5772/25045",slug:"multimodal-mri-of-cerebral-small-vessel-disease",totalDownloads:5647,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Bence Gunda, György Várallyay and Dániel Bereczki",downloadPdfUrl:"/chapter/pdf-download/31416",previewPdfUrl:"/chapter/pdf-preview/31416",authors:[{id:"61317",title:"Dr.",name:"Daniel",surname:"Bereczki",slug:"daniel-bereczki",fullName:"Daniel Bereczki"}],corrections:null},{id:"31417",title:"Neuroimaging of Intracranial Atherosclerotic Disease",doi:"10.5772/24511",slug:"neuroimaging-of-intracranial-atherosclerotic-disease-icad-",totalDownloads:2284,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Maria Khan, Imama Naqvi and Ayeesha Kamran Kamal",downloadPdfUrl:"/chapter/pdf-download/31417",previewPdfUrl:"/chapter/pdf-preview/31417",authors:[{id:"57851",title:"Dr.",name:"Ayeesha Kamran",surname:"Kamal",slug:"ayeesha-kamran-kamal",fullName:"Ayeesha Kamran Kamal"}],corrections:null},{id:"31418",title:"Neuroimaging in Multiple Sclerosis",doi:"10.5772/24069",slug:"neuroimaging-in-multiple-sclerosis",totalDownloads:3907,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Elisabeth Andreadou",downloadPdfUrl:"/chapter/pdf-download/31418",previewPdfUrl:"/chapter/pdf-preview/31418",authors:[{id:"55338",title:"Prof.",name:"Elisabeth",surname:"Andreadou",slug:"elisabeth-andreadou",fullName:"Elisabeth Andreadou"}],corrections:null},{id:"31419",title:"Impact of Gray Matter Pathology on Cognitive Function in Multiple Sclerosis",doi:"10.5772/25166",slug:"impact-of-gray-matter-pathology-on-the-cognitive-function-in-multiple-sclerosis",totalDownloads:1954,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mike Andrea, Guttmann Charles R.G. and Illes Zsolt",downloadPdfUrl:"/chapter/pdf-download/31419",previewPdfUrl:"/chapter/pdf-preview/31419",authors:[{id:"62340",title:"Prof.",name:"Zsolt",surname:"Illes",slug:"zsolt-illes",fullName:"Zsolt Illes"},{id:"62595",title:"Dr.",name:"Andrea",surname:"Mike",slug:"andrea-mike",fullName:"Andrea Mike"}],corrections:null},{id:"31420",title:"Pseudotumor Cerebri (Idiopathic Intracranial Hypertension) an Update",doi:"10.5772/24536",slug:"pseudotumor-cerebri-idiopathic-intracranial-hypertension-an-update",totalDownloads:4629,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Eldar Rosenfeld and Anat Kesler",downloadPdfUrl:"/chapter/pdf-download/31420",previewPdfUrl:"/chapter/pdf-preview/31420",authors:[{id:"58011",title:"Prof.",name:"Anat",surname:"Kesler",slug:"anat-kesler",fullName:"Anat Kesler"},{id:"60882",title:"Dr",name:"Eldar",surname:"Rosenfeld",slug:"eldar-rosenfeld",fullName:"Eldar Rosenfeld"}],corrections:null},{id:"31421",title:"Dopamine Transporter Imaging for Distinguishing Between Idiopathic Parkinson’s Disease and Secondary Parkinsonism",doi:"10.5772/23814",slug:"dopamine-transporter-binding-in-differential-diagnosis-between-idiopathic-parkinson-s-disease-and-se",totalDownloads:4441,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Chin-Chang Huang, Tzu-Chen Yen and Chin-Song Lu",downloadPdfUrl:"/chapter/pdf-download/31421",previewPdfUrl:"/chapter/pdf-preview/31421",authors:[{id:"53860",title:"Prof.",name:"Chin-Chang",surname:"Huang",slug:"chin-chang-huang",fullName:"Chin-Chang Huang"},{id:"61134",title:"Prof.",name:"Tzu-Chen",surname:"Yen",slug:"tzu-chen-yen",fullName:"Tzu-Chen Yen"},{id:"103020",title:"Dr.",name:"Chin-song",surname:"Lu",slug:"chin-song-lu",fullName:"Chin-song Lu"}],corrections:null},{id:"31422",title:"Neuroimaging in Fragile X-Associated",doi:"10.5772/24016",slug:"neuroimagin-in-fragile-x-associated-tremor-ataxia-syndrome-fxtas-",totalDownloads:2240,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Laia Rodriguez-Revenga, Beatriz Gómez-Ansón, Esther Granell Moreno, Javier Pagonabarraga and Montserrat Mila",downloadPdfUrl:"/chapter/pdf-download/31422",previewPdfUrl:"/chapter/pdf-preview/31422",authors:[{id:"54942",title:"Dr.",name:"Montserrat",surname:"Milà",slug:"montserrat-mila",fullName:"Montserrat Milà"},{id:"61191",title:"Dr.",name:"Laia",surname:"Rodriguez-Revenga",slug:"laia-rodriguez-revenga",fullName:"Laia Rodriguez-Revenga"},{id:"61192",title:"Dr.",name:"Javier",surname:"Pagonabarraga",slug:"javier-pagonabarraga",fullName:"Javier Pagonabarraga"},{id:"61193",title:"Dr.",name:"Beatriz",surname:"Gomez-Anson",slug:"beatriz-gomez-anson",fullName:"Beatriz Gomez-Anson"},{id:"136383",title:"Dr.",name:"Esther",surname:"Granell Moreno",slug:"esther-granell-moreno",fullName:"Esther Granell Moreno"}],corrections:null},{id:"31423",title:"Non-Conventional MRI Techniques in Neurophychiatric Systemic Lupus Erythematosus (NPSLE): Emerging Tools to Elucidate the Pathophysiology and Aid the Diagnosis and Management",doi:"10.5772/24627",slug:"application-of-non-conventional-mri-techniques-in-neuropsychiatric-systemic-lupus-erythematosus-npsl",totalDownloads:2649,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Efrosini Z. Papadaki and Dimitrios T. Boumpas",downloadPdfUrl:"/chapter/pdf-download/31423",previewPdfUrl:"/chapter/pdf-preview/31423",authors:[{id:"58603",title:"Dr.",name:"Dimitrios T.",surname:"Boumpas",slug:"dimitrios-t.-boumpas",fullName:"Dimitrios T. Boumpas"},{id:"61326",title:"Prof.",name:"Efrosini",surname:"Papadaki",slug:"efrosini-papadaki",fullName:"Efrosini Papadaki"}],corrections:null},{id:"31424",title:"Central Nervous System Tuberculosis",doi:"10.5772/24964",slug:"central-nervous-system-tuberculosis",totalDownloads:10472,totalCrossrefCites:1,totalDimensionsCites:6,signatures:"Shahina Bano, Vikas Chaudhary and Sachchidanand Yadav",downloadPdfUrl:"/chapter/pdf-download/31424",previewPdfUrl:"/chapter/pdf-preview/31424",authors:[{id:"49858",title:"Dr.",name:"Shahina",surname:"Bano",slug:"shahina-bano",fullName:"Shahina Bano"},{id:"60644",title:"Dr.",name:"Vikas",surname:"Chaudhary",slug:"vikas-chaudhary",fullName:"Vikas Chaudhary"},{id:"60645",title:"Dr.",name:"Sachchidanand",surname:"Yadav",slug:"sachchidanand-yadav",fullName:"Sachchidanand Yadav"}],corrections:null},{id:"31425",title:"Imaging of Metabotropic Glutamate Receptors (mGluRs)",doi:"10.5772/23714",slug:"imaging-of-metabotropic-glutamate-receptors-mglur-s",totalDownloads:2100,totalCrossrefCites:3,totalDimensionsCites:6,signatures:"Zhaoda Zhang and Anna-Liisa Brownell",downloadPdfUrl:"/chapter/pdf-download/31425",previewPdfUrl:"/chapter/pdf-preview/31425",authors:[{id:"53330",title:"Prof.",name:"Anna-Liisa",surname:"Brownell",slug:"anna-liisa-brownell",fullName:"Anna-Liisa Brownell"},{id:"62386",title:"Dr.",name:"Zhaoda",surname:"Zhang",slug:"zhaoda-zhang",fullName:"Zhaoda Zhang"}],corrections:null},{id:"31426",title:"Molecular Imaging of 7 Nicotinic Acetylcholine Receptors In Vivo: Current Status and Perspectives",doi:"10.5772/23787",slug:"molecular-imaging-of-alpha7-nicotinic-acetylcholine-receptors-current-status-and-perspectives",totalDownloads:2141,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Peter Brust and Winnie Deuther-Conrad",downloadPdfUrl:"/chapter/pdf-download/31426",previewPdfUrl:"/chapter/pdf-preview/31426",authors:[{id:"53753",title:"Prof.",name:"Peter",surname:"Brust",slug:"peter-brust",fullName:"Peter Brust"},{id:"53765",title:"Dr.",name:"Winnie",surname:"Deuther-Conrad",slug:"winnie-deuther-conrad",fullName:"Winnie Deuther-Conrad"}],corrections:null},{id:"31427",title:"Advances in MR Imaging of Leukodystrophies",doi:"10.5772/25151",slug:"advances-in-mr-imaging-of-leukodystrophies",totalDownloads:5161,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Eva-Maria Ratai, Paul Caruso and Florian Eichler",downloadPdfUrl:"/chapter/pdf-download/31427",previewPdfUrl:"/chapter/pdf-preview/31427",authors:[{id:"62235",title:"Dr.",name:"Florian",surname:"Eichler",slug:"florian-eichler",fullName:"Florian Eichler"},{id:"62238",title:"Dr.",name:"Patricia",surname:"Musolino",slug:"patricia-musolino",fullName:"Patricia Musolino"},{id:"62239",title:"Dr.",name:"Eva",surname:"Ratai",slug:"eva-ratai",fullName:"Eva Ratai"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"389",title:"Neuroimaging",subtitle:"Methods",isOpenForSubmission:!1,hash:"e4321a4d45346699f9ada729290e156a",slug:"neuroimaging-methods",bookSignature:"Peter Bright",coverURL:"https://cdn.intechopen.com/books/images_new/389.jpg",editedByType:"Edited by",editors:[{id:"49019",title:"Prof.",name:"Peter",surname:"Bright",slug:"peter-bright",fullName:"Peter Bright"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1349",title:"Neuroimaging",subtitle:"Cognitive and Clinical Neuroscience",isOpenForSubmission:!1,hash:"c31b8cddd9fb1eff4ad0fc68854b9f54",slug:"neuroimaging-cognitive-and-clinical-neuroscience",bookSignature:"Peter Bright",coverURL:"https://cdn.intechopen.com/books/images_new/1349.jpg",editedByType:"Edited by",editors:[{id:"49019",title:"Prof.",name:"Peter",surname:"Bright",slug:"peter-bright",fullName:"Peter Bright"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2266",title:"Infrared Spectroscopy",subtitle:"Life and Biomedical Sciences",isOpenForSubmission:!1,hash:"21ed0818c4fcaf44b2f1e201e68014e3",slug:"infrared-spectroscopy-life-and-biomedical-sciences",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/2266.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3390",title:"Electrodiagnosis in New Frontiers of Clinical Research",subtitle:null,isOpenForSubmission:!1,hash:"ccd9da6b93d7419d735f17e246f78fe2",slug:"electrodiagnosis-in-new-frontiers-of-clinical-research",bookSignature:"Hande Turker",coverURL:"https://cdn.intechopen.com/books/images_new/3390.jpg",editedByType:"Edited by",editors:[{id:"63331",title:"Prof.",name:"Hande",surname:"Turker",slug:"hande-turker",fullName:"Hande Turker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"772",title:"Positron Emission Tomography",subtitle:"Current Clinical and Research Aspects",isOpenForSubmission:!1,hash:"3812ec1b51ddc478d2a17167a0a576d3",slug:"positron-emission-tomography-current-clinical-and-research-aspects",bookSignature:"Chia-Hung Hsieh",coverURL:"https://cdn.intechopen.com/books/images_new/772.jpg",editedByType:"Edited by",editors:[{id:"126167",title:"Dr.",name:"Chia-Hung",surname:"Hsieh",slug:"chia-hung-hsieh",fullName:"Chia-Hung Hsieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"601",title:"Applied Aspects of Ultrasonography in Humans",subtitle:null,isOpenForSubmission:!1,hash:"1ae2d6052ed8fe2ea909f848105a45f7",slug:"applied-aspects-of-ultrasonography-in-humans",bookSignature:"Phil Ainslie",coverURL:"https://cdn.intechopen.com/books/images_new/601.jpg",editedByType:"Edited by",editors:[{id:"87381",title:"Prof.",name:"Philip",surname:"Ainslie",slug:"philip-ainslie",fullName:"Philip Ainslie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"719",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"22a011ac72d696199044d841c9ac653b",slug:"magnetic-resonance-spectroscopy",bookSignature:"Donghyun Kim",coverURL:"https://cdn.intechopen.com/books/images_new/719.jpg",editedByType:"Edited by",editors:[{id:"85279",title:"Prof.",name:"Dong-Hyun",surname:"Kim",slug:"dong-hyun-kim",fullName:"Dong-Hyun Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1481",title:"Radioisotopes",subtitle:"Applications in Bio-Medical Science",isOpenForSubmission:!1,hash:"408245da32dcf9a061e72275dd348b04",slug:"radioisotopes-applications-in-bio-medical-science",bookSignature:"Nirmal Singh",coverURL:"https://cdn.intechopen.com/books/images_new/1481.jpg",editedByType:"Edited by",editors:[{id:"48584",title:"Prof.",name:"Nirmal",surname:"Singh",slug:"nirmal-singh",fullName:"Nirmal Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"163",title:"Ultrasound Imaging",subtitle:"Medical