Metformin has been used for almost half a century as the first line of treatment for type 2 diabetes. Mechanisms of action are still incompletely known, recent studies have shown that metformin exerts its effects through several mechanisms, including the stimulation of AMP-activated protein kinase, decreasing production of cyclic AMP, inhibition of mitochondrial complex I of the electron transport chain, targeting glycerophosphate dehydrogenase and altering gut microbiota. In recent years, studies have shown that patients with type 2 diabetes mellitus have a lower risk of developing cancer, and patients with cancer and type 2 diabetes have a lower mortality. Experimental studies have demonstrated that metformin has anti-tumor activity by inhibiting mTORC1 signaling pathway and mitochondrial complex, inhibiting tumor growth and proliferation, and inducing cellular apoptosis. There are multiple studies showing that combination of metformin with different types of anti-cancer therapies may reduce toxicities and tumor resistance. This chapter is focused on the progress made in understanding the anti-tumor effect of metformin and its association with cancer therapy.
Part of the book: Metformin
The human gastrointestinal tract presents a vastly population of microorganisms, called the microbiota. The presence of these microorganisms offers many benefits to the host, through a range of physiological functions. However, there is a potential for these mechanisms to be disrupted condition, known as dysbiosis. Recent results are showing important associations between diabetes and the gut microbiota and how the intestinal flora can influence the prognosis of this illness. Microbial intestinal imbalance has been linked to alterations in insulin sensitivity and in glucose metabolism and may play an important role in the development of diabetes. Metformin is one of the most important and widely used first-line medications for the management of type 2 diabetes (T2D). It is a complex drug with multiple sites of action and multiple molecular mechanisms. In recent years, attention has been directed to other modes of action, other than the classic ones, with increasing evidence of a major key role of the intestine. By analysing the effects of metformin on the homeostasis of the microbiota of diabetes patients, our present topic becomes one of the major importance in understanding how metformin therapy can improve gut microbiota dysbiosis and thus provide a better outcome for this illness.
Part of the book: Metformin