Applications",isOpenForSubmission:!1,hash:"aa3c22596ff5852287143fe66a643289",slug:"ultrasound-imaging-medical-applications",bookSignature:"Igor V. Minin and Oleg V. Minin",coverURL:"https://cdn.intechopen.com/books/images_new/163.jpg",editedByType:"Edited by",editors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"722",title:"Medical Imaging",subtitle:null,isOpenForSubmission:!1,hash:"3f49fd64e920334f3d51343640f6ee82",slug:"medical-imaging",bookSignature:"Okechukwu Felix Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/722.jpg",editedByType:"Edited by",editors:[{id:"68312",title:"Prof.",name:"Okechukwu Felix",surname:"Erondu",slug:"okechukwu-felix-erondu",fullName:"Okechukwu Felix Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74511",slug:"corrigendum-to-has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-de",title:"Corrigendum to: Has the Yield Curve Accurately Predicted the Malaysian Economy in the Previous Two Decades?",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74511.pdf",downloadPdfUrl:"/chapter/pdf-download/74511",previewPdfUrl:"/chapter/pdf-preview/74511",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74511",risUrl:"/chapter/ris/74511",chapter:{id:"72452",slug:"has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-decades-",signatures:"Maya Puspa Rahman",dateSubmitted:"December 9th 2019",dateReviewed:"March 21st 2020",datePrePublished:"June 11th 2020",datePublished:"December 23rd 2020",book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316535",title:"Associate Prof.",name:"Maya Puspa",middleName:null,surname:"Rahman",fullName:"Maya Puspa Rahman",slug:"maya-puspa-rahman",email:"mayapuspa@iium.edu.my",position:null,institution:null}]}},chapter:{id:"72452",slug:"has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-decades-",signatures:"Maya Puspa Rahman",dateSubmitted:"December 9th 2019",dateReviewed:"March 21st 2020",datePrePublished:"June 11th 2020",datePublished:"December 23rd 2020",book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316535",title:"Associate Prof.",name:"Maya Puspa",middleName:null,surname:"Rahman",fullName:"Maya Puspa Rahman",slug:"maya-puspa-rahman",email:"mayapuspa@iium.edu.my",position:null,institution:null}]},book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10287",leadTitle:null,title:"Smart Metering Technology",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tTo accomplish the objectives of the Smart grid, Smart metering is the main dynamism. Smart Grids solve necessitous complications like balancing of renewables, customer operations, peak management, and many more. Incontrovertibly, Smart metering helps to dwindle the commercial Losses, monitor energy(real-time or near real-time), detect energy theft(Cybersecurity), enhance reliability in Grid and lead to better revenue as well as tariff management. Additionally, it introduces innovative tariff structures, dispatches accurate bills based on meter data, thus reduces the annoyance of customers and uplifts customer constancy. It will motivate consumers to change behavior and optimize energy consumption, even by generating their own electricity and sell it back to the grid, which will boost the business turnover in the later stage. So, Smart metering technology plays a major role to accomplish the objectives of a smart grid. Undoubtedly, Control Systems, Automations, FACTS devices, Smart Sensors, Wireless sensors, Cybersecurity, Communication Networks, Data acquisition, Signal processing and processing, Energy Conservation and Management, Renewable energy resources, Grid integration play important roles for making reliable smart metering technologies.
",isbn:"978-1-83969-356-4",printIsbn:"978-1-83969-355-7",pdfIsbn:"978-1-83969-357-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"2029b52e42ce6444e122153824296a6f",bookSignature:"Mrs. Inderpreet Kaur",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10287.jpg",keywords:"FACTS, Smart Sensors, Signal Acquisition and Processing, Control Systems, Power Systems, Instrumentation, Energy Regulations, Demand Side Management, Renewable Energy Resources, Cyber Infrastructure, Automation, Neural and Fuzzy Logic",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 19th 2020",dateEndSecondStepPublish:"December 17th 2020",dateEndThirdStepPublish:"February 15th 2021",dateEndFourthStepPublish:"May 6th 2021",dateEndFifthStepPublish:"July 5th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Inderpreet Kaur is a member of IEEE, ISTE, OSI, IEI with nearly 23 years of dynamic experience, she brings ideas to life with technical skills as an Engineer, trains students, and imparts knowledge as an educationist.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"94572",title:"Mrs.",name:"Inderpreet",middleName:null,surname:"Kaur",slug:"inderpreet-kaur",fullName:"Inderpreet Kaur",profilePictureURL:"https://mts.intechopen.com/storage/users/94572/images/system/94572.jpg",biography:"Dr. Inderpreet Kaur is a cross-disciplinarian scholar and administrator with a multivalent background in Education, Research, Leadership and Training. With nearly 23 years of dynamic experience, she brings ideas to life with my technical skills as an Engineer, train students and impart knowledge as an educationist, and search for ways to build a smarter life, simply as a Human Being. She is a member of IEEE, ISTE, OSI, IEI. She is in the committee of Reviewers in National and International Journals. She regularly contributes in various \nJournals, Magazines, and Conferences. She can be contacted \nat inder_preet74@yahoo.com",institutionString:"Chandigarh University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Chandigarh University",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"24",title:"Technology",slug:"technology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:"Dr.",name:"Daniel Almeida",surname:"Marinho",slug:"daniel-almeida-marinho",fullName:"Daniel Almeida Marinho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8878",title:"Advances in Microfluidic Technologies for Energy and Environmental Applications",subtitle:null,isOpenForSubmission:!1,hash:"7026c645fea790b8d1ad5b555ded994d",slug:"advances-in-microfluidic-technologies-for-energy-and-environmental-applications",bookSignature:"Yong Ren",coverURL:"https://cdn.intechopen.com/books/images_new/8878.jpg",editedByType:"Edited by",editors:[{id:"177059",title:"Dr.",name:"Yong",surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8494",title:"Gyroscopes",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"cc0e172784cf5e7851b9722f3ecfbd8d",slug:"gyroscopes-principles-and-applications",bookSignature:"Xuye Zhuang and Lianqun Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8494.jpg",editedByType:"Edited by",editors:[{id:"69742",title:"Dr.",name:"Xuye",surname:"Zhuang",slug:"xuye-zhuang",fullName:"Xuye Zhuang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7714",title:"Emerging Micro",subtitle:"and Nanotechnologies",isOpenForSubmission:!1,hash:"5c6ea07211f78aafb0b53a184224d655",slug:"emerging-micro-and-nanotechnologies",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/7714.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10151",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume II",isOpenForSubmission:!1,hash:"1a9e7327c929421c873317ccfad2b799",slug:"technology-science-and-culture-a-global-vision-volume-ii",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10151.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9336",title:"Technology, Science and Culture",subtitle:"A Global Vision",isOpenForSubmission:!1,hash:"e1895103eeec238cda200b75d6e143c8",slug:"technology-science-and-culture-a-global-vision",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/9336.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67278",title:"The Silicon on the Catalysis: Hydrodesulfurization of Petroleum Fractions",doi:"10.5772/intechopen.84724",slug:"the-silicon-on-the-catalysis-hydrodesulfurization-of-petroleum-fractions",body:'The air pollution is one of the main problems that the governments around the world have been concerned to mitigate in recent decades. The harmful gases found in the atmosphere are the product of the generation of energy through the combustion of hydrocarbons [1, 2, 3]. However, the hydrocarbons will continue to be used as the main source of energy in the next decades [4]; thus, it represents an environmental problem. The main pollutants generated by the combustion of fuels are SOx, CO, NOx, and traces of some heavy elements. The SOx is considered particularly dangerous since SO2 can be oxidized to SO3 by several routes, depending on the particular conditions of the atmosphere. Once the SO3 is formed, it is diluted in the water droplets that are present in the atmosphere, therefore generating the sulfuric acid (H2SO4), leading to the acid rain. Moreover, it produces a direct environmental damage to humanity, such as eye irritation and constriction of the respiratory tract, causing harm to the entire population, but especially to asthmatics and other sensitive people. It also contributes to vegetation damage, causing discoloration and lesions on the leaves. In addition, sulfur dioxide has been associated with steel corrosion, deterioration of concrete structures, paper, leather, historical monuments, and certain textiles. Based on the described problems, countries have opted to make stringent environmental regulations to reduce the levels of air pollutant emissions. Worldwide legislations have been issued to reduce the amount of sulfur contents in the transport fuels close to zero sulfur ppm (ultralow sulfur fuels) [5]. This represents a challenge due to the declining trend of light oil supplies [6], leading to process heavy crudes with higher concentrations of sulfur, nitrogen, and metals. In this context, the hydrodesulphurization (HDS) is considered the most effective used process to produce ultralow sulfur transport fuels, for which the design and preparation of catalysts of high HDS performance are believed to be central factors [7, 8]. In the last decade, traditional HDS catalysts have usually been based on Mo or W sulfides promoted by Co or Ni supported on γ-alumina [9, 10]. Nonetheless, due to the need to process increasingly heavy crudes and in consequence with higher concentrations of sulfur as mention before, it is becoming more difficult to produce ultralow-sulfur transport fuels using traditional HDS catalysts [11, 12]. Therefore, it is necessary to design novel catalysts with higher performance in the HDS reaction. In order to achieve it, the HDS catalysts require (1) complete sulfidation of the molybdenum or tungsten and Co(Ni) precursor oxides phases, (2) high extent of promotion, and (3) high dispersion of the Co(Ni)Mo(W)S active phase. It is well known that the strength of interaction between the support and the Co(Ni)Mo(W)S active phase has an important effect on the above three parameters. Alumina interacts strongly with the Co, Ni, Mo, and W oxide-supported phases; therefore, new support materials with weaker metal-support interaction must be identified. This chapter will explain which factors can lower the reactivity for HDS in some sulfur compounds such as 4,6-DMDBT, as well as the models proposed to explain the nature of the active sites, and briefly summarize recent advances in the use the silicon in catalyst support with the aim of understanding the difference in HDS performance compared with the traditional catalyst supported on γ-alumina from the point of view of the strength of the interaction between the support and the active phase.
Hydrodesulfurization is one of the most important processes among the oil refining industry, whose purpose is to reduce pollutants in the fraction of the petroleum distillates. The operation conditions of HDS reaction are in a pressure range between 60 and 200 atm and temperatures higher than 280°C. On the other hand, the sulfur vacancies, called coordinatively unsaturated sites (CUS), present at the edge of the Mo(W)S2 crystals are the active sites [13, 14].
Crude oil contains a complex mixture of sulfur compounds, which in turn have a different reactivity. It is known that for each type of fuel, the sulfur-containing molecules are different and the degree of reactivity of these sulfur compounds in HDS depends on its structure. The degree of reactivity for the removal of sulfur can vary in several magnitudes. Generally, acyclic sulfides such as sulfides, disulfides, and thiols are highly reactive in HDS compared to thiophene. The reactivities of sulfur compounds with 1–3 rings decrease in the following order thiophenes > benzothiophenes > dibenzothiophenes [14]. Similarly, the reactivity of alkyl-substituted compounds such as 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene (4,6-DMDBT) is much less reactive than other compounds. Figure 1 qualitatively represents the relationship between the type and size of sulfur compound in different fractions of distillate and their relative reactivity. In the range of diesel, molecules such as dibenzothiophenes and alkyl-dibenzothiophenes predominate, which present low reactivity for HDS.
Relative reaction rate of organic sulfur compounds.
The activity study of the catalysts for deep desulfurization has focused mainly on the most refractory molecules as can be observed in the literature [14, 15]. These molecules such as 4,6-dimethyldibenzothiophene (4,6-DDMBT), 4-methyldibenzothiophene (4-MDBT), and dibenzothiophene (DBT) have different reaction routes [16, 17], considering mainly the direct desulfurization route (DDS) and the hydrogenation route (HYD).
Desulfurization route (DDS). In the case of 4,6-DMBT, the DDS route is one in which the sulfur atom is removed from the structure and replaced by hydrogen, without carrying out the hydrogenation of any of the carbon-carbon double bonds present in the molecule. Some authors [17, 18] proposed that once it is adsorbed, the molecule on the active site, the DDS route begins with hydrogenation of one of the double bonds adjacent to the sulfur atom, to obtain a dihydrogenated product and then, the opening of the C▬S bond through a process of elimination. Figure 2 shows the mechanism for the C▬S cleaving. According to the studies of the structure reactivity, the activity for the DDS reactions is attributed to sites located at the edges of the MoS2 crystal [19], and it is suggested that the sites are sulfur anionic vacancies, called coordinatively unsaturated sites (CUS), which are created and regenerated during the reaction in the presence of hydrogen.
Mechanism of the cleaving of the C▬S bond in the DDS route.
Hydrogenation route (HYD). In the HDS, the HYD route involves the hydrogenation of one of the aromatic rings, prior to the cleaving of the C▬S bond: assuming that the cleavage of the C▬S bond occurs through the β-elimination process, several explanations for the low reactivity of 4,6-DMDBT have been proposed and discussed by Bataille et al. [17] such as: (a) steric hindrance of the methyl groups for the adsorption of the molecule hydrogenated, (b) steric hindrance of the methyl groups for the cleavage of the C▬S bond, (c) the fact that only one atom of H is available for the cleavage of the C▬S bond, and (d) an effect of the methyl group on the acidity of the H atom involved in the elimination process.
The mechanism of elimination E2 (β-elimination) is described as following: a group S:− (nucleophile) subtracts a proton from the molecule with sulfur atom and the leaving group is the S atom from that molecule (Figure 3).
Mechanism of elimination E2 (β-elimination).
The favorable configuration for an elimination E2 is to have both the sulfur atom and the hydrogen-β atom interacting with the surface of the active phase (Mo(W)S2) at the same moment (Figure 4a). Then, the methyl group can hinder the process of elimination by blocking either the sulfur atom or the hydrogen-β atom as it approaches to catalytic center (Figure 4b). Moreover, the methyl group in 4,6-DMDBT molecule can also cause the hydrogen-β atom involved in the elimination process to be less acidic than the DBT molecule (Figure 4c). On the other hand, in the case of 4,6-DMDBT molecule, only one hydrogen atom is available for the elimination instead of two H atoms as occurs in DBT molecule. All of these factors can lower the reactivity of the 4,6-DMDBT compared to the DBT molecule.
Approaching of: (a) DBT, (b) methyl group of the 4,6-DMDBT, and (c) hydrogen atom of the 4,6-DMDBT molecule to the catalytic center.
In the literature, there are some models that try to explain the structure and operation of the active phase. The models proposed by Daage and Chianelli [20] and Chianelli et al. [21] have named the sites located in the upper and lower edges of the crystal as “Rim site,” which are reactive to the reactions of HYD and the break of the C▬S bond. While the “edge” sites are active only in the cleaving of the C▬S. Figure 5 depicts the location of these sites in the MoS2 crystal.
Model “Rim-edge” [21].
Ramos et al. [22] have also showed for unsupported systems the existence of strong electron donation from Co to Mo and an enhanced metallic character associated to the Co9S8/MoS2 interface. Berhault et al. [23] studied the structural role of cobalt, and the influence of support interactions on the morphology and catalytic properties of Mo and CoMo catalysts supported on alumina and silica.
On the other hand, another model called of the mixed phase “Co(Ni)-Mo(W)-S” combines studies of tunneling microscopy (STM) with calculations of density functional theory (DFT), identifying an area with high electron density in the upper part of the MoS2 crystal that was called “BRIM site,” which have metal properties capable of efficiently carrying out the hydrogenation reactions [19, 24, 25, 26]. In the present chapter, the mixed phase model was used, since it is the most widely utilized in the literature. Based on this model, the catalytic properties of the sulfur vacancies at the edges of Mo(W)S2 crystallites are strongly enhanced by the close presence of a promoter atom (Co or Ni) in the so-called Co(Ni)-Mo(S)-S structures [23, 26, 27, 28]. It has been reported that there are two types of structures that involve molybdenum or tungsten Co(Ni)-Mo(W)-S crystal, these structures were named types I and II [23, 27, 28, 29]. Type I structure has a strong interaction in the γ-alumina, since there is the presence of Mo-O-Al linkages and presents poor sulfidation. Type II structures are characterized by a weaker interaction with the γ-alumina, allowing to be full sulfided and exhibits high HDS activity. Therefore, it is important to find a way to weaken the interaction between the active phase and the support. One option is to use supports that present weak interaction with the active phase such as silica or carbon. On these supports (silica or carbon) “multilayer” MoS2 structures are generated, thus the superior crystallites in the structure have a lower interaction with the support and form type II structures, which means that stacked or multilayer structures are type II and that single layer structures are type I, as shown in the Figure 6.
Structures Co(Ni)-Mo(W)-S types I and II.
Nevertheless, it is also true that single layer structures that are type II can be obtained through a complete sulfidation of the oxidized phase and weaken the electronic interaction with the support. Figure 7 illustrates the aforementioned.
Sulfidation reaction in Mo/Al2O3 catalysts.
The choice of a suitable support material is often dictated by the process conditions in which a catalyst has to operate. Although, one of the key features of a support for HDS catalysts is the presence of a large specific area in which the active phase Mo(W)S2 presents a very high dispersion and/or present weak interaction support—active phase to generate more active structures (type II). Therefore, it is important to find a way to weaken the interaction between the active phase and the support. Therefore, the purpose of the next section is to make an overview of the recent investigations into the role of silicon in the generation of the type II structures (weak metal-support interaction), which present better HDS conversion.
The mesoporous silicates such as MCM-41 and SBA-15 have received great attention in the last decades due to their excellent properties as catalyst support in hydrotreating reactions [30, 31, 32, 33, 34, 35, 36]. These catalysts have reported a high catalytic activity in the HDS of DBT than their counterpart supported on alumina. In the case of MCM-41, its low structural stability has limited its industrial use as support. It is also reported that the addition of Al2O3 stabilizes the structure of the MCM-41, but do not achieve the promoting effect of Ni [37].
In order to obtain a deep insight into how the preparation conditions of the MCM-41 have influence on the performance of the catalyst, Hernandez Cedeño et al. [38] did a detail study of UV-vis spectroscopy in order to find out how the pH (7 and 9) during the preparation of MCM-41 (MCM41) and Al2O3 (Al) supports as well as the effect of varying the molar ratio of Si/Al (10, 25, and 50) affect the coordination of the supported metals, and thus the metal-support interaction. The catalysts NiW were evaluated in the HDS of DBT. For the catalysts, W/Al2O3 at different pH presented well-defined bands at 423, 720–722 nm, which can be related to nickel in octahedral coordination [39, 40].
On the other hand, the catalysts NiW/MCM41 prepared at pH 7 with different Si/Al (10, 25 and 50) molar ratio presented bands in the range of 710–730 nm ascribed to octahedral nickel species [11, 49, 50, 51]. But also a band between 807 and 818 nm were detected, which was associated to nickel species with octahedral symmetry distorted; this latter may be related to an interaction Ni-W [41, 42]. In addition, the catalysts prepared at pH 9 bands at 804 and 820 nm ascribed to nickel with octahedral distortion were also detected similarly to the catalyst synthesized at pH 7 [43].
At pH of 9, the NiW/AMS50 prevails the band at 818 nm, related to nickel with distorted octahedral symmetry, while for the NiW/AMS10 using the same pH, no octahedral species were observed. An opposite behavior was observed with the pH 7 catalyst, which means the catalyst NiW/AMS10 presents more define bands related to nickel species in octahedral coordination with respect to the NiW/AMS 50.
Then, the catalyst with the highest reaction rate at pH 7 and pH 9 was the NiW/AMS10 and NiW/AMS50 catalysts, respectively. Therefore, there is a trend between the HDS activity and the bands in the range of 804–820 nm as well as the bands between 710 and 730 nm, which are related to the interaction of Ni-W and Ni species in octahedral coordination, respectively. Meanwhile, on the catalyst NiW/Al2O3 prevailed the well-defined band between 720 and 775 nm associated to Ni2+ in octahedral symmetry, which is caused by the interaction between the metal and promoter, and leads to the formation of species NiWS type II, resulting in a better conversion of the DBT.
Although the incorporation of Al in the MCM41 framework improved the hydrothermal stability, the reaction rate decreases. According to the results of that work, the incorporation of Al in the MCM41 framework has a negative effect on the catalyst performance. On the other hand, in the NiW/AMS catalyst, both the pH and the amount of alumina affect the reaction rate. In the case of the catalysts impregnated at pH 7, the highest reaction rate was achieved with the catalyst that contains the highest amount of alumina in its structure (NiW/AMS10). On the contrary for the catalysts impregnated at pH 9, the NiW/AMS50 catalyst (lowest amount of alumina) presented the highest reaction rate of this series.
Continuing with the influence of the preparation conditions of the support with Si on the performance of the HDS catalysts in terms of metal-support interaction, Gómez-Orozco et al. [44] analyzed the effect of modify the SBA-15 support with Ti on its physicochemical properties and its sulfidation behavior using NiMoW/SBA-15 catalysts in the HDS reaction of DBT. The amounts of Ti4+ ions incorporated during the direct synthesis of the SBA-15 support were varied using an Si/Ti molar ratio of 60, 40, and 20, and the nominal metals loading were 3.84, 13.83, and 17.33 wt% of Ni, Mo, and W, respectively. The supported catalysts were labeled as CAT/S15, CAT/60TiS15, CAT/40TiS15, and CAT/20TiS15 in agreement with the nominal Si/Ti ratio of 60, 40, or 20, respectively.
The coordination of Ni, Mo, and W ions was analyzed by UV-vis-DRS. It was observed that all the samples present a strong band in the range of 210–280 nm, which is ascribed to Mo and W ions in tetrahedral coordination, such as Mo(W)O42−. The intensity of this band (210–280 nm) was observed to follow the next trend: CAT/40TiS15 > CAT/20TiS15 > CAT/S15 > CAT/60TiS15. The catalysts CAT/40TiS15 and CAT/60TiS also showed an intense band at about 350 nm, which is related to Mo or W ions with octahedral coordination [45]. Furthermore, these catalysts present a band at 750 nm assigned to Ni2+ ions in octahedral coordination. In general, the population of octahedral W species and the W species in tetrahedral coordination was increased significantly upon Ti incorporation into S15. In addition, the incorporation of Ti did not decrease the catalytic activity in the HDS of DBT reaction except for Si/Ti = 40. The UV-vis analysis of the catalyst CAT/40TiS15 indicates a higher amount of tetrahedral species than its counterpart CAT/60TiS15. The lower amount of Ti in the catalyst (CAT/60TiS15) presented the highest hydrogenation capability among the catalysts studied (HYD/DDS = 0.81) (Table 1) despite the main route of DBT reaction was the direct desulfurization (DDS) pathway. Hence, the superior activity for CAT/60TiS15 and CAT/S15 samples was related to a higher dispersion of Mo(W)S2 phase and a lower amount of tetrahedral species, which are not easy to reduce and sulfide (type I structure), which means that the catalysts CAT/60TiS15 and CAT/S15 possess a higher population of Mo(W)S2 phase with type II structure.
Catalysts | DDS | HYD | DBT | |||
---|---|---|---|---|---|---|
BF (%) | CBH (%) | BCH (%) | THDBT (%) | HYD/DDS | Conversion (%) | |
CAT/S-15 | 22.34 | 13.47 | 1.11 | 3.08 | 0.79 | 91.57 |
CAT/60Ti-S15 | 22.16 | 13.05 | 1.05 | 3.75 | 0.81 | 96.86 |
CAT/40Ti-S15 | 23.99 | 12.3 | 0.1 | 3.6 | 0.65 | 80.15 |
CAT/20Ti-S15 | 22.86 | 13.23 | 0 | 3.58 | 0.75 | 82.36 |
DBT conversion and selectivity HYD/DDS (at 40% of DBT conversion) [39].
THDBT, tetrahydrodibenzothiophene; BF, biphenyl; CBH, cyclohexylbenzene; and BCH, bicyclohexyl; calculated for batch reactor operating at T = 320°C and PH2 = 800 psi for 5 h.
The incorporation of Ti into the structure of the SBA-15 affected the catalytic properties of the sulfide catalysts. However, the Ti effect depends on its loading. In this study, the moderate Ti loading (Si/Ti = 40 molar ratio) was observed and had a negative effect in the catalytic activity, presenting the lower DBT conversion (Table 1). One reason for the poor activity in the catalysts CAT/40TiS15 is the higher amount of tetrahedral species compared to their counterparts. In contrast, the catalyst CAT/60TiS15 (Si/Ti = 60 molar ratio) presented a lower amount of the tetrahedral species. Tetrahedral species are difficult to be reduced and sulfide, and therefore are not susceptible to develop the HDS active sites. Then, CAT/60TiS15 exhibited the highest HDS activity (96.98% of DBT conversion), the better performance for this catalyst is due to the small amount of tetrahedral species, the low staking, and high dispersion of Mo(W)S2 phases. As it is observed, there is an optimal relationship of Si/Ti molar ratio in order to improve the HDS performance. Furthermore, the incorporation of certain amount of Ti into the structure of SBA-15 generates a high dispersion of the active phase, and a large number of structure type II.
As mentioned above, the type I structure with poor sulfidation has strong Mo-O-Al linkage with γ-alumina and presents low activity, whereas the type II structures with full sulfidation possess weak interaction with γ-alumina and exhibit high HDS activity. The surface modification of alumina with silica is an efficient way to weaken the metal-support interaction. Sanchez-Minero et al. [46] studied the effect of incorporate SiO2 with a nominal loading of 10 wt% (SAC 10) onto the surface of alumina in NiMo/Al2O3-SiO2(x) catalysts for the hydrotreatment of mixtures of 4,6-DMDBT-naphthalene-carbazole. An infrared analysis of the hydroxyl region was carried out, characteristics bands of Al2O3 hydroxyl groups were observed at 3790, 3775, 3740, 3730 and 3680 cm−1 [47], and it can be noted from the IR spectrum of the alumina support (SAC). The most basic hydroxyl groups in alumina give rise to an IR band at 3775 cm−1. When silica is incorporated to alumina (SAC 10), some changes in the bands intensity are observed. A new band localized in the region at 3725–3750 cm−1 appears, which is assigned to isolated silanol groups [48, 49]. Furthermore, the bands corresponding to the most basic hydroxyl groups (3775 cm−1) disappear. This behavior indicates that modifying the alumina surface with SiO2 eliminates the most basic hydroxyl groups in alumina promoting that the sulfided NiMoSAC10 catalyst presented highly stacked MoS2 crystallites with more than two layers (type II structure). These sites favor the hydrogenation route, being more active for 4,6-DMDBT HDS.
Recently, Romero-Galarza et al. [50] carried out a systematic study of the change in activity, selectivity, dispersion, sulfidation, and extent of promotion for CoMo and NiMo HDS catalysts supported on Al2O3 and SiO2/Al2O3. They found for CoMo and NiMo catalysts that the grafting of the surface of alumina support with a 4.0 wt% of silica was enough to eliminate the most basic hydroxyl groups bonded to tetrahedral aluminum (IR band at 3767 cm−1), and thus, this induces to have a higher proportion of Mo and Co(Ni) in octahedral coordination (DRS-UV-vis results), resulting in a better catalytic performance in the HDS of 4,6-DMDBT.
It was also found that the extent of promotion, determinated by the XPS ratio of NiMoS/NiT, is larger for the Ni-promoted catalysts than for Co-promoted catalyst, which is in line with the fact that NiMo catalysts can incorporate the Ni promoter on three different edges of a dodecagonal NiMoS particle, in contrast to CoMo catalysts where the copromoter is incorporated only on the sulfur edge of a hexagonal CoMoS cluster [26, 27]. The origin of the better performance of the NiMoSAC catalyst over their alumina-supported counterparts, NiMoAl and CoMoAl, seems to be mainly related to the higher extent of promotion and sulfidation achieved in the catalysts with SiO2 (type II structures). This fact is reflected with a good correlation between the degree of promotion with the hydrodesulfurization rate constant displayed in Figure 8, and agrees with the literature reports that indicate that promotion favors the appearance or brighter (more metallic) brim site, which can perform hydrogenating reactions [51], which is the main route for the HDS of 4,6-DMDBT.
Relationship between global HDS rate constant vs. Ni or Co atoms involved in the Co(Ni)MoS phase.
On the other hand, Xu et al. [11] prepared a novel NiMo/SiO2-Al2O3 catalysts with the improved stacking and good dispersion of supported active phase via gemini surfactant-assisted synthesis. In this method, polymolybdates anions were transformed into gemini surfactant-linked Mo precursor (GSMP), dispersing Mo species well and weakening the strong Mo-support interaction. The GSMP-based NiMo/SiO2-Al2O3 (NiMo-GSHD) catalyst presents higher activity for the HDS of 4,6-DMDBT than its counterparts prepared via impregnation (NiMo-IM) and the cetyltrimethylammonium bromide-assisted hydrothermal method (NiMo-CTHD). To understand their different activities (Table 2), the HDS activities of the catalysts were correlated with the structure of their metal phase.
Catalysts | kHDSa | TOFb × 104 | Product ratioc | |
---|---|---|---|---|
(10−7 molg−1s−1) | (s−1) | (TH + HH)/MCHT | MCHT/DMDBP | |
Mo-IM | 0.32 | 1.72 | 0.33 | 1.85 |
Mo-CTHD | 0.47 | 2.24 | 0.3 | 2.41 |
Mo-GSHD | 0.7 | 2.83 | 0.27 | 3.07 |
NiMo-IM | 3.16 | 5.62 | 0.16 | 2.04 |
NiMo-CTHD | 4.18 | 7.34 | 0.13 | 2.72 |
NiMo-GSHD | 5.78 | 9.21 | 0.11 | 3.67 |
HDS results of 4,6-DMDBT on different catalysts [47].
Calculated with the 4,6-DMDBT conversion at about 30%.
Number of the reacted 4,6-DMDBT molecules per second and per Mo atom at the edge surface.
Determinated at about 50% of the total 4,6-DMDBT conversion by changing liquid hourly space velocity.
TH, tetrahydrodimethylbenzothiophene; HH, hexahydrodimethyldibenzothiophene; MCHT, dimethylbicyclohexyl; and DMDBP, dimethylbiphenyl.
The reason for the higher HDS activity of 4,6-DMDBT (Table 2) exhibited in the catalyst NiMo-GSHD is related to the greater MoS2 dispersion, a superior average stacking number determinated by HRTEM and the higher extent of promotion (NiMoS) calculated by XPS and by NO-IR characterization, thus generating more Ni-Mo-S active sites with sufficient brim sites (type II structures). Such that, the prehydrogenation activity of NiMi-GSHD for 4,6-DMDBT with steric hindrance is markedly improved. The prehydrogenated products (4,6-THDMDBT and 4,6-HHDMDBT) without steric hindrance are much easier to be desulfurization via hydrogenolysis on the edge sites of Ni-Mo-S phases than initial 4,6-DMDBT. Therefore, NiMo-GSHD, with more edge sites due to its better metal dispersion, possesses higher 3,3´-MCHT selectivity than NiMo-IM and NiMo-CTHD.
According to the results showed in this section, the use of supports SiO2-Al2O3 results in an improvement in the performance of the catalysts in the HDS reaction of the 4,6-DMDBT molecule. Grafting SiO2 on the surface of γ-alumina generates two main effects. Increasing the extent of sulfidation and promotion, generating structures Co(Ni)-Mo-S type II, unlike the catalysts supported in γ-alumina where the structures type I predominate, which are not well sulfided due to a strong metal-support interaction. On the other hand, a different Mo precursor is used (gemini surfactant-linked) in conjunction with the use of a mixed Al2O3-SiO2 support with a composition of 96.4 and 3.6 wt%, respectively, resulting in the formation of sulfide molybdenum (MoS2) crystals with higher stacking, generating the so-called Ni-Mo-S type II, which are more active in HDS of 4,6-DMDBT molecule.
The metal-support interaction is one of the most important parameters in the design of HDS catalysts. The use of silicon in the preparation of HDS catalyst support has been showed to weak the metal interaction, generating type II Co(Ni)-Mo(W)-S structures, which are characterized by: (i) a complete sulfidation of the oxidized phase, weakening the electronic interaction with the support or (ii) stacked structures so that the upper crystallites in the structure Mo(W)S2 have a low interaction with the support. The so-called type II Co(Ni)-Mo(W)-S structures are more active than the partially sulfide type I. The use of mesoporous silicates such as MCM-41 and SBA-15 has been proposed in the literature, with the intention to increase the active phase, acidity, the type II structures, and the dispersion of the active phase (Mo(W)S2). In the case of the MCM-41 support, the preparation conditions such as pH and the Si/Al molar ratio increase the number of oxidized species in octahedral coordination, which are precursors of the type II structures. However, these materials did not show better HDS performance in the DBT molecule compared with the alumina support. It would be very useful to evaluate this type of catalyst support (MCM-41) in a molecule more refractory to HDS, such as 4,6-DMDBT, and see if it is possible to increase the catalytic performance compared to the catalyst supported in alumina, since the 4,6-DMDBT molecule is more sensitive to the geometry of the Co(Ni)-Mo(W)-S structure than the DBT molecule. On the other hand, SBA-15 mesoporous silicate doped with a certain amount of Ti (Si/Ti = 60 molar ratio) showed to improve the catalytic performance in the HDS of the DBT molecule, through generating a greater population of type II structures; therefore, these materials are useful as HDS catalyst support.
Grafting SiO2 on the surface of γ-alumina or the use of mixed support (Al2O3-SiO2) are other alternatives to promote the formation of so-called type II Co(Ni)-Mo(W)-S structures. It has been reported that a small amount of SiO2 is enough to weaken the metal-support interaction and thus increase the extent of sulfidation and level promotion, which are fundamental parameters to improve the performance of HDS catalysts. So, it can be concluded that the use of silicon in the preparation of HDS catalyst support is a promising alternative to get better performance in HDS catalysts.
The air pollution is one of the main problems that the governments around the world have been concerned to mitigate in recent decades. The harmful gases found in the atmosphere are the product of the generation of energy through the combustion of hydrocarbons [1, 2, 3]. However, the hydrocarbons will continue to be used as the main source of energy in the next decades [4]; thus, it represents an environmental problem. The main pollutants generated by the combustion of fuels are SOx, CO, NOx, and traces of some heavy elements. The SOx is considered particularly dangerous since SO2 can be oxidized to SO3 by several routes, depending on the particular conditions of the atmosphere. Once the SO3 is formed, it is diluted in the water droplets that are present in the atmosphere, therefore generating the sulfuric acid (H2SO4), leading to the acid rain. Moreover, it produces a direct environmental damage to humanity, such as eye irritation and constriction of the respiratory tract, causing harm to the entire population, but especially to asthmatics and other sensitive people. It also contributes to vegetation damage, causing discoloration and lesions on the leaves. In addition, sulfur dioxide has been associated with steel corrosion, deterioration of concrete structures, paper, leather, historical monuments, and certain textiles. Based on the described problems, countries have opted to make stringent environmental regulations to reduce the levels of air pollutant emissions. Worldwide legislations have been issued to reduce the amount of sulfur contents in the transport fuels close to zero sulfur ppm (ultralow sulfur fuels) [5]. This represents a challenge due to the declining trend of light oil supplies [6], leading to process heavy crudes with higher concentrations of sulfur, nitrogen, and metals. In this context, the hydrodesulphurization (HDS) is considered the most effective used process to produce ultralow sulfur transport fuels, for which the design and preparation of catalysts of high HDS performance are believed to be central factors [7, 8]. In the last decade, traditional HDS catalysts have usually been based on Mo or W sulfides promoted by Co or Ni supported on γ-alumina [9, 10]. Nonetheless, due to the need to process increasingly heavy crudes and in consequence with higher concentrations of sulfur as mention before, it is becoming more difficult to produce ultralow-sulfur transport fuels using traditional HDS catalysts [11, 12]. Therefore, it is necessary to design novel catalysts with higher performance in the HDS reaction. In order to achieve it, the HDS catalysts require (1) complete sulfidation of the molybdenum or tungsten and Co(Ni) precursor oxides phases, (2) high extent of promotion, and (3) high dispersion of the Co(Ni)Mo(W)S active phase. It is well known that the strength of interaction between the support and the Co(Ni)Mo(W)S active phase has an important effect on the above three parameters. Alumina interacts strongly with the Co, Ni, Mo, and W oxide-supported phases; therefore, new support materials with weaker metal-support interaction must be identified. This chapter will explain which factors can lower the reactivity for HDS in some sulfur compounds such as 4,6-DMDBT, as well as the models proposed to explain the nature of the active sites, and briefly summarize recent advances in the use the silicon in catalyst support with the aim of understanding the difference in HDS performance compared with the traditional catalyst supported on γ-alumina from the point of view of the strength of the interaction between the support and the active phase.
Hydrodesulfurization is one of the most important processes among the oil refining industry, whose purpose is to reduce pollutants in the fraction of the petroleum distillates. The operation conditions of HDS reaction are in a pressure range between 60 and 200 atm and temperatures higher than 280°C. On the other hand, the sulfur vacancies, called coordinatively unsaturated sites (CUS), present at the edge of the Mo(W)S2 crystals are the active sites [13, 14].
Crude oil contains a complex mixture of sulfur compounds, which in turn have a different reactivity. It is known that for each type of fuel, the sulfur-containing molecules are different and the degree of reactivity of these sulfur compounds in HDS depends on its structure. The degree of reactivity for the removal of sulfur can vary in several magnitudes. Generally, acyclic sulfides such as sulfides, disulfides, and thiols are highly reactive in HDS compared to thiophene. The reactivities of sulfur compounds with 1–3 rings decrease in the following order thiophenes > benzothiophenes > dibenzothiophenes [14]. Similarly, the reactivity of alkyl-substituted compounds such as 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene (4,6-DMDBT) is much less reactive than other compounds. Figure 1 qualitatively represents the relationship between the type and size of sulfur compound in different fractions of distillate and their relative reactivity. In the range of diesel, molecules such as dibenzothiophenes and alkyl-dibenzothiophenes predominate, which present low reactivity for HDS.
Relative reaction rate of organic sulfur compounds.
The activity study of the catalysts for deep desulfurization has focused mainly on the most refractory molecules as can be observed in the literature [14, 15]. These molecules such as 4,6-dimethyldibenzothiophene (4,6-DDMBT), 4-methyldibenzothiophene (4-MDBT), and dibenzothiophene (DBT) have different reaction routes [16, 17], considering mainly the direct desulfurization route (DDS) and the hydrogenation route (HYD).
Desulfurization route (DDS). In the case of 4,6-DMBT, the DDS route is one in which the sulfur atom is removed from the structure and replaced by hydrogen, without carrying out the hydrogenation of any of the carbon-carbon double bonds present in the molecule. Some authors [17, 18] proposed that once it is adsorbed, the molecule on the active site, the DDS route begins with hydrogenation of one of the double bonds adjacent to the sulfur atom, to obtain a dihydrogenated product and then, the opening of the C▬S bond through a process of elimination. Figure 2 shows the mechanism for the C▬S cleaving. According to the studies of the structure reactivity, the activity for the DDS reactions is attributed to sites located at the edges of the MoS2 crystal [19], and it is suggested that the sites are sulfur anionic vacancies, called coordinatively unsaturated sites (CUS), which are created and regenerated during the reaction in the presence of hydrogen.
Mechanism of the cleaving of the C▬S bond in the DDS route.
Hydrogenation route (HYD). In the HDS, the HYD route involves the hydrogenation of one of the aromatic rings, prior to the cleaving of the C▬S bond: assuming that the cleavage of the C▬S bond occurs through the β-elimination process, several explanations for the low reactivity of 4,6-DMDBT have been proposed and discussed by Bataille et al. [17] such as: (a) steric hindrance of the methyl groups for the adsorption of the molecule hydrogenated, (b) steric hindrance of the methyl groups for the cleavage of the C▬S bond, (c) the fact that only one atom of H is available for the cleavage of the C▬S bond, and (d) an effect of the methyl group on the acidity of the H atom involved in the elimination process.
The mechanism of elimination E2 (β-elimination) is described as following: a group S:− (nucleophile) subtracts a proton from the molecule with sulfur atom and the leaving group is the S atom from that molecule (Figure 3).
Mechanism of elimination E2 (β-elimination).
The favorable configuration for an elimination E2 is to have both the sulfur atom and the hydrogen-β atom interacting with the surface of the active phase (Mo(W)S2) at the same moment (Figure 4a). Then, the methyl group can hinder the process of elimination by blocking either the sulfur atom or the hydrogen-β atom as it approaches to catalytic center (Figure 4b). Moreover, the methyl group in 4,6-DMDBT molecule can also cause the hydrogen-β atom involved in the elimination process to be less acidic than the DBT molecule (Figure 4c). On the other hand, in the case of 4,6-DMDBT molecule, only one hydrogen atom is available for the elimination instead of two H atoms as occurs in DBT molecule. All of these factors can lower the reactivity of the 4,6-DMDBT compared to the DBT molecule.
Approaching of: (a) DBT, (b) methyl group of the 4,6-DMDBT, and (c) hydrogen atom of the 4,6-DMDBT molecule to the catalytic center.
In the literature, there are some models that try to explain the structure and operation of the active phase. The models proposed by Daage and Chianelli [20] and Chianelli et al. [21] have named the sites located in the upper and lower edges of the crystal as “Rim site,” which are reactive to the reactions of HYD and the break of the C▬S bond. While the “edge” sites are active only in the cleaving of the C▬S. Figure 5 depicts the location of these sites in the MoS2 crystal.
Model “Rim-edge” [21].
Ramos et al. [22] have also showed for unsupported systems the existence of strong electron donation from Co to Mo and an enhanced metallic character associated to the Co9S8/MoS2 interface. Berhault et al. [23] studied the structural role of cobalt, and the influence of support interactions on the morphology and catalytic properties of Mo and CoMo catalysts supported on alumina and silica.
On the other hand, another model called of the mixed phase “Co(Ni)-Mo(W)-S” combines studies of tunneling microscopy (STM) with calculations of density functional theory (DFT), identifying an area with high electron density in the upper part of the MoS2 crystal that was called “BRIM site,” which have metal properties capable of efficiently carrying out the hydrogenation reactions [19, 24, 25, 26]. In the present chapter, the mixed phase model was used, since it is the most widely utilized in the literature. Based on this model, the catalytic properties of the sulfur vacancies at the edges of Mo(W)S2 crystallites are strongly enhanced by the close presence of a promoter atom (Co or Ni) in the so-called Co(Ni)-Mo(S)-S structures [23, 26, 27, 28]. It has been reported that there are two types of structures that involve molybdenum or tungsten Co(Ni)-Mo(W)-S crystal, these structures were named types I and II [23, 27, 28, 29]. Type I structure has a strong interaction in the γ-alumina, since there is the presence of Mo-O-Al linkages and presents poor sulfidation. Type II structures are characterized by a weaker interaction with the γ-alumina, allowing to be full sulfided and exhibits high HDS activity. Therefore, it is important to find a way to weaken the interaction between the active phase and the support. One option is to use supports that present weak interaction with the active phase such as silica or carbon. On these supports (silica or carbon) “multilayer” MoS2 structures are generated, thus the superior crystallites in the structure have a lower interaction with the support and form type II structures, which means that stacked or multilayer structures are type II and that single layer structures are type I, as shown in the Figure 6.
Structures Co(Ni)-Mo(W)-S types I and II.
Nevertheless, it is also true that single layer structures that are type II can be obtained through a complete sulfidation of the oxidized phase and weaken the electronic interaction with the support. Figure 7 illustrates the aforementioned.
Sulfidation reaction in Mo/Al2O3 catalysts.
The choice of a suitable support material is often dictated by the process conditions in which a catalyst has to operate. Although, one of the key features of a support for HDS catalysts is the presence of a large specific area in which the active phase Mo(W)S2 presents a very high dispersion and/or present weak interaction support—active phase to generate more active structures (type II). Therefore, it is important to find a way to weaken the interaction between the active phase and the support. Therefore, the purpose of the next section is to make an overview of the recent investigations into the role of silicon in the generation of the type II structures (weak metal-support interaction), which present better HDS conversion.
The mesoporous silicates such as MCM-41 and SBA-15 have received great attention in the last decades due to their excellent properties as catalyst support in hydrotreating reactions [30, 31, 32, 33, 34, 35, 36]. These catalysts have reported a high catalytic activity in the HDS of DBT than their counterpart supported on alumina. In the case of MCM-41, its low structural stability has limited its industrial use as support. It is also reported that the addition of Al2O3 stabilizes the structure of the MCM-41, but do not achieve the promoting effect of Ni [37].
In order to obtain a deep insight into how the preparation conditions of the MCM-41 have influence on the performance of the catalyst, Hernandez Cedeño et al. [38] did a detail study of UV-vis spectroscopy in order to find out how the pH (7 and 9) during the preparation of MCM-41 (MCM41) and Al2O3 (Al) supports as well as the effect of varying the molar ratio of Si/Al (10, 25, and 50) affect the coordination of the supported metals, and thus the metal-support interaction. The catalysts NiW were evaluated in the HDS of DBT. For the catalysts, W/Al2O3 at different pH presented well-defined bands at 423, 720–722 nm, which can be related to nickel in octahedral coordination [39, 40].
On the other hand, the catalysts NiW/MCM41 prepared at pH 7 with different Si/Al (10, 25 and 50) molar ratio presented bands in the range of 710–730 nm ascribed to octahedral nickel species [11, 49, 50, 51]. But also a band between 807 and 818 nm were detected, which was associated to nickel species with octahedral symmetry distorted; this latter may be related to an interaction Ni-W [41, 42]. In addition, the catalysts prepared at pH 9 bands at 804 and 820 nm ascribed to nickel with octahedral distortion were also detected similarly to the catalyst synthesized at pH 7 [43].
At pH of 9, the NiW/AMS50 prevails the band at 818 nm, related to nickel with distorted octahedral symmetry, while for the NiW/AMS10 using the same pH, no octahedral species were observed. An opposite behavior was observed with the pH 7 catalyst, which means the catalyst NiW/AMS10 presents more define bands related to nickel species in octahedral coordination with respect to the NiW/AMS 50.
Then, the catalyst with the highest reaction rate at pH 7 and pH 9 was the NiW/AMS10 and NiW/AMS50 catalysts, respectively. Therefore, there is a trend between the HDS activity and the bands in the range of 804–820 nm as well as the bands between 710 and 730 nm, which are related to the interaction of Ni-W and Ni species in octahedral coordination, respectively. Meanwhile, on the catalyst NiW/Al2O3 prevailed the well-defined band between 720 and 775 nm associated to Ni2+ in octahedral symmetry, which is caused by the interaction between the metal and promoter, and leads to the formation of species NiWS type II, resulting in a better conversion of the DBT.
Although the incorporation of Al in the MCM41 framework improved the hydrothermal stability, the reaction rate decreases. According to the results of that work, the incorporation of Al in the MCM41 framework has a negative effect on the catalyst performance. On the other hand, in the NiW/AMS catalyst, both the pH and the amount of alumina affect the reaction rate. In the case of the catalysts impregnated at pH 7, the highest reaction rate was achieved with the catalyst that contains the highest amount of alumina in its structure (NiW/AMS10). On the contrary for the catalysts impregnated at pH 9, the NiW/AMS50 catalyst (lowest amount of alumina) presented the highest reaction rate of this series.
Continuing with the influence of the preparation conditions of the support with Si on the performance of the HDS catalysts in terms of metal-support interaction, Gómez-Orozco et al. [44] analyzed the effect of modify the SBA-15 support with Ti on its physicochemical properties and its sulfidation behavior using NiMoW/SBA-15 catalysts in the HDS reaction of DBT. The amounts of Ti4+ ions incorporated during the direct synthesis of the SBA-15 support were varied using an Si/Ti molar ratio of 60, 40, and 20, and the nominal metals loading were 3.84, 13.83, and 17.33 wt% of Ni, Mo, and W, respectively. The supported catalysts were labeled as CAT/S15, CAT/60TiS15, CAT/40TiS15, and CAT/20TiS15 in agreement with the nominal Si/Ti ratio of 60, 40, or 20, respectively.
The coordination of Ni, Mo, and W ions was analyzed by UV-vis-DRS. It was observed that all the samples present a strong band in the range of 210–280 nm, which is ascribed to Mo and W ions in tetrahedral coordination, such as Mo(W)O42−. The intensity of this band (210–280 nm) was observed to follow the next trend: CAT/40TiS15 > CAT/20TiS15 > CAT/S15 > CAT/60TiS15. The catalysts CAT/40TiS15 and CAT/60TiS also showed an intense band at about 350 nm, which is related to Mo or W ions with octahedral coordination [45]. Furthermore, these catalysts present a band at 750 nm assigned to Ni2+ ions in octahedral coordination. In general, the population of octahedral W species and the W species in tetrahedral coordination was increased significantly upon Ti incorporation into S15. In addition, the incorporation of Ti did not decrease the catalytic activity in the HDS of DBT reaction except for Si/Ti = 40. The UV-vis analysis of the catalyst CAT/40TiS15 indicates a higher amount of tetrahedral species than its counterpart CAT/60TiS15. The lower amount of Ti in the catalyst (CAT/60TiS15) presented the highest hydrogenation capability among the catalysts studied (HYD/DDS = 0.81) (Table 1) despite the main route of DBT reaction was the direct desulfurization (DDS) pathway. Hence, the superior activity for CAT/60TiS15 and CAT/S15 samples was related to a higher dispersion of Mo(W)S2 phase and a lower amount of tetrahedral species, which are not easy to reduce and sulfide (type I structure), which means that the catalysts CAT/60TiS15 and CAT/S15 possess a higher population of Mo(W)S2 phase with type II structure.
Catalysts | DDS | HYD | DBT | |||
---|---|---|---|---|---|---|
BF (%) | CBH (%) | BCH (%) | THDBT (%) | HYD/DDS | Conversion (%) | |
CAT/S-15 | 22.34 | 13.47 | 1.11 | 3.08 | 0.79 | 91.57 |
CAT/60Ti-S15 | 22.16 | 13.05 | 1.05 | 3.75 | 0.81 | 96.86 |
CAT/40Ti-S15 | 23.99 | 12.3 | 0.1 | 3.6 | 0.65 | 80.15 |
CAT/20Ti-S15 | 22.86 | 13.23 | 0 | 3.58 | 0.75 | 82.36 |
DBT conversion and selectivity HYD/DDS (at 40% of DBT conversion) [39].
THDBT, tetrahydrodibenzothiophene; BF, biphenyl; CBH, cyclohexylbenzene; and BCH, bicyclohexyl; calculated for batch reactor operating at T = 320°C and PH2 = 800 psi for 5 h.
The incorporation of Ti into the structure of the SBA-15 affected the catalytic properties of the sulfide catalysts. However, the Ti effect depends on its loading. In this study, the moderate Ti loading (Si/Ti = 40 molar ratio) was observed and had a negative effect in the catalytic activity, presenting the lower DBT conversion (Table 1). One reason for the poor activity in the catalysts CAT/40TiS15 is the higher amount of tetrahedral species compared to their counterparts. In contrast, the catalyst CAT/60TiS15 (Si/Ti = 60 molar ratio) presented a lower amount of the tetrahedral species. Tetrahedral species are difficult to be reduced and sulfide, and therefore are not susceptible to develop the HDS active sites. Then, CAT/60TiS15 exhibited the highest HDS activity (96.98% of DBT conversion), the better performance for this catalyst is due to the small amount of tetrahedral species, the low staking, and high dispersion of Mo(W)S2 phases. As it is observed, there is an optimal relationship of Si/Ti molar ratio in order to improve the HDS performance. Furthermore, the incorporation of certain amount of Ti into the structure of SBA-15 generates a high dispersion of the active phase, and a large number of structure type II.
As mentioned above, the type I structure with poor sulfidation has strong Mo-O-Al linkage with γ-alumina and presents low activity, whereas the type II structures with full sulfidation possess weak interaction with γ-alumina and exhibit high HDS activity. The surface modification of alumina with silica is an efficient way to weaken the metal-support interaction. Sanchez-Minero et al. [46] studied the effect of incorporate SiO2 with a nominal loading of 10 wt% (SAC 10) onto the surface of alumina in NiMo/Al2O3-SiO2(x) catalysts for the hydrotreatment of mixtures of 4,6-DMDBT-naphthalene-carbazole. An infrared analysis of the hydroxyl region was carried out, characteristics bands of Al2O3 hydroxyl groups were observed at 3790, 3775, 3740, 3730 and 3680 cm−1 [47], and it can be noted from the IR spectrum of the alumina support (SAC). The most basic hydroxyl groups in alumina give rise to an IR band at 3775 cm−1. When silica is incorporated to alumina (SAC 10), some changes in the bands intensity are observed. A new band localized in the region at 3725–3750 cm−1 appears, which is assigned to isolated silanol groups [48, 49]. Furthermore, the bands corresponding to the most basic hydroxyl groups (3775 cm−1) disappear. This behavior indicates that modifying the alumina surface with SiO2 eliminates the most basic hydroxyl groups in alumina promoting that the sulfided NiMoSAC10 catalyst presented highly stacked MoS2 crystallites with more than two layers (type II structure). These sites favor the hydrogenation route, being more active for 4,6-DMDBT HDS.
Recently, Romero-Galarza et al. [50] carried out a systematic study of the change in activity, selectivity, dispersion, sulfidation, and extent of promotion for CoMo and NiMo HDS catalysts supported on Al2O3 and SiO2/Al2O3. They found for CoMo and NiMo catalysts that the grafting of the surface of alumina support with a 4.0 wt% of silica was enough to eliminate the most basic hydroxyl groups bonded to tetrahedral aluminum (IR band at 3767 cm−1), and thus, this induces to have a higher proportion of Mo and Co(Ni) in octahedral coordination (DRS-UV-vis results), resulting in a better catalytic performance in the HDS of 4,6-DMDBT.
It was also found that the extent of promotion, determinated by the XPS ratio of NiMoS/NiT, is larger for the Ni-promoted catalysts than for Co-promoted catalyst, which is in line with the fact that NiMo catalysts can incorporate the Ni promoter on three different edges of a dodecagonal NiMoS particle, in contrast to CoMo catalysts where the copromoter is incorporated only on the sulfur edge of a hexagonal CoMoS cluster [26, 27]. The origin of the better performance of the NiMoSAC catalyst over their alumina-supported counterparts, NiMoAl and CoMoAl, seems to be mainly related to the higher extent of promotion and sulfidation achieved in the catalysts with SiO2 (type II structures). This fact is reflected with a good correlation between the degree of promotion with the hydrodesulfurization rate constant displayed in Figure 8, and agrees with the literature reports that indicate that promotion favors the appearance or brighter (more metallic) brim site, which can perform hydrogenating reactions [51], which is the main route for the HDS of 4,6-DMDBT.
Relationship between global HDS rate constant vs. Ni or Co atoms involved in the Co(Ni)MoS phase.
On the other hand, Xu et al. [11] prepared a novel NiMo/SiO2-Al2O3 catalysts with the improved stacking and good dispersion of supported active phase via gemini surfactant-assisted synthesis. In this method, polymolybdates anions were transformed into gemini surfactant-linked Mo precursor (GSMP), dispersing Mo species well and weakening the strong Mo-support interaction. The GSMP-based NiMo/SiO2-Al2O3 (NiMo-GSHD) catalyst presents higher activity for the HDS of 4,6-DMDBT than its counterparts prepared via impregnation (NiMo-IM) and the cetyltrimethylammonium bromide-assisted hydrothermal method (NiMo-CTHD). To understand their different activities (Table 2), the HDS activities of the catalysts were correlated with the structure of their metal phase.
Catalysts | kHDSa | TOFb × 104 | Product ratioc | |
---|---|---|---|---|
(10−7 molg−1s−1) | (s−1) | (TH + HH)/MCHT | MCHT/DMDBP | |
Mo-IM | 0.32 | 1.72 | 0.33 | 1.85 |
Mo-CTHD | 0.47 | 2.24 | 0.3 | 2.41 |
Mo-GSHD | 0.7 | 2.83 | 0.27 | 3.07 |
NiMo-IM | 3.16 | 5.62 | 0.16 | 2.04 |
NiMo-CTHD | 4.18 | 7.34 | 0.13 | 2.72 |
NiMo-GSHD | 5.78 | 9.21 | 0.11 | 3.67 |
HDS results of 4,6-DMDBT on different catalysts [47].
Calculated with the 4,6-DMDBT conversion at about 30%.
Number of the reacted 4,6-DMDBT molecules per second and per Mo atom at the edge surface.
Determinated at about 50% of the total 4,6-DMDBT conversion by changing liquid hourly space velocity.
TH, tetrahydrodimethylbenzothiophene; HH, hexahydrodimethyldibenzothiophene; MCHT, dimethylbicyclohexyl; and DMDBP, dimethylbiphenyl.
The reason for the higher HDS activity of 4,6-DMDBT (Table 2) exhibited in the catalyst NiMo-GSHD is related to the greater MoS2 dispersion, a superior average stacking number determinated by HRTEM and the higher extent of promotion (NiMoS) calculated by XPS and by NO-IR characterization, thus generating more Ni-Mo-S active sites with sufficient brim sites (type II structures). Such that, the prehydrogenation activity of NiMi-GSHD for 4,6-DMDBT with steric hindrance is markedly improved. The prehydrogenated products (4,6-THDMDBT and 4,6-HHDMDBT) without steric hindrance are much easier to be desulfurization via hydrogenolysis on the edge sites of Ni-Mo-S phases than initial 4,6-DMDBT. Therefore, NiMo-GSHD, with more edge sites due to its better metal dispersion, possesses higher 3,3´-MCHT selectivity than NiMo-IM and NiMo-CTHD.
According to the results showed in this section, the use of supports SiO2-Al2O3 results in an improvement in the performance of the catalysts in the HDS reaction of the 4,6-DMDBT molecule. Grafting SiO2 on the surface of γ-alumina generates two main effects. Increasing the extent of sulfidation and promotion, generating structures Co(Ni)-Mo-S type II, unlike the catalysts supported in γ-alumina where the structures type I predominate, which are not well sulfided due to a strong metal-support interaction. On the other hand, a different Mo precursor is used (gemini surfactant-linked) in conjunction with the use of a mixed Al2O3-SiO2 support with a composition of 96.4 and 3.6 wt%, respectively, resulting in the formation of sulfide molybdenum (MoS2) crystals with higher stacking, generating the so-called Ni-Mo-S type II, which are more active in HDS of 4,6-DMDBT molecule.
The metal-support interaction is one of the most important parameters in the design of HDS catalysts. The use of silicon in the preparation of HDS catalyst support has been showed to weak the metal interaction, generating type II Co(Ni)-Mo(W)-S structures, which are characterized by: (i) a complete sulfidation of the oxidized phase, weakening the electronic interaction with the support or (ii) stacked structures so that the upper crystallites in the structure Mo(W)S2 have a low interaction with the support. The so-called type II Co(Ni)-Mo(W)-S structures are more active than the partially sulfide type I. The use of mesoporous silicates such as MCM-41 and SBA-15 has been proposed in the literature, with the intention to increase the active phase, acidity, the type II structures, and the dispersion of the active phase (Mo(W)S2). In the case of the MCM-41 support, the preparation conditions such as pH and the Si/Al molar ratio increase the number of oxidized species in octahedral coordination, which are precursors of the type II structures. However, these materials did not show better HDS performance in the DBT molecule compared with the alumina support. It would be very useful to evaluate this type of catalyst support (MCM-41) in a molecule more refractory to HDS, such as 4,6-DMDBT, and see if it is possible to increase the catalytic performance compared to the catalyst supported in alumina, since the 4,6-DMDBT molecule is more sensitive to the geometry of the Co(Ni)-Mo(W)-S structure than the DBT molecule. On the other hand, SBA-15 mesoporous silicate doped with a certain amount of Ti (Si/Ti = 60 molar ratio) showed to improve the catalytic performance in the HDS of the DBT molecule, through generating a greater population of type II structures; therefore, these materials are useful as HDS catalyst support.
Grafting SiO2 on the surface of γ-alumina or the use of mixed support (Al2O3-SiO2) are other alternatives to promote the formation of so-called type II Co(Ni)-Mo(W)-S structures. It has been reported that a small amount of SiO2 is enough to weaken the metal-support interaction and thus increase the extent of sulfidation and level promotion, which are fundamental parameters to improve the performance of HDS catalysts. So, it can be concluded that the use of silicon in the preparation of HDS catalyst support is a promising alternative to get better performance in HDS catalysts.
As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review. To maintain these principles IntechOpen has developed basic guidelines to facilitate the avoidance of Conflicts of Interest.
",metaTitle:"Conflicts of Interest Policy",metaDescription:"As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review.",metaKeywords:null,canonicalURL:"/page/conflicts-of-interest-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\\n\\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\\n\\nA Conflict of Interest can be identified at different phases of the publishing process.
\\n\\nIntechOpen requires:
\\n\\nCONFLICT OF INTEREST - AUTHOR
\\n\\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\\n\\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\\n\\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\\n\\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\\n\\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\\n\\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\\n\\nCONFLICT OF INTEREST - REVIEWER
\\n\\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\\n\\nEXAMPLES OF CONFLICTS OF INTEREST:
\\n\\nFINANCIAL AND MATERIAL
\\n\\nNON-FINANCIAL
\\n\\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\\n\\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\\n\\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\\n\\nEXAMPLES:
\\n\\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\\n\\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\\n\\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\\n\\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\n\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\n\nA Conflict of Interest can be identified at different phases of the publishing process.
\n\nIntechOpen requires:
\n\nCONFLICT OF INTEREST - AUTHOR
\n\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\n\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\n\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\n\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\n\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\n\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\n\nCONFLICT OF INTEREST - REVIEWER
\n\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\n\nEXAMPLES OF CONFLICTS OF INTEREST:
\n\nFINANCIAL AND MATERIAL
\n\nNON-FINANCIAL
\n\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\n\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\n\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\n\nEXAMPLES:
\n\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\n\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\n\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\n\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\n\nPolicy last updated: 2016-06-09
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15790}],offset:12,limit:12,total:118189},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"10736",title:"Neurotoxicity",subtitle:null,isOpenForSubmission:!0,hash:"f3ae592c3bd56dca45f9ce7d02e06714",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10736.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:null,isOpenForSubmission:!0,hash:"8ef09a9da770b582c0c64114a19b29c0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!0,hash:"70c3ce4256324b3c58db970d446ddac4",slug:null,bookSignature:"Dr. Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:null,editors:[{id:"255360",title:"Dr.",name:"Usama",surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10883",title:"Pain Management",subtitle:null,isOpenForSubmission:!0,hash:"82abad01d1cffb27e341ffd507117824",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10883.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10884",title:"Bisphenols",subtitle:null,isOpenForSubmission:!0,hash:"d73ec720cb7577731662ac9d02879729",slug:null,bookSignature:"Prof. Pınar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10884.jpg",editedByType:null,editors:[{id:"109978",title:"Prof.",name:"Pınar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5229},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"740",title:"Electronic Devices and Materials",slug:"electronic-devices-and-materials",parent:{title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:11,numberOfAuthorsAndEditors:184,numberOfWosCitations:276,numberOfCrossrefCitations:115,numberOfDimensionsCitations:239,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"electronic-devices-and-materials",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7619",title:"Solar Cells",subtitle:null,isOpenForSubmission:!1,hash:"0a247e3e90115e9dce4f44a6996bc866",slug:"solar-cells",bookSignature:"Majid Nayeripour, Mahdi Mansouri and Eberhard Waffenschmidt",coverURL:"https://cdn.intechopen.com/books/images_new/7619.jpg",editedByType:"Edited by",editors:[{id:"66929",title:"Prof.",name:"Majid",middleName:null,surname:"Nayeripour",slug:"majid-nayeripour",fullName:"Majid Nayeripour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8724",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!1,hash:"bc4be4b954b559709aaace45f70adcd0",slug:"gas-sensors",bookSignature:"Sher Bahadar Khan, Abdullah M. Asiri and Kalsoom Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/8724.jpg",editedByType:"Edited by",editors:[{id:"245468",title:"Dr.",name:"Sher Bahadar",middleName:null,surname:"Khan",slug:"sher-bahadar-khan",fullName:"Sher Bahadar Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7567",title:"Science, Technology and Advanced Application of Supercapacitors",subtitle:null,isOpenForSubmission:!1,hash:"6f3c82213ad65bc6260c0164da9319f4",slug:"science-technology-and-advanced-application-of-supercapacitors",bookSignature:"Takaya Sato",coverURL:"https://cdn.intechopen.com/books/images_new/7567.jpg",editedByType:"Edited by",editors:[{id:"51962",title:"Prof.",name:"Takaya",middleName:null,surname:"Sato",slug:"takaya-sato",fullName:"Takaya Sato"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6489",title:"Light-Emitting Diode",subtitle:"An Outlook On the Empirical Features and Its Recent Technological Advancements",isOpenForSubmission:!1,hash:"20818f168134f1af35547e807d839463",slug:"light-emitting-diode-an-outlook-on-the-empirical-features-and-its-recent-technological-advancements",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6489.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6511",title:"Complementary Metal Oxide Semiconductor",subtitle:null,isOpenForSubmission:!1,hash:"96b2d63df3822f48468050aa7a44a44c",slug:"complementary-metal-oxide-semiconductor",bookSignature:"Kim Ho Yeap and Humaira Nisar",coverURL:"https://cdn.intechopen.com/books/images_new/6511.jpg",editedByType:"Edited by",editors:[{id:"24699",title:"Dr.",name:"Kim Ho",middleName:null,surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6509",title:"Energy Harvesting",subtitle:null,isOpenForSubmission:!1,hash:"9665f0b76c3e7d51613f12f86efc3767",slug:"energy-harvesting",bookSignature:"Reccab Manyala",coverURL:"https://cdn.intechopen.com/books/images_new/6509.jpg",editedByType:"Edited by",editors:[{id:"12002",title:"Associate Prof.",name:"Reccab",middleName:"Ochieng",surname:"Manyala",slug:"reccab-manyala",fullName:"Reccab Manyala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6275",title:"Supercapacitors",subtitle:"Theoretical and Practical Solutions",isOpenForSubmission:!1,hash:"94a2398d62d5bcefd79ae73a0003ad7a",slug:"supercapacitors-theoretical-and-practical-solutions",bookSignature:"Lionginas Liudvinavičius",coverURL:"https://cdn.intechopen.com/books/images_new/6275.jpg",editedByType:"Edited by",editors:[{id:"32614",title:"Dr.",name:"Lionginas",middleName:null,surname:"Liudvinavičius",slug:"lionginas-liudvinavicius",fullName:"Lionginas Liudvinavičius"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5741",title:"Epitaxy",subtitle:null,isOpenForSubmission:!1,hash:"a5fad1c4783ec478a4c4877914ae5ca9",slug:"epitaxy",bookSignature:"Miao Zhong",coverURL:"https://cdn.intechopen.com/books/images_new/5741.jpg",editedByType:"Edited by",editors:[{id:"164790",title:"Dr.",name:"Miao",middleName:null,surname:"Zhong",slug:"miao-zhong",fullName:"Miao Zhong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"253",title:"Organic Light Emitting Diode",subtitle:"Material, Process and Devices",isOpenForSubmission:!1,hash:"bf0742adef8e8ae73b12780081eeb1d7",slug:"organic-light-emitting-diode-material-process-and-devices",bookSignature:"Seung Hwan Ko",coverURL:"https://cdn.intechopen.com/books/images_new/253.jpg",editedByType:"Edited by",editors:[{id:"33170",title:"Prof.",name:"Seung Hwan",middleName:null,surname:"Ko",slug:"seung-hwan-ko",fullName:"Seung Hwan Ko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3644",title:"Semiconductor Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"semiconductor-technologies",bookSignature:"Jan Grym",coverURL:"https://cdn.intechopen.com/books/images_new/3644.jpg",editedByType:"Edited by",editors:[{id:"4283",title:"Ph.D.",name:"Jan",middleName:null,surname:"Grym",slug:"jan-grym",fullName:"Jan Grym"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3645",title:"Passive Microwave Components and Antennas",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"passive-microwave-components-and-antennas",bookSignature:"Vitaliy Zhurbenko",coverURL:"https://cdn.intechopen.com/books/images_new/3645.jpg",editedByType:"Edited by",editors:[{id:"3721",title:"Prof.",name:"Vitaliy",middleName:null,surname:"Zhurbenko",slug:"vitaliy-zhurbenko",fullName:"Vitaliy Zhurbenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:11,mostCitedChapters:[{id:"9781",doi:"10.5772/8564",title:"Advanced Plasma Processing: Etching, Deposition, and Wafer Bonding Techniques for Semiconductor Applications",slug:"advanced-plasma-processing-etching-deposition-and-wafer-bonding-techniques-for-semiconductor-applica",totalDownloads:6742,totalCrossrefCites:11,totalDimensionsCites:18,book:{slug:"semiconductor-technologies",title:"Semiconductor Technologies",fullTitle:"Semiconductor Technologies"},signatures:"Michael Shearn, Xiankai Sun, M. David Henry, Amnon Yariv and Axel Scherer",authors:null},{id:"10709",doi:"10.5772/9400",title:"Circuital Analysis of Cylindrical Structures Applied to the Electromagnetic Resolution of Resonant Cavities",slug:"circuital-analysis-of-cylindrical-structures-applied-to-the-electromagnetic-resolution-of-resonant-c",totalDownloads:1955,totalCrossrefCites:0,totalDimensionsCites:14,book:{slug:"passive-microwave-components-and-antennas",title:"Passive Microwave Components and Antennas",fullTitle:"Passive Microwave Components and Antennas"},signatures:"Felipe L. Penaranda-Foix and Jose M. Catala-Civera",authors:null},{id:"16966",doi:"10.5772/18545",title:"Transparent Conductive Oxide (TCO) Films for Organic Light Emissive Devices (OLEDs)",slug:"transparent-conductive-oxide-tco-films-for-organic-light-emissive-devices-oleds-",totalDownloads:15861,totalCrossrefCites:7,totalDimensionsCites:13,book:{slug:"organic-light-emitting-diode-material-process-and-devices",title:"Organic Light Emitting Diode",fullTitle:"Organic Light Emitting Diode - Material, Process and Devices"},signatures:"Sunyoung Sohn and Yoon Soo Han",authors:[{id:"31808",title:"Prof.",name:"Yoon Soo",middleName:null,surname:"Han",slug:"yoon-soo-han",fullName:"Yoon Soo Han"},{id:"91912",title:"Dr.",name:"Sunyoung",middleName:null,surname:"Sohn",slug:"sunyoung-sohn",fullName:"Sunyoung Sohn"}]}],mostDownloadedChaptersLast30Days:[{id:"61888",title:"Work Function Setting in High-k Metal Gate Devices",slug:"work-function-setting-in-high-k-metal-gate-devices",totalDownloads:1484,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"complementary-metal-oxide-semiconductor",title:"Complementary Metal Oxide Semiconductor",fullTitle:"Complementary Metal Oxide Semiconductor"},signatures:"Elke Erben, Klaus Hempel and Dina Triyoso",authors:null},{id:"63037",title:"Recent Progress in AlGaN Deep-UV LEDs",slug:"recent-progress-in-algan-deep-uv-leds",totalDownloads:1757,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"light-emitting-diode-an-outlook-on-the-empirical-features-and-its-recent-technological-advancements",title:"Light-Emitting Diode",fullTitle:"Light-Emitting Diode - An Outlook On the Empirical Features and Its Recent Technological Advancements"},signatures:"Hideki Hirayama",authors:[{id:"224478",title:"Ph.D.",name:"Hideki",middleName:null,surname:"Hirayama",slug:"hideki-hirayama",fullName:"Hideki Hirayama"}]},{id:"62046",title:"Advanced Transistor Process Technology from 22- to 14-nm Node",slug:"advanced-transistor-process-technology-from-22-to-14-nm-node",totalDownloads:935,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"complementary-metal-oxide-semiconductor",title:"Complementary Metal Oxide Semiconductor",fullTitle:"Complementary Metal Oxide Semiconductor"},signatures:"Huaxiang Yin and Jiaxin Yao",authors:null},{id:"56445",title:"Strain Effect in Epitaxial Oxide Heterostructures",slug:"strain-effect-in-epitaxial-oxide-heterostructures",totalDownloads:1633,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"epitaxy",title:"Epitaxy",fullTitle:"Epitaxy"},signatures:"Abhijit Biswas and Yoon Hee Jeong",authors:[{id:"175909",title:"Prof.",name:"Yoon Hee",middleName:null,surname:"Jeong",slug:"yoon-hee-jeong",fullName:"Yoon Hee Jeong"},{id:"194151",title:"Dr.",name:"Abhijit",middleName:null,surname:"Biswas",slug:"abhijit-biswas",fullName:"Abhijit Biswas"}]},{id:"56956",title:"Electrochemical Capacitor Performance: Influence of Aqueous Electrolytes",slug:"electrochemical-capacitor-performance-influence-of-aqueous-electrolytes",totalDownloads:1328,totalCrossrefCites:3,totalDimensionsCites:11,book:{slug:"supercapacitors-theoretical-and-practical-solutions",title:"Supercapacitors",fullTitle:"Supercapacitors - Theoretical and Practical Solutions"},signatures:"Rajendran Ramachandran and Fei Wang",authors:[{id:"212251",title:"Prof.",name:"Fei",middleName:null,surname:"Wang",slug:"fei-wang",fullName:"Fei Wang"},{id:"212284",title:"Dr.",name:"Rajendran",middleName:null,surname:"Ramachandran",slug:"rajendran-ramachandran",fullName:"Rajendran Ramachandran"}]},{id:"9779",title:"Semiconductor Processes and Devices Modeling",slug:"semiconductor-processes-and-devices-modelling",totalDownloads:5181,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"semiconductor-technologies",title:"Semiconductor Technologies",fullTitle:"Semiconductor Technologies"},signatures:"Florin Babarada",authors:null},{id:"57851",title:"Towards New Generation Power MOSFETs for Automotive Electric Control Units",slug:"towards-new-generation-power-mosfets-for-automotive-electric-control-units",totalDownloads:779,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"complementary-metal-oxide-semiconductor",title:"Complementary Metal Oxide Semiconductor",fullTitle:"Complementary Metal Oxide Semiconductor"},signatures:"Kuan W.A. Chee and Tianhong Ye",authors:null},{id:"65905",title:"Heterojunction-Based Hybrid Silicon Nanowires Solar Cell",slug:"heterojunction-based-hybrid-silicon-nanowires-solar-cell",totalDownloads:397,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"solar-cells",title:"Solar Cells",fullTitle:"Solar Cells"},signatures:"Riam Abu Much, Prakash Natarajan, Awad Shalabny, Sumesh Sadhujan, Sherina Harilal and Muhammad Y. Bashouti",authors:[{id:"274866",title:"Prof.",name:"Muhammad Y.",middleName:null,surname:"Bashouti",slug:"muhammad-y.-bashouti",fullName:"Muhammad Y. Bashouti"},{id:"288200",title:"Dr.",name:"Riam",middleName:null,surname:"Abu Much",slug:"riam-abu-much",fullName:"Riam Abu Much"},{id:"288201",title:"Dr.",name:"Prakash",middleName:null,surname:"Natarajan",slug:"prakash-natarajan",fullName:"Prakash Natarajan"},{id:"288202",title:"Mr.",name:"Sumesh",middleName:null,surname:"Sadhujan",slug:"sumesh-sadhujan",fullName:"Sumesh Sadhujan"},{id:"288203",title:"Mr.",name:"Awad",middleName:null,surname:"Shalabny",slug:"awad-shalabny",fullName:"Awad Shalabny"},{id:"288204",title:"Ms.",name:"Sherina",middleName:null,surname:"Harilal",slug:"sherina-harilal",fullName:"Sherina Harilal"}]},{id:"68941",title:"Metal Oxide Gas Sensors by Nanostructures",slug:"metal-oxide-gas-sensors-by-nanostructures",totalDownloads:1115,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"gas-sensors",title:"Gas Sensors",fullTitle:"Gas Sensors"},signatures:"Fatma Sarf",authors:null},{id:"9778",title:"Contamination Monitoring and Analysis in Semiconductor Manufacturing",slug:"contamination-monitoring-and-analysis-in-semiconductor-manufacturing",totalDownloads:29067,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"semiconductor-technologies",title:"Semiconductor Technologies",fullTitle:"Semiconductor Technologies"},signatures:"Baltzinger Jean-Luc and Delahaye Bruno",authors:null}],onlineFirstChaptersFilter:{topicSlug:"electronic-devices-and-materials",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/303653/muhammad-asif-zahoor",hash:"",query:{},params:{id:"303653",slug:"muhammad-asif-zahoor"},fullPath:"/profiles/303653/muhammad-asif-zahoor",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